Oberwolfach Seminar Mathematical Modelling in Systems Biology Nov 19-25, 2017

Task 1 (Epodemiological model)

Consider an epidemiologic model of a virulent outbreak (also called susceptible-infected-recovered (SIR) model):

where x_1 denotes the number of susceptible individuals, x_2 are the number of infected individuals, x_3 are the number of individuals that recovered and are subsequently resistant to infection, and x_4 are the number of individuals that died from the infection. Parameter values are $\lambda = 1 \cdot 10^{-4}$, $\delta = 1 \cdot 10^{-8}$, $\beta = 5 \cdot 10^{-5}$, $k_r = 0.3$, and the initial state is $x_1(0) = \lambda/\delta$, $x_2(0) = 5$, $x_3(0) = 0$, $x_4(0) = 0$.

- (a) Write a program implementing this model and generate trajectories using the stochastic simulation algorithm.
- (b) Plot the trajectories for N=3 simulations up to time T=10.
- (c) Perform N=1000 simulations, generate a histogram of the number of x_2 at time T=10 and depict the probability that $0, \ldots, 20$ individuals are infected by T=10. What is the probability that the infection is still ongoing at T=10?
- (d) From the N=1000 simulations, generate a histogram of the number of x_4 at time T=10 (number of casualties), depicting the probability that $0,\ldots,35$ individuals died by T=10. How many individuals died on average (\pm standard deviation)?