Automated transformation of system of ordinary
differential equations into Boolean models

Project Report
Radostina Misirkova

December 23, 2015

1 Background

Ordinary differential equations models as well as Boolean models are abstractions of reality, they
focus on certain aspects of the underlying system. In order to connect both model approaches
and use them in parallel a systematic transition scheme has been presented in the paper |Stotze!l
et. al|(2015). The step-wise procedure starts with ODE and derives a Boolean model, which
allows a more global analysis of the system to complement the results obtained from the ODE
model. The aim of the project was to implement the translating step of this method based on
an Euler-like discretization. The software was developed using MATLAB The program reads
the input ODE system and outputs a text file in BoolNezE] format, representing the corresponding
Boolean network.

In the following the mathematical background of the translating step is briefly described. The
discretization of the continuous system is based on the structure and monotonicity behavior of the
right hand side functions of the ODEs. The starting point is an autonomous system in the form

Yy () =fp), y0)=yo

with time variable ¢t € R, state vector y(¢) = (y(¢),...,y.(¢))T € R", model parameters p € R,
and right hand side f : R"*? — R”. In the following the parameter vector p is omitted. All
continuous variables y;(r) are normalized to the interval [0, 1] and the right hand side functions
FO)=(fi(y),.--, fu(y))" consist only of sums and products of monotone functions F; ;(y,):

Yit) = fi(Fa(3n)s- s Finn)), i=1,...,n. o))

In addition each monotone function F; ;(y;) only takes values in [0, 1]. To derive the Boolean model
all continuous variables y, .. .,y, in the right hand side functions f;(y) are replaced by their discrete

IMATLAB® is a high-level language and interactive environment for numerical computation, visualization, and
programming

2BoolNet is a software tool for assembling, analyzing and visualizing synchronous and asynchronous Boolean networks
as well as probabilistic Boolean networks, the package is able to read in text file, where each line consists of a target
gene and an update rule, separated by a comma. The first line of a file in BoolNet format is a header: targets, factors.

counterparts xp, ..., X,. Thereby, every monotonically increasing function F; ;(y;) is mapped to x;,
and every monotonically decreasing function F; ;(y;) is mapped to (1 —x;), using the operator:

T(F) = Id , if F' is monotonically increasing,
Cl1-1d , if F' is monotonically decreasing.

In this way the right hand sides f;(y1,...,y») in (1) are mapped to discrete counterparts ;(xy, . . ., X,),

fi(E’,l(J’l), .. '7E7n(yl’l)) = fi(TE,l(-x])a . . '7TE,n(xn)) = hi(-xla' .. 7-xl’l)7
~—— ~——

Xy or 1—x; Xy or 1—x,

foralli=1,...,n. The sign of /;(x) then determines the update functions for the Boolean variables:

1, ifsgn(hi(x)) >0
gi:{0,1}" = {0,1} :x = gi(x) ;=< x; , ifsgn(hi(x))=0, i=1,....,n ()
0 ,ifsgn(hi(x)) <0
Based on the above definitions the translation step can be interpreted as an Euler discretization
yielding the successor state x**'! for a current state x* in the form

xé(‘i‘] — gi(xk) = xlk—i—sgn(hi(xllc, e ,xk)),

n

where + denotes the operation 0+(—1) = 0 and 141 = 1 and the usual addition in all other cases.

2 Implementation

The software contains four MATALB functions: the main function odeToBNet.m and three help
functions (loadEquations.m, loadODEscript.m, isODEscript.m).

The input set of ODEs can be read either from a standardized text file format or from a MATLAB
program file. In the first case each line of the file consists of a differential equation, where the
parameter values are substituted in the right hand side functions. The function loadEquations.m is
able to read in the text file line by line storing the variable names in a cell array and the right hand
side of the equations to a second cell array.

When reading ODE input system from a MATLAB program file keywords are required to identify
parameter values and equations lines in the file. The loadODEscript.m helper function reads the file
line by line and recognize parameters between keywords: ¢ parameters and % end of parameters.
Equations are enclosed by keywords: % equations and % end of equations. Comment lines
therebetween are allowed. The parameters are stored to a cell array and the set of equations to a
second one. Afterwards the values of the parameters are assigned to the equations. The variable
names are stored in an additional cell array.

In the next step regular expressions are used to match functions in the right hand side. It has been
assumed that the monotone functions in the input ODE are parenthesized. So whenever a monotone
function occurs in an equation it has to be put in parentheses, such that both the nominator and the
denominator are inside parentheses. In order to find such fraction expression a regular expression
of the form is used:

"N ([a-z0-9+\ =% . \s*]1+\) /\([a-20-9+\ = . \s"]+\)".

Biochemical kinetics like Hill kinetics, Michaelis-Menten kinetics, Goldbeter-Koshland kinetics
are in form of fraction expressions. An additional regular expression is used to match remaining
expressions inside parantheses:

"N ([a-z0-9+\-*.\s\"]1+\)"'.

After determining, if the matched expressions are monotonic increasing or monotonic decreasing
(see function monotonic bellow), they get replaced by the corresponding boolean variable (see
function func_rep bellow).

function val = monotonic (fnc, var)
determines if the expression in the input function fnc is a monotonically
increasing or monotonically decreasing function of the variable var
output argument of type string: 'incr' or 'decr'

try

o o° o

o\

substitutes var with wvalue 0.5

m = subs (fnc,var,'0.5");
catch
% in case of division by zero, substitution with 0.4
m = subs (fnc,var,'0.4");
end
try
n = subs (fnc,var, '1");
catch
n = subs (fnc,var, '0.9");
end
if (m <= n)
val = '"incr';
else
val = 'decr';
end
end
function str = func_rep (eq,mon_=£fnc)

replaces a monotone function: mon_fnc by its descrete counterpart
depending on whether the function is monotonically decreasing
or monotonically increasing

o o° o

%a string with values 'incr' or 'decr'

s = monotonic (mon_£fnc,get_var (mon_£fnc));
$the discrete counterpart of the variable
boolVar = get_boolVar (get_var (mon_=£fnc));

if strcmp (s, 'incr') == 1
% monotonically increasing function mapping
str = strrep(eq,mon_£fnc, boolVar);
else
% monotonically decreasing function mapping

str = strrep(eq,mon_=fnc,['(1-' boolVar ')']);

The remaining continuous variables in the equations represent, for example mass actions kinetics
and are substituted directly by the corresponding boolean variables. After performing this step, all
occurring variables are replaced by their boolean counterparts and the right hand sides consist of
sums and products of the boolean variables.

The value of the right hand side functions now can either be negative, positive or equal to zero and
it determines the update rule for the boolean variables. This values have to be evaluated for all
possible boolean states. For each equation a truth table is created of size n := 2", where m is the
number of variables in the current equation. Than, the value of the function is computed for all n
possible states. According to the sign of this value the update of the boolean variable is determined
using the update function g, defined in the background section.

function next = g(sgn_vec,current)
% the update function g
% computes the update value of variable for given
next = zeros (l,numel (sgn_vec));
for n=l:numel (sgn_vec)

if sgn_vec (n)==
next (n)=current (n);

else if sgn_vec(n) > 0
next (n) = 1;
else next(n) = 0;
end
end

end
end

The truth tables for each equations can be printed in the command window of MATLAB within
the main for-loop of the function odeToBNet. Additionally they are used to write an output file
in BoolNet text format for further analysis. Each truth table is converted to a logical function in
disjunctive normal form (DNF'). The procedure finds all rows in the table that ends with 1, then
takes the values of the occurring variables from each respective column. If the value of a variable is
0, the complement of the variable is taken, otherwise the variable itself is taken:

function arr = get_LogicVar (row,var_cell)
% substitutes the values in a table row with logical variables
the output is a cell array

arr = {};

o\

for j=1:(numel (var_cell))

if row. (var_cell{j})==0
x = ['"!" char(var_cell{j})]; % '"!" for negation
else x = char(var_cell{j});
end
arr = larr x];

end
end

Afterwards the variables are joined by logical AND. In this way the terms of the DNF expression
are determined and all terms resulting of a table are joined by logical OR.

cell_arr = get_LogicVar (row,varInFnc);
% joins the variables in cell_arr with logical AND
str = strjoin(cell_arr,' & ');

str_eq=[str_eq str];

Finally the logical equation are written into the output file:

[

% write the logical equation in the text file, joined by logical OR
fprintf (fileID, '$s, %s\n',cur_var,strjoin(str_eq,"' | "));

3 Conclusion

In this report a possible implementation of a translating scheme for ODE system into a Boolean
model has been presented. The application of the software is feasible only if the following input
requirements are met: all continuous variables in the ODE system are normalized to the interval
[0,1]; the right hand side functions consist of sums and products of monotone functions; the
monotone functions only take values in [0, 1]. The user of the software has to check if these
assumptions are fulfilled and to parenthesize the monotone functions occurring in the right hand
side as described in the implementation section. It is reasonable to automatize this preprocessing
step by implementing a procedure, which additionally check for global monotonicity. Instead
of parenthesizing, a method for decomposing the right hand side into expressions representing
monotone functions would lead to more user friendly application of the software. In order to extend
the scope of the software it is recommended to implement SBM[E] import functionality.

4 Application example

The following example demonstrates the conversion from ODE system into Boolean model using
the software. The cascade model for the mitotic oscillator is taken from |Goldbeter| (1991)).

3SBML is a model representation format and infrastructure to foster interactions between qualitative modeling for-
malisms and tools.

&

—Y 5 cyelin

\

ry
;(—“-“

é

D R

;

Tt =

»
pl

é

Figure 1: From |Goldbeter| (1991). Cyclin is synthesized at a constant rate v; and triggers the
transformation of inactive M into active M cdc2 kinase; a kinase reverts this modification. In the
second cycle of the phosphorylation-dephosphorylation cascade, cdc2 kinase elicits the transition
from the inactive X into the active X form of a protease that degrades cyclin; the activation of cyclin
protease is reverted by a phosphatase . V; (i = 1 —4) denotes the effective maximum rate of each
of the four converter enzymes; v; denotes the maximum rate of cyclin degradation by protease X

ODE model:

K;,+C N~
synthesis =\ —— degradation
protease degradation

MPF C;—Af =V [KCiC] {Kl(i(_lM)M)} —V2 [KZAiM]

dc
CYCLIN — = v, — vdX[] - k4C
dt ~—

cyclin-stimulated activation inactivation

dX (1-X) X
PROTEASE E:MVM_@ Gi(-X) VA)

K3+ (1-X Ki+X
activation by MPF inactivation

The MATLAB file shown bellow contains the system of ODEs and can be used for numerical
simulations:

% ODE system of the minimal cascade model for the mitotic oscillator involving
% cyclin and cdc2 kinase: BioModels#3, model name "Goldbeter1991-Min Mit Oscil"
function dy = odecyc (t,vy)

[

% parameters

K1 = .02;
K2 = .02;
K3 =.01;
K4 = .01;
Kc=.5;

Kd=.001;
kd=.046;

V2=2;

Vi=.7;

vs=.06;

vd=.25;

VM1=4;

VM3=1;

% end of parameters

dy=zeros (3,1);
equations

<
3
o

cyclin
dy (1) = vs - vdxy (3)*(y(1))/(Kd + y(1))-kd*y(1);
% M-phase-promoting factor
dy (2) = (y(1)*VM1)/(Kc + y(1))*(1-y(2))/(R1+1-y(2))-(V2*y(2))/(K2+y(2));
% protease
dy (3) = y(2)*VM3x(1-y (3))/(K341-y(3))-Vdx(y(3))/(Kd+y(3));

[

% end of equations

The ODE model has been stored as ode.m file and the function odeToBNet.m can be called in the
command window as:

>> odeToBNet ('ode.m")

In the following the equations after the transition step as well as the corresponding tables are
shown:

x1 = .06 - .25%x3xx1-.046%x1;
X2 x1*(1-%x2)-x2;

X3 = x2*x1%(1-x3)-.7*%x3;
x1 x3 sgn x1_next
0 0 1 1
0 1 1 1
1 0 1 1
1 1 -1 0
x1 x2 sgn x2_next
0 0 0 0
0 1 -1 0
1 0 1 1
1 1 -1 0
x2 x3 sgn x3_next
0 0 0 0
0 1 -1 0
1 0 1 1
1 1 -1 0

The resulting output file in BoolNet text format can be used for further analysis of the system with
the BoolNet package.

targets, factors

x1, !'x1 & !x3 | !'x1 & x3 | x1 & !x3
x2, x1 & !x2

x3, x2 & !x3

References

Stotzel C., Roblitz S., and Siebert H. (2015), Complementing ODE-Based System Analysis Using
Boolean Networks Derived from an Euler-like Transformation, PLoS ONE 10(10): e0140954.
doi:10.1371/journal.pone.0140954.

Goldbeter A. (1991), A minimal cascade model for the mitotic oscillator involving cyclin and cdc2
kinase, Goldbeter A. Proc. Natl. Acad. Sci. U.S.A. 1991; 88(20):9107-11.

	Background
	Implementation
	Conclusion
	Application example

