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Abstract. We compute expectation values for the solution of the nuclear Schrödinger equation.
The proposed particle method consists of three steps: sampling of the initial Wigner function, clas-
sical transport of the sampling points, weighted phase space summation for the final computation of
the expectation values. The Egorov theorem guarantees that the algorithm is second order accurate
with respect to the semiclassical parameter. We present numerical experiments for a two-dimensional
torsional potential with three different sets of initial data and for a six-dimensional Henon-Heiles po-
tential. By construction, the computing times scale linearly with the number of initial sampling
points and range between three seconds and one hour.
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1. Introduction. The governing evolution equation of quantum molecular dy-
namics is the time dependent Schrödinger equation in semiclassical scaling,

iε∂tψε(t, q) = − ε2

2 ∆qψ
ε(t, q) + V (q)ψε(t, q), ψε(0, q) = ψε0(q). (1.1)

It describes the vibrational motion of a molecule’s nuclei, if the key assumption of
the time dependent Born-Oppenheimer approximation is satisfied [16]: The nuclei
move in regions where for each nuclear configuration q ∈ Rd the governing electronic
eigenvalue V (q) is well separated from the rest of the electronic spectrum. It is a
fundamental equation of femtosecond chemistry.

The initial wave function ψε0 : Rd → C is square integrable with norm one,

‖ψε0‖2L2 =
∫

Rd

|ψε0(q)|2dq = 1.

In many applications, it is a wave packet with a width of order
√
ε and oscillations of

wave length ε, as for example a Gaussian wave packet in semiclassical scaling,

ψε0(q) = (πε)−d/4 exp(− 1
2ε |q − q0|2 + i

ε p0 · (q − q0)). (1.2)

The small semiclassical parameter ε > 0 reflects the square root of the quotient of the
electronic and average nuclear mass. Typically, it ranges between 0.001 and 0.1.

Away from electronic eigenvalue crossings, the potential energy surface q 7→ V (q)
is smooth and bounded from below [8]. Therefore the solution

ψε(t, q) = e−i (− ε2
2 ∆q+V (q))t/εψε0(q)

of the Schrödinger equation (1.1) stems from a one-parameter group of unitary op-
erators and is uniquely defined for all times t. The dimension d of the configuration
space Rd is three times the number of nuclei in the molecule. Hence, nuclear quantum
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motion poses a linear partial differential equation on a high dimensional configuration
space. Moreover, the solution approximately inherits the localization and oscillation
properties of the initial data and is therefore a highly oscillatory function with small
functional support.

Our investigation has been motivated by recent work of E. Faou, V. Gradinaru,
and C. Lubich on computing the time evolution t 7→ ψε(t) using Hagedorn wave
packets [4, 11]. Our approach is complementary and based on the current opinion
that the wave function itself does not have any direct physical interpretation. The
connection to experiment comes from expectation values

〈opε(a)ψ,ψ〉L2 =
∫

Rd

(opε(a)ψ)(q)ψ(q)dq,

where opε(a) is a linear operator acting on subspaces of square integrable functions.
Typical examples are the operator of the kinetic energy, the potential energy, or the
total energy:

ψ 7→ − ε2

2 ∆qψ, ψ 7→ V ψ, ψ 7→ ε2

2 ∆qψ + V ψ.

It is our aim here to directly compute expectation values using the Egorov theo-
rem. The operators opε(a) are obtained as the Weyl quantization of smooth functions
a : R2d → C, (q, p) 7→ a(q, p) on classical phase space, the space of positions and mo-
menta. The action of opε(a) on a wave function is defined as

(opε(a)ψ)(q) = (2πε)−d
∫

R2d

a( 1
2 (q + y), p)eip·(q−y)/εψ(y)dydp,

where the integral expression has to be read in the proper sense if the functions a
and ψ are not integrable. Simple computations using the Fourier inversion formula
yield that the operators of kinetic, potential, and total energy are obtained from the
functions

a(q, p) = 1
2 |p|

2, a(q, p) = V (q), a(q, p) = 1
2 |p|

2 + V (q).

Let Φt : R2d → R2d denote the flow of the Hamiltonian system

q̇ = p, ṗ = −∇V (q). (1.3)

For the solution of the Schrödinger equation (1.1) and general Weyl quantized oper-
ators opε(a), the Egorov theorem gives

〈opε(a)ψ
ε(t), ψε(t)〉L2 =

〈
opε(a ◦ Φt)ψε0, ψ

ε
0

〉
L2 +O(ε2), (1.4)

see for example [1, Theorem 1.2]. That is, for an asymptotic approximation with
second order accuracy in ε no oscillations in time have to be resolved, and only
the expectation value for the initial data has to be computed with respect to an
operator, whose symbol is classically evolved in time. A closer examination reveals
the well-known fact that the error term is dominated by third order derivatives of
the potential and grows linearly in time. Thus for harmonic potentials, the Egorov
description is exact. Moreover, the total energy is a conserved quantity for the Egorov
approximation as it is for the solution of the Schrödinger equation, see §2 later on.
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The approximation (1.4) turns into a particle method by the following observation.
Expectation values for Weyl quantized operators can be expressed as phase space
integrals of the wave function’s Wigner function,

〈opε(a)ψ,ψ〉L2 =
∫

R2d

a(q, p)W (ψ)(q, p)dqdp.

The Wigner function W (ψ) : R2d → R is the inverse Fourier transform of the auto-
correlation function,

W (ψ)(q, p) = (2πε)−d
∫

Rd

eip·y/εψ(q − 1
2y)ψ(q + 1

2y)dy.

It is a continuous real-valued function on phase space. If ‖ψ‖L2 = 1, then∫
R2d

W (ψ)(q, p) dqdp = 1.

The Gaussian wave packet (1.2) has a phase space Gaussian as its Wigner function,

W (ψε0)(q, p) = (πε)−d exp(− 1
ε |(q, p)− (q0, p0)|2).

In terms of the Wigner function, the Egorov approximation (1.4) can be rephrased as

〈opε(a)ψ
ε(t), ψε(t)〉L2 =

∫
R2d

(a ◦ Φt)(q, p)W (ψε0)(q, p) dqdp+O(ε2),

such that the numerical computation of expectation values is reduced to a three-step
procedure involving phase space sampling of the initial Wigner function, classical
transport of the sampling points according to (1.3) and final phase space summation
over the propagated sampling points. In contrast to [12] this algorithmic interpreta-
tion of the Egorov theorem does not aim at computing observables in the limit ε→ 0
but for a fixed value of the semiclassical parameter ε > 0.

The article is organized as follows. In §2 we review the proof of the Egorov theo-
rem carefully discussing the error term and the propagation of sampling inaccuracies.
§3 contains a short exposition of Monte Carlo and quasi-Monte Carlo sampling strate-
gies for the initial Wigner function. Then, §4 bundles some preparatory numerical
considerations on computing times and the discretization of the governing Hamilto-
nian systems. In §5 numerical experiments for a two-dimensional torsional potential
and different types of initial data are presented. §6 concludes with the simulation for
a six-dimensional Henon-Heiles potential.

2. The Egorov theorem. We reexamine the established proof of the Egorov
theorem [1, Theorem 1.2] for analysing the error term. The Schrödinger operator is
written as

opε(h) = − ε2

2 ∆q + V (q)

with the symbol h(q, p) = 1
2 |p|

2 + V (q), and the solution of the Schrödinger equa-
tion (1.1) is expressed in terms of the unitary propagator

ψε(t) = e−i opε(h)t/εψε0.

In what follows, we estimate the difference between the expectation values

〈opε(a)ψ
ε(t), ψε(t)〉L2 −

〈
opε(a ◦ Φt)ψε0, ψ

ε
0

〉
L2
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by analyzing the difference

ei opε(h)t/εopε(a)e
−i opε(h)t/ε − opε(a ◦ Φt).

We give a formal outline of the argumentation.

ei opε(h)t/εopε(a)e
−i opε(h)t/ε − opε(a ◦ Φt) =∫ t

0

d
ds

(
ei opε(h)s/εopε(a ◦ Φt−s)e−i opε(h)s/ε

)
ds =∫ t

0

ei opε(h)s/ε
(

i
ε

[
opε(h), opε(a ◦ Φt−s)

]
− opε(∂t(a ◦ Φt−s))

)
e−i opε(h)s/εds.

For the time derivative one computes

∂t(a ◦ Φt−s) = (∂ph · ∂qa− ∂qh · ∂pa) ◦ Φt−s = {h, a} ◦ Φt−s = {h, a ◦ Φt−s},

using that the classical flow as a symplectic transformation of phase space preserves
the Poisson bracket. The commutator of Weyl quantized operators is again a Weyl
quantized operator with a well-known asymptotic expansion in odd powers of the
semiclassical parameter,

i
ε

[
opε(h), opε(a ◦ Φt−s)

]
= i

ε opε(bε)

with bε ∼
∑∞
j=0 ε

2j+1 b2j+1 and

bj(q, p) = 2 · (2i)−j
∑

|α|+|β|=j

(−1)|α|

α!β!
∂αq ∂

β
p h(q, p) ∂

β
q ∂

α
p (a ◦ Φt−s)(q, p), j ≥ 0.

Since the Hamilton function h(q, p) = 1
2 |p|

2+V (q) does neither have mixed derivatives
nor momentum derivatives of order greater than two, the expressions simplify to
b1 = −i{h, a ◦ Φt−s} and

bj(q, p) = 2 · (2i)−j
∑
|α|=j

(−1)|α|

α!
∂αq V (q) ∂αp (a ◦ Φt−s)(q, p), j ≥ 3.

Therefore, there exists a smooth function eε : R2d → C with eε ∼
∑∞
j=1 ε

2j b2j+1 such
that

ei opε(h)t/εopε(a)e
−i opε(h)t/ε − opε(a ◦ Φt) =

∫ t

0

ei opε(h)s/εopε(i eε)e
−i opε(h)s/εds.

At this point, we distinguish the following cases.

2.1. Harmonic potentials. If the potential function is a polynomial of degree
less than or equal two, then ∂αq V (q) = 0 for |α| ≥ 3 and eε(q, p) = 0, which implies

〈opε(a)ψ
ε(t), ψε(t)〉L2 =

〈
opε(a ◦ Φt)ψε0, ψ

ε
0

〉
L2 .

Hence for harmonic motion all expectation values are exactly described by classical
transport.
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2.2. General potentials. The symbol eε(q, p) contains terms of the form

∂αq V (q) ∂αp (a ◦ Φt−s)(q, p)

with |α| ≥ 3. Hence for bounding the norm of opε(eε) as an operator on L2(Rd)
one needs a smooth potential V (q), whose derivatives of order larger or equal than
three are bounded, and a smooth observable a(q, p), whose derivatives are bounded.
Indeed, by the Calderón-Vaillancourt theorem, see for example [5, Chapter 2.5] or [3,
Theorem 7.11], there is a constant Ccv > 0 such that for all ε > 0

‖opε(eε)‖ ≤ Ccv

∑
|α|≤2d+1

ε|α|/2 ‖∂αeε‖∞.

Consequently, for each t ∈ R there exists Cε(t) > 0 such that for square integrable
initial data with norm one∣∣〈opε(a)ψ

ε(t), ψε(t)〉L2 −
〈
opε(a ◦ Φt)ψε0, ψ

ε
0

〉
L2

∣∣ ≤ Cε(t)ε2t.

The constant allows an asymptotic expansion

Cε(t) ∼
∞∑
j=0

εj/2cj(t)

in powers of ε1/2, where each coefficient cj(t) depends on derivatives of the poten-
tial V (q) of the order j + 3 and higher order derivatives of the observable a(q, p) and
the flow Φt(q, p).

2.3. Energy conservation. Since opε(h) and its unitary propagator e−iopε(h)t/ε

commute, the expectation value of the total energy

〈opε(h)ψ
ε(t), ψε(t)〉L2 = 〈opε(h)ψ

ε
0, ψ

ε
0〉L2

is conserved for all times. By conservation of classical energy h = h ◦Φt we therefore
also obtain

〈opε(h)ψ
ε(t), ψε(t)〉L2 =

〈
opε(h ◦ Φt)ψε0, ψ

ε
0

〉
L2 .

Hence the total energy expectation value has an exact Egorov description.

2.4. Error propagation. The previous analysis does not account for possible
inaccuracies of the initial sampling. In a numerical simulation, the expectation value
〈op(ã)ψε0, ψ

ε
0〉L2 of a slightly distorted observable ã(q, p) enters the propagation. Then

we are interested in the time evolution of the difference

ei opε(h)t/εopε(a)e
−i opε(h)t/ε − opε(ã ◦ Φt).

The linear combination at,s = a + t−s
t (ã − a) satisfies at,t = a and at,0 = ã. Hence

the previous line of argumentation yields

ei opε(h)t/εopε(a)e
−i opε(h)t/ε − opε(ã ◦ Φt) =∫ t

0

d
ds

(
ei opε(h)s/εopε(at,s ◦ Φt−s)e−i opε(h)s/ε

)
ds =∫ t

0

ei opε(h)s/ε
(

i
ε

[
opε(h), opε(at,s ◦ Φt−s)

]
+ opε(∂s(at,s ◦ Φt−s))

)
e−i opε(h)s/εds.
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The first summand of the derivative

∂s(at,s ◦ Φt−s) = −{h, at,s ◦ Φt−s} − 1
t (ã− a) ◦ Φt−s

together with the commutator i
ε [opε(h), opε(at,s ◦Φt−s)] allows for the same analysis

as before. The second summand suggests to measure the mean deviation of ã from a
along the classical flow in terms of the time average

δt(q, p) =
1
t

∫ t

0

(ã− a) ◦ Φs(q, p)ds.

Then we obtain∣∣〈opε(a)ψ
ε(t), ψε(t)〉L2 −

〈
opε(ã ◦ Φt)ψε0, ψ

ε
0

〉
L2

∣∣ ≤ Cεε
2 + ‖opε(δt)‖.

Since opε(δt) can be bounded independently of ε using bounds on the derivatives of
the difference ã − a along the flow, a small initial sampling error does not alter the
asymptotic accuracy of the method.

3. Initial phase space sampling. For the first step of the algorithm the Wigner
function of the initial data has to be sampled. In the literature, predominantly Gaus-
sian wave packets with diagonal width matrix are considered. That is,

gε0(q) = (πε)−d/4 det(D)1/4 exp(− 1
2ε (q − q0) ·D(q − q0) + i

εp0 · (q − q0)) (3.1)

with (q0, p0) ∈ R2d and D = diag(d1, . . . , dd) ∈ Rd×d positive definite. In this simple
case, the Wigner function can be analytically calculated as a phase space Gaussian.
Denoting z = (q, p), z0 = (q0, p0) and D2 = diag(d1, . . . , dd, d

−1
1 , . . . , d−1

d ), it reads as

W (gε0)(z) = (πε)−d exp(− 1
ε (z − z0) ·D2(z − z0)). (3.2)

We also consider the superposition of two Gaussian wave packets nε12(g
ε
1 + gε2)

centered in z1, z2 ∈ R2d with the same diagonal width matrix D and a normalizing
constant nε12 > 0. An elementary calculation involving one-dimensional Gaussian
integrals [10, Appendix B] yields

W (gε1 + gε2)(z) = W (gε1)(z) +W (gε2)(z) + 2C(z)

with an oscillatory cross term

C(z) = (πε)−d exp(− 1
ε (z − z+) ·D2(z − z+)) · cos( 1

εp+ · q− − 1
ε (z − z+) ∧ z−)

=: (πε)−d exp(− 1
ε (z − z+) ·D2(z − z+)) · c(z),

where x ∧ y = p(x) · q(y) − q(x) · p(y) is the wedge product for vectors x, y ∈ R2d.
The cross term localizes around the average z+ = 1

2 (z1 + z2) and oscillates with a
frequency proportional to the distance z− = z1− z2. The normalizing constant enters
the Wigner function quadratically,

W (nε12(g
ε
1 + gε2)) = (nε12)

2W (gε1 + gε2). (3.3)

In general, one expects initial data which are wave packets with a width of or-
der

√
ε and oscillations of wave length of order ε or superpositions of such func-

tions. Due to the high dimensionality of the problem we have explored quadrature
approaches approximating the relevant phase space integral as

〈a ◦ Φt〉ψε
0

:=
∫

R2d

(a ◦ Φt)(z)W (ψε0)(z) dz ≈ 1
N

N∑
j=1

(a ◦ Φt)(xj)
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with uniform quadrature weight N−1 and two different choices for the quadrature
nodes {xj}Nj=1 ⊂ R2d. The methods discussed in the following are conventional Monte
Carlo and quasi-Monte Carlo integration.

3.1. Conventional Monte Carlo. If the initial data is a single Gaussian wave
packet ψε0 = gε0, then the Wigner function W (gε0) is a single Gaussian function in
phase space, see (3.2). One reads this Wigner function as the density function of a
multivariate normal distribution N with mean z0 and covariance matrix ε

2D
−1
2 and

draws N independent samples x1, . . . , xN from it. By the central limit theorem, we
have for all c > 0

lim
N→∞

P
(∣∣∣ 1
N

∑N
j=1(a ◦ Φt)(xj)− 〈a ◦ Φt〉ψε

0

∣∣∣ ≤ c σ(a◦Φt)√
N

)
= 1√

2π

∫ c

−c
e−t

2/2dt,

where σ(a ◦ Φt) is the standard deviation of a ◦ Φt,

σ(a ◦ Φt)2 =
∫

R2d

(
(a ◦ Φt)(z)− 〈a ◦ Φt〉ψε

0

)2
W (gε0)(z) dz.

For the superposition of two Gaussian wave packets ψε0 = nε12(g
ε
1 + gε2) we use

a stratified sampling strategy. In this case, the initial Wigner function (3.3) is a
sum of two phase space Gaussians centered around z1 and z2 plus an oscillatory
cross term with Gaussian envelope function centered around z+. Consequently one
generates three sets of normally distributed sampling points with mean z1, z2, and
z+, respectively. The approximation for the expectation value 〈a ◦ Φt〉ψε

0
is

(nε12)
2

N

N∑
j=1

(
(a ◦ Φt)(xj(z1)) + (a ◦ Φt)(xj(z2)) + (a ◦ Φt)(xj(z+)) · 2c(xj(z+))

)
.

(3.4)
To avoid cancellation in the summation of the oscillatory cross term, positive

and negative contributions are summed separately, see [2, Chapter 2.2]. The plot in
Figure 4.1(a) illustrates the expected convergence rate of the order N−1/2 for a two-
dimensional test case. The semiclassical parameter is ε = 0.1 and the two Gaussian
wave packets with width matrix D = Id are centered in z1 = (1, 0, 0, 0) and z2 = −z1.

3.2. Quasi-Monte Carlo. We return to the single Gaussian wave packet gε0 and
explore a more accurate, deterministic alternative for the integration using quadrature
points of low discrepancy. Again one views W (gε0) as the density function of the
multivariate normal distribution N but generates deterministic points {xj}Nj=1 with
low star-discrepancy

D∗N (x1, . . . , xN ) = sup
a∈R2d

∣∣N−1 · ]{xj | xj ∈ (−∞, a), j = 1, . . . N} − N ((−∞, a))
∣∣

where (−∞, a) =
∏2d
n=1(−∞, an) is the open 2d-dimensional interval with upper

bound a ∈ R2d. The Gaussian Wigner function (3.2) separates as

W (gε0)(z) =
2d∏
n=1

√
αn
επ

exp
(
−αn

ε (zn − z0,n)2
)
,

where α = (d1, . . . , dd, d
−1
1 , . . . , d−1

d ) is the vector defining the diagonal matrix D2.
Therefore the inverse distribution function of N is given explicitly as

F−1
N : (0, 1)2d → R2d, F−1

N (w)n =
√

ε
αn

erf−1(2wn − 1) + z0,n.
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On the unit cube [0, 1)2d there exist several well-known sequences (yj)j≥1 of low star-
discrepancy with respect to the uniform distribution U as for example the Halton or
the Sobol’ sequences. They obey

D∗U (y1, . . . , yN ) = sup
a∈[0,1)2d

∣∣N−1 · ]{yj | yj ∈ [0, a), j = 1, . . . N} − U([0, a))
∣∣

≤ C2dN
−1(logN)2d,

where the constant C2d > 0 is different for each sequence, see for example [14, Section
1.1]. The points xj = F−1

N (yj), j = 1, . . . , N , generated by the inversion method
inherit this favorable property and also satisfy

D∗N (x1, . . . , xN ) ≤ C2dN
−1(logN)2d. (3.5)

Let F denote the space of smooth functions f : R2d → R which eventually become
constant. That is, for each f ∈ F there exists R > 0 such that f(z) = f(πR(z)) for
all z 6∈ QR, where QR = {z ∈ R2d : |zj | ≤ R, j = 1, . . . 2d} is the closed cube of
side length R and πR : R2d → QR the orthogonal projection onto the cube. These
functions have a limit as z tends to infinity, that is, lim‖z‖→∞ f(z) = f(R, . . . , R).
Moreover, they are of bounded variation in the sense of Hardy and Krause [15, Chapter
2.2]. That is,

Var(f) =
∑

∅6=I⊆{1,...,2d}

∫
QR

∂|I|

∂zI
f(zI ,RIc) dz <∞,

where ∂|I|

∂zI
f(zI ,RIc) means that at coordinates j 6∈ I the mixed derivative ∂|I|

∂zI
f is

evaluated at zj = R. Therefore established results on unbounded, weighted quasi-
Monte Carlo integration apply, and the proof of [7, Theorem 3.4] yields a Koksma-
Hlawka inequality of the form∣∣∣∣∣∣ 1

N

N∑
j=1

f(xj)−
∫

R2d

f(z)W (gε0)(z)dz

∣∣∣∣∣∣ ≤ Var(f)D∗N (x1, . . . , xN ).

In our case, however, the integrands a ◦Φt do not belong to the space F . Never-
theless, the numerical experiments show a convergence rate for the initial sampling,
which is slightly worse than of the order N−1. Figure 4.1(b) illustrates the error for
the computation of several expectation values of the superposition of two Gaussian
wave packets obtained by a stratified sampling approach analogously to (3.4).

This is due to the exponential decay of the Gaussian weight function, which yields∫
R2d\QR

(a ◦ Φt)(z)W (gε0)(z)dz = O(N−1)

for cubes with side length R = O((logN)1/2), see also [13, Section 4.1]. Let fR(z) =
(a ◦ Φt)(z) for z ∈ QR and fR(z) = (a ◦ Φt)(πR(z)) for z 6∈ QR. Then

Var(fR) ≤ vol(QR)
∑

∅6=I⊆{1,...,2d}

‖ ∂
|I|

∂wI
fR‖∞ = O((logN)d),

and the expected rate of convergence for the quasi-Monte Carlo integration slightly
deteriorates to the order of N−1(logN)2d+d, which is hardly observable in numerical
experiments.
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Fig. 4.1. Initial sampling. We explore the accuracy of the computation of the initial expectation
values with respect to the number N of sampling points. The wave function is the superposition
of two-dimensional Gaussian wave packets (4.1). The error is the mean absolute error of ten
independent runs of the sampling, where the quasi-Monte Carlo runs use randomly selected prime
bases. As expected, the Monte Carlo convergence rate is of the order N−1/2. The quasi-Monte
Carlo error is slightly worse than of the order of N−1. The associated standard deviations show a
similar behavior.

4. Preparatory numerical considerations. To begin with we discuss the ef-
ficiency of available numerical routines with respect to computing time and accu-
racy. Note that all experiments are performed with Matlab 7.5 on a 2.2 GHz AMD
Opteron Dual Core 875 Processor.

4.1. Initial sampling. We compare the initial Monte Carlo and quasi-Monte
Carlo sampling for the two-dimensional superposition of Gaussian wave packets

ψε0 = nε12(g
ε
1 + gε2), z1 = (1, 0, 0, 0)T , z2 = −z1, ε = 0.1 (4.1)

with width matrix D = Id and normalizing constant nε12 ≈ 1/
√

2 in terms of accuracy
and computing time. The Wigner function W (ψε0) = (nε12)

2(W (gε1) + W (gε2) + 2C)
is a sum of two phase space Gaussians plus an oscillatory cross term with Gaussian
envelope. In this case the kinetic energy and the potential energy for the torsional
potential

V (q) = 2− cos(q1)− cos(q2) (4.2)
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can be computed analytically, since∫
R4

1
2 |p|

2W (gεj )(q, p) dqdp = 1
2 (ε+ p2

j,1 + p2
j,2), j = 1, 2∫

R4

1
2 |p|

2 C(q, p) dqdp = 1
2 e−1/ε(ε− 1),∫

R4
V (q)W (gεj )(q, p) dqdp = 2− e−ε/4 (cos(qj,1) + cos(qj,2)) , j = 1, 2∫

R4
V (q)C(q, p) dqdp = e−1/ε(2− 2e−ε/4).

These formulas are used for evaluating the initial sampling error for all energy expec-
tation values in the following numerical experiments.

The Monte Carlo points are generated by the Matlab routine randn(). To obtain
statistical evidence one has to work with the mean of several independent sampling
runs. For the quasi-Monte Carlo integration we consider Halton sequences generated
by the Matlab routine vdcorput()1. Different runs use different prime bases selected
randomly from the first 100 primes. Monte Carlo integration achieves a convergence
rate of the order N−1/2, while the quasi-Monte Carlo method yields an accuracy
slightly worse than of the order N−1. The absolute errors as well as the standard
deviations in Figure 4.1 for the initial expectation values of position, momentum,
kinetic, potential, and total energy confirm this expectation. Note that due to the
stratified sampling approach, the total number N of sampling points is three times
the number indicated along the x-axis in the two plots.

The convergence of the quasi-Monte Carlo error, see Figure 4.1(b), stagnates
below 10−5. This reflects the contribution of the cross term (exp(−1/ε) ' 4.54 · 10−5

for ε = 0.1) and hints to the fact that it has not been sampled with sufficient accuracy.
In fact, as long as the desired tolerance for the absolute error is larger than the
contribution of the cross term, the simulation of C(q, p) can be neglected (see also
§5.2).

Both the generation of the normally distributed points and the Halton points
can be done efficiently in a vectorized way. The approximate computing times scale
linearly with the number of points and runs, see Table 4.1. However, the quasi-Monte
Carlo approach takes considerably more time than the Monte Carlo method for the
same number N of sampling points.

Table 4.1
Initial sampling. We explore approximate computing times and memory requirement for the

initial sampling of the Wigner function with N points. The wave function is the superposition of
two-dimensional Gaussian wave packets (4.1). The computing times scale about linearly with the
number of points and runs.

memory Monte Carlo (1 run/10 runs) quasi-Monte Carlo

N = 3 · 104 0.92 MB 0.07 sec/0.26 sec 3.09 sec
N = 3 · 106 92 MB 3.18 sec/32 sec 316 sec

4.2. Propagation. The analysis of §2.3 suggests that the particle method con-
serves the total energy expectation value over time. We explore this conservation

1http://www.mathworks.de/matlabcentral/fileexchange/15354
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(b) Störmer-Verlet
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(c) SPRK4

Fig. 4.2. Energy conservation. We show the time-evolution of the absolute difference between
the numerically computed initial total energies and the numerically computed values of the total
energy for a single Gaussian wave packet sampled with N = 104 Halton points. The non-symplectic
Runge-Kutta method ode45 causes a drift in the total energy, while the symplectic Störmer-Verlet
and SPRK4 integrator are accurate to second and fourth order, respectively.

property for an initial Gaussian wave packet centered in z1 = (1, 0, 0, 0)T sampled
with N = 104 Halton points. The Schrödinger equation with torsional potential
(4.2) is considered for the semiclassical parameters ε = 0.1, 0.01, and 0.001 and fixed
time interval [0, 20]. We compare the fourth order Runge-Kutta method with adap-
tive time stepping (Matlab function ode45 with default parameters), the second or-
der Störmer-Verlet scheme and the fourth order symplectic partitioned Runge-Kutta
method SPRK4, see [6, Chapter VI.4]. For both symplectic schemes we use the time
step τ = 0.1 · 2−6 ' 0.0016. The computing time with ode45 (100.8 sec) is about
twice as large as for SPRK4 (54.6 sec) and four times larger than for Störmer-Verlet
(22.7 sec). Since the ode45 integrator is not symplectic, it leads to a drift of energy,
whereas the Störmer-Verlet and the SPRK4 method preserve the total energy within
an accuracy of τ2 ' 2·10−6 and τ4 ' 6·10−12, respectively, see the plots in Figure 4.2.

We want the time integration to be more accurate than the statistical error of the
sampling and the propagation error predicted by the Egorov theorem for the smallest
value ε = 0.001 (ε2 = 10−6). For this reason, the integrator SPRK4 with time step
τ = 0.1 · 2−6 is used throughout all following numerical experiments, even though a
larger time step of about τ = 0.01 would have been sufficient.

5. The torsional potential. In this section, we consider the time dependent
Schrödinger equation (1.1) in two dimensions with the torsional potential

V (q) = 2− cos(q1)− cos(q2).

For the semiclassical parameter we choose the three different values ε = 0.1, 0.01, and
0.001. The time-interval is always [0, 20]. The initial data are of the following three
types.
A. The single Gaussian wave packet

ψε0(q) = gε0(q) = (πε)−1/2 exp(− 1
2ε |q − q0|2), z0 = (q0, p0) = (1, 0, 0, 0)T .

B. The superposition of two Gaussian wave packets

ψε0 = nε12(g
ε
1 + gε2), z1 = (1, 0, 0, 0)T , z2 = −z1

where the normalizing constant is roughly nε12 ≈ 1/
√

2.
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Fig. 5.1. Evolution of kinetic, potential and total energy for the torsional potential and two dif-
ferent values of ε. The initial wave function is the Gaussian wave packet (A). The initial distribution
is sampled with N = 104 Halton points. The computing time is 54.6 seconds.

C. The function ψε0 = φε0, which stems from the numerical simulation of the laser
excitation of a triatomic molecule. For the generation of this wave function a
two-level Schrödinger system with time dependent electric field is solved for
Gaussian initial data centered at z3 = (0.5, 0.05,−1, 0), see [10, Section 5.2]
for details. The contour plot of the position density q 7→ |φε0(q)|2 in Figure
5.6(a) shows a wave function of slightly distorted circular form.

Table 5.1
Approximate computing times for a single run of the algorithm for the two-dimensional tor-

sional potential. The initial data are a Gaussian wave packet (A), a superposition of Gaussian
wave packets (B) and a laser excited wave function (C). By construction, the computing times scale
linearly in the number of sampling points N .

A (ε = 0.001) B (ε = 0.1) C (ε = 0.01)

N = 3 · 103 16.4 sec 15.9 sec 38.8 sec
N = 3 · 104 2 min 45 sec 2 min 44 sec 6 min 39 sec
N = 3 · 105 31 min 16 sec 31 min 64 min

Before discussing the numerical results in more detail, we summarize the ap-
proximate computing times. For the Gaussian wave packets and the superpositions
thereof the computing time is dominated by the propagation of particles. Table 5.1
shows comparable run times for both types of initial data ranging from 16 seconds for
N = 3 ·103 sampling points to 31 minutes for N = 3 ·105 points. For the laser excited
initial data the situation is different, since the initial Wigner function is not given
analytically but has to be computed numerically. Here, the initial sampling is about
as time consuming as the propagation, and the run times range between 39 seconds
and 64 minutes depending on the number of particles.

5.1. Single Gaussian wave packet. Figure 5.1 illustrates the evolution of
kinetic, potential and total energy expectation values for the semiclassical parameters
ε = 0.1 and ε = 0.001. The initial sampling uses N = 104 Halton points, such that
the approximate computing time is about 54.6 seconds. As already addressed before
in §4.2, the total energy is conserved with an accuracy close to machine precision.
The system with ε = 0.1 explores the anharmonicities of the torsional potential in
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Fig. 5.2. Differences between numerically computed expectation values and the references from
Strang splitting for the torsional Schrödinger equation with initial Gaussian wave packet (A). The
computations use N = 106 Halton points.
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Fig. 5.3. Differences between numerically computed expectation values and the references from
Strang splitting averaged over the time interval [0, 20] for different values of ε. The dynamics are
generated by the torsional Schrödinger equation with initial Gaussian wave packet (A). The results
are averaged over ten runs with N = 106 Halton points each. The plot confirms that the method is
of second order in ε.
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Fig. 5.4. Differences between numerically computed expectation values and references from
Strang splitting for the torsional Schrödinger equation with ε = 0.01 and two different initial sam-
plings (quasi-Monte Carlo versus Monte Carlo). The results are averaged over ten different runs
with N = 106 points each. The initial wave function is the Gaussian wave packet (A).
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a more pronounced way and shows a gradual damping of the kinetic and potential
energy oscillations.

We compare the expectation values for position, momentum, kinetic, potential
and total energy with reference values from a Strang splitting with Fourier differenc-
ing, see appendix §A. For the position and momentum expectation values we consider
the norm of the difference. Figure 5.2(a) shows a maximal error increasing by a factor
of twelve over time and rising up to 0.013. The drastic ascent after time t = 10 is
caused by the increasingly anharmonic motion of the the wave function. The snap-
shots of the dynamics in Figure A.1 of the appendix show a position density losing its
elliptical contour around time t = 8. Therefore the initial sampling accuracy gets lost
and is overridden by the asymptotic accuracy of the approximation. For ε = 0.001,
Figure 5.2(b) shows the maximal deviation from the reference value increasing by a
factor five and rising up to 5 · 10−6. For this range of accuracy the comparison of
the asymptotic particle method with a grid based reference solution is delicate, since
both computations have comparable precision. The L2-difference of the reference
wave function and the one computed on a grid with half the number of grid points
per direction is 5.4 · 10−6, see Table A.1. Therefore Figure 5.2(b) has to be viewed
as the comparison of two simulation methods both with an accuracy of the order of
10−6. The oscillatory pattern of the total energy deviation stems from the inaccuracy
of the reference solution.

Figure 5.3 shows that the error of the considered expectation values as a function
of the semiclassical parameter ε. Each error is averaged over the time interval [0, 20]
and ten different sampling realizations with N = 106 Halton points. As predicted by
the Egorov theorem, the results are second order accurate in ε.

Figure 5.4 contrasts the Monte Carlo sampling with the quasi-Monte Carlo ap-
proach. In both cases N = 106 sampling points are used, and the error is the mean
error over ten independent runs. The semiclassical parameter is ε = 0.01. For the
quasi-Monte Carlo sampling the errors are slightly larger and increase more clearly
over time than the ones for the Monte Carlo integration.

5.2. Superposition of Gaussian wave packets. For the superposition of
Gaussian wave packets with ε = 0.1, we check whether the cross term can be ne-
glected without loss of accuracy. We validate the particle method against reference
values from a converged Strang splitting. It turns out that simulations without cross
term (N = 2 · 104 Halton points) achieve the same accuracy as simulations with the
complete Wigner function (N = 3 · 104 Halton points), see Figure 5.5. The maximal
error is below 0.01, while the errors of the position and momentum expectation val-
ues even remain smaller. Note, however, that the cross term cannot be neglegted in
general because its contribution increases with decreasing distance between the two
Gaussians gε1(q) and gε2(q).

5.3. Grid based initial data. As a third test case, we simulate the evolution
for the torsional potential with ε = 0.01 for an initial datum φε0 that stems from
the numerical simulation of a molecular laser excitation. The initial position and
momentum density have the mean z∗ = (0.4189, 0.0617,−1.0595, 0.0139) and the
standard deviation σ∗ = (0.0639, 0.0759, 0.0834, 0.0780), see Figure 5.6(a). We use a
uniform density as importance sampling function for the approximation of the initial
Wigner function and sample it with the quasi-Monte Carlo method. For this purpose
we map N Halton points by the linear transformation

[0, 1)4 → R4, z 7→ 2 diag(σ∗)(2z − (1, 1, 1, 1)T ) + z∗.
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Fig. 5.5. Accuracy for the simulation with the torsional potential and initial superposition of
Gaussian wave packets (B, ε = 0.1). Simulations without cross term achieve the same accuracy as
simulations with the complete Wigner function. The results are averaged over ten different runs
with N = 3 · 104 and N = 2 · 104 Halton points, respectively. The differences between numerically
computed observables and reference values from Strang splitting are below 0.01 in both cases.
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Fig. 5.6. Initial position density and evolution of the kinetic, potential, and total energy for the
simulation with torsional potential and grid based initial data (C, ε = 0.01). The initial sampling
uses N = 103 Halton points. The computing time is 14.4 seconds.
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Fig. 5.7. Differences between numerically computed observables and reference values from
Strang splitting for the torsional potential and grid based initial data (C, ε = 0.01). The initial
sampling uses N = 103 and N = 104 Halton points, respectively. In both cases the maximal error
rises from 0.002 at time t = 0 to about 0.005.
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The resulting sampling points {xj}Nj=1 lie in a rectangle centered around z∗ with side
length characterized by 4σ∗. Since the Wigner function is a real valued function
of integral one, it is split into positive part W+ and negative part W− to avoid
cancellation. Then we compute expectation values by

〈a ◦ Φt〉φε
0
≈

∑N+
j=1(a ◦ Φt)(xj)W+(xj) +

∑N−
j=1(a ◦ Φt)(xj)W−(xj)∑N+

j=1W+(xj) +
∑N−
j=1W−(xj)

.

For the computation of the values of the Wigner function according to

W (φε0)(q, p) = (2πε)−2

∫
R2

eip·y/εφε0(q − 1
2y)φ

ε

0(q + 1
2y)dy (5.1)

we again use a uniform importance sampling function and quasi-Monte Carlo in-
tegration. We generate n = 500 Halton points by the two-dimensional mapping
q 7→ 2 diag(σ∗(1 : 2))(2q − (1, 1)T ). Since the function φε0 is only known at the
points of the uniform grid specified in Table A.1, each evaluation of the integrand in
a quadrature point requires an additional bicubic interpolation with respect to the
grid points.

Figure 5.6(b) illustrates the time evolution of the kinetic, potential and total
energy. The simulation uses N = 103 Halton points and takes 14.4 seconds computing
time. In Figure 5.7 the errors of the position, momentum, kinetic, potential, and
total energy expectation values are shown for an initial sampling with N = 103 and
N = 104 Halton points in the approximation step. In both cases the maximal initial
error of 0.002 rises up to about 0.005. For N = 104, the position and momentum
errors are slightly less oscillatory, but the order of magnitude stays the same as for
N = 103. Contrary to the simulations with analytical initial data, the second order
accuracy with respect to the semiclassical parameter is not achieved due to the inexact
initial sampling. Neither an increase of the numbers N and n of approximation
and quadrature points nor larger rectangles for the domains of integration nor an
importance sampling approach improve the situation. The interpolation error for
evaluating the Fourier integral (5.1) dominates the initial sampling error.
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Fig. 6.1. Simulations for the six-dimensional Henon-Heiles potential with initial Gaussian wave
packet. The eleventh and twelfth coordinates of the Halton sequence align on parallel curves. The
evolution of the kinetic, potential, and total energy stems from a simulation with N = 100 Sobol’
points. The approximate computing time is 2.5 seconds.
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6. The Henon-Heiles potential. We conclude with the simulation for the
modified six-dimensional Henon-Heiles potential

V (q) =
6∑
j=1

1
2q

2
j +

5∑
j=1

σ∗(qjq2j+1 − 1
3q

3
j ) + 1

16σ
2
∗(q

2
j + q2j+1)

2

with the same choice of the coupling parameter σ∗, the semiclassical parameter ε, and
the initial data ψε0 as in [4]. That is, σ∗ = 1/

√
80, ε = 0.01, and

ψε0(q) = (πε)−3/2 exp(− 1
2ε |q − q0|2), q0 = (2, 2, 2, 2, 2, 2)T .

In this case the phase space has twelve dimensions. For the quasi-Monte Carlo sam-
pling one encounters the well-known tendency of Halton sequences to string together
on parallel lines in high dimensions, cf. [14, section 1.1]. Figure 6.1(a) illustrates this
effect in plotting coordinates eleven and twelve of three different sampling sets. The
first set of sampling points is generated from the Halton sequences associated with the
first twelve primes, the second set stems from the twelve dimensional Sobol’ sequence,
while the third one is randomly chosen from a normal distribution.

N = 100 Sobol’ points and 2.5 seconds computing time yield the evolution of
kinetic, potential and total energy plotted in Figure 6.1(b). Since for a six-dimensional
Schrödinger equation a grid based reference solution is no more feasible, we content
ourselves with the observation that the numerical results visually resemble those in
[4, Figure 5.7]. Moreover, the comparison with analytically computed initial values
of kinetic and potential energy in Table 6.1 confirms an accuracy of 10−3.

Table 6.1
Accuracy of the initial sampling for the six-dimensional Gaussian wave packet using Halton

and Sobol’ points. The errors are the absolute deviation from the analytically computed expectation
values.

kinetic energy (Halton/Sobol’) potential energy (Halton/Sobol’)

N = 102 1.6 · 10−4/1.1 · 10−3 7.3 · 10−2/3.9 · 10−3

N = 103 9.1 · 10−5/1.7 · 10−4 1.1 · 10−2/5.9 · 10−5

N = 104 2.1 · 10−5/1.9 · 10−5 2.2 · 10−3/1.9 · 10−4

7. Conclusion. The proposed particle method is an efficient tool for comput-
ing expectation values for the solution of the nuclear Schrödinger equation in high
dimensions. As predicted by the Egorov theorem, the approximation is second order
accurate with respect to the semiclassical parameter. The presented numerical ex-
periments solve problems with two- and six-dimensional configuration spaces. They
use the same potential functions as [4], and the obtained plots for the time evolution
of the kinetic and potential energy expectation values compare nicely. For the initial
sampling we have considered a Monte Carlo and quasi-Monte Carlo approach, both
achieving comparable accuracy. By construction, all computing times scale linearly
in the number of particles and range between three seconds and one hour for N = 100
and N = 3 · 105 points, respectively.

Acknowledgments. We thank M. Weber for suggesting symplectic time inte-
gration and P. Deuflhard for advice on improving the first draft of the manuscript.

Appendix A. Reference solutions. For assessing the accuracy of the particle
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Fig. A.1. Contour plot of the position density q 7→ |ψε(q, t)|2 at different times t = 0, 2, . . . , 20
for the initial Gaussian wave packet (A, ε = 0.1). The Schrödinger equation with torsional potential
is solved by the reference solver, a Strang splitting scheme. Around time t = 8 the wave function
loses its elliptical contour.

method we directly solve the Schrödinger equation with torsional potential (4.2) by
a pseudo-spectral Strang splitting scheme. Figure A.1 exemplarily shows contour
plots of the position density of the reference solution at different times for the initial
Gaussian wave packet (A) with ε = 0.1. For the two-dimensional problem a space
discretization based on the fast Fourier transform and a symmetric operator splitting
with third order local convergence in time provide accurate reference solutions, see
[9]. The time interval [0, 20] is discretized by 5000 time steps for all experiments. All
initial wave function are localized on the left and right hand side of the origin and
therefore evolve downhill the torsional potential in q1-direction, see also the snapshots
in Figure A.1. Therefore, the computational domains are larger in q1-direction than
in q2-direction. Table A.1 contains the computational domains, the grid sizes, and
the achieved accuracy for different initial data and different values of the semiclassical
parameter ε. The accuracy of the solution refers to the difference ‖ψ(tf)− ψc(tf)‖L2

of the final reference solution ψ(tf) and a coarser solution ψc(tf), which is computed
with four times more grid points. The obtained errors vary between 2.3 · 10−4 and
5.8 · 10−7 and are all sufficiently small for the validation of the particle method.

Note, that the generation of such reference solutions is computationally more
expensive than the particle method (Table A.2) and as a grid based discretization
approach restricted to low-dimensional problems. The solution of the six-dimensional
problem considered in §6 is out of reach for this method.
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Table A.1
Input parameters for the reference solution of the Schrödinger equation with torsional potential

and accuracy of the wave function at the final time tf = 20.
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