
Automated transformation of system of ordinary
differential equations into Boolean models

Project Report

Radostina Misirkova

December 23, 2015

1 Background

Ordinary differential equations models as well as Boolean models are abstractions of reality, they
focus on certain aspects of the underlying system. In order to connect both model approaches
and use them in parallel a systematic transition scheme has been presented in the paper Stötzel
et. al. (2015). The step-wise procedure starts with ODE and derives a Boolean model, which
allows a more global analysis of the system to complement the results obtained from the ODE
model. The aim of the project was to implement the translating step of this method based on
an Euler-like discretization. The software was developed using MATLAB®1. The program reads
the input ODE system and outputs a text file in BoolNet2 format, representing the corresponding
Boolean network.

In the following the mathematical background of the translating step is briefly described. The
discretization of the continuous system is based on the structure and monotonicity behavior of the
right hand side functions of the ODEs. The starting point is an autonomous system in the form

y′(t) = f (y, p), y(0) = y0

with time variable t ∈ R≥0, state vector y(t) = (y1(t), . . . ,yn(t))T ∈ Rn, model parameters p ∈ Rq,
and right hand side f : Rn×q 7→ Rn. In the following the parameter vector p is omitted. All
continuous variables yi(t) are normalized to the interval [0,1] and the right hand side functions
f (y) = ( f1(y), . . . , fn(y))T consist only of sums and products of monotone functions Fi, j(y j):

y′i(t) = fi(Fi,1(y1), . . . ,Fi,n(yn)), i = 1, . . . ,n. (1)

In addition each monotone function Fi, j(y j) only takes values in [0,1]. To derive the Boolean model
all continuous variables y1, . . . ,yn in the right hand side functions fi(y) are replaced by their discrete

1MATLAB® is a high-level language and interactive environment for numerical computation, visualization, and
programming

2BoolNet is a software tool for assembling, analyzing and visualizing synchronous and asynchronous Boolean networks
as well as probabilistic Boolean networks, the package is able to read in text file, where each line consists of a target
gene and an update rule, separated by a comma. The first line of a file in BoolNet format is a header: targets, factors.

1



counterparts x1, . . . ,xn. Thereby, every monotonically increasing function Fi, j(y j) is mapped to x j,
and every monotonically decreasing function Fi, j(y j) is mapped to (1− x j), using the operator:

T (F) :=

{
Id , if F is monotonically increasing,
1− Id , if F is monotonically decreasing.

In this way the right hand sides fi(y1, . . . ,yn) in (1) are mapped to discrete counterparts hi(x1, . . . ,xn),

fi(Fi,1(y1), . . . ,Fi,n(yn)) 7→ fi(T Fi,1(x1)︸ ︷︷ ︸
x1 or 1−x1

, . . . ,T Fi,n(xn)︸ ︷︷ ︸
xn or 1−xn

) =: hi(x1, . . . ,xn),

for all i = 1, . . . ,n. The sign of hi(x) then determines the update functions for the Boolean variables:

gi : {0,1}n→{0,1} : x 7→ gi(x) :=


1 , if sgn(hi(x))> 0
xi , if sgn(hi(x)) = 0
0 , if sgn(hi(x))< 0

, i = 1, . . . ,n (2)

Based on the above definitions the translation step can be interpreted as an Euler discretization
yielding the successor state xk+1 for a current state xk in the form

xk+1
i = gi(xk) = xk

i +̇sgn(hi(xk
1, . . . ,x

k
n)),

where +̇ denotes the operation 0+̇(−1) = 0 and 1+̇1 = 1 and the usual addition in all other cases.

2 Implementation

The software contains four MATALB functions: the main function odeToBNet.m and three help
functions (loadEquations.m, loadODEscript.m, isODEscript.m).

The input set of ODEs can be read either from a standardized text file format or from a MATLAB
program file. In the first case each line of the file consists of a differential equation, where the
parameter values are substituted in the right hand side functions. The function loadEquations.m is
able to read in the text file line by line storing the variable names in a cell array and the right hand
side of the equations to a second cell array.

When reading ODE input system from a MATLAB program file keywords are required to identify
parameter values and equations lines in the file. The loadODEscript.m helper function reads the file
line by line and recognize parameters between keywords: % parameters and % end of parameters.
Equations are enclosed by keywords: % equations and % end of equations. Comment lines
therebetween are allowed. The parameters are stored to a cell array and the set of equations to a
second one. Afterwards the values of the parameters are assigned to the equations. The variable
names are stored in an additional cell array.

In the next step regular expressions are used to match functions in the right hand side. It has been
assumed that the monotone functions in the input ODE are parenthesized. So whenever a monotone
function occurs in an equation it has to be put in parentheses, such that both the nominator and the
denominator are inside parentheses. In order to find such fraction expression a regular expression
of the form is used:

2



'\([a-z0-9+\-*.\s^]+\)/\([a-z0-9+\-*.\s^]+\)'.

Biochemical kinetics like Hill kinetics, Michaelis-Menten kinetics, Goldbeter-Koshland kinetics
are in form of fraction expressions. An additional regular expression is used to match remaining
expressions inside parantheses:

'\([a-z0-9+\-*.\s\^]+\)'.

After determining, if the matched expressions are monotonic increasing or monotonic decreasing
(see function monotonic bellow), they get replaced by the corresponding boolean variable (see
function func_rep bellow).

function val = monotonic(fnc,var)
% determines if the expression in the input function fnc is a monotonically
% increasing or monotonically decreasing function of the variable var
% output argument of type string: 'incr' or 'decr'

try
% substitutes var with value 0.5
m = subs(fnc,var,'0.5');

catch
% in case of division by zero , substitution with 0.4
m = subs(fnc,var,'0.4');

end
try

n = subs(fnc,var, '1');
catch

n = subs(fnc,var, '0.9');
end
if (m <= n)

val = 'incr';
else

val = 'decr';
end

end

function str = func_rep(eq,mon_fnc)
% replaces a monotone function: mon_fnc by its descrete counterpart
% depending on whether the function is monotonically decreasing
% or monotonically increasing

%a string with values 'incr' or 'decr'
s = monotonic(mon_fnc ,get_var(mon_fnc));
%the discrete counterpart of the variable
boolVar = get_boolVar(get_var(mon_fnc));

if strcmp(s,'incr') == 1
% monotonically increasing function mapping
str = strrep(eq,mon_fnc ,boolVar);

else
% monotonically decreasing function mapping

str = strrep(eq,mon_fnc ,['(1-' boolVar ')']);
end

end

3



The remaining continuous variables in the equations represent, for example mass actions kinetics
and are substituted directly by the corresponding boolean variables. After performing this step, all
occurring variables are replaced by their boolean counterparts and the right hand sides consist of
sums and products of the boolean variables.

The value of the right hand side functions now can either be negative, positive or equal to zero and
it determines the update rule for the boolean variables. This values have to be evaluated for all
possible boolean states. For each equation a truth table is created of size n := 2m, where m is the
number of variables in the current equation. Than, the value of the function is computed for all n
possible states. According to the sign of this value the update of the boolean variable is determined
using the update function g, defined in the background section.

function next = g(sgn_vec ,current)
% the update function g
% computes the update value of variable for given
next = zeros(1,numel(sgn_vec));

for n=1:numel(sgn_vec)

if sgn_vec(n)==0
next(n)=current(n);

else if sgn_vec(n) > 0
next(n) = 1;

else next(n) = 0;
end

end

end
end

The truth tables for each equations can be printed in the command window of MATLAB within
the main for-loop of the function odeToBNet. Additionally they are used to write an output file
in BoolNet text format for further analysis. Each truth table is converted to a logical function in
disjunctive normal form (DNF). The procedure finds all rows in the table that ends with 1, then
takes the values of the occurring variables from each respective column. If the value of a variable is
0, the complement of the variable is taken, otherwise the variable itself is taken:

function arr = get_LogicVar(row,var_cell)
% substitutes the values in a table row with logical variables
% the output is a cell array

arr = {};

for j=1:(numel(var_cell))
if row.(var_cell{j})==0

x = ['!' char(var_cell{j})]; % '!' for negation

else x = char(var_cell{j});
end

arr = [arr x];
end

end

4



Afterwards the variables are joined by logical AND. In this way the terms of the DNF expression
are determined and all terms resulting of a table are joined by logical OR.

cell_arr = get_LogicVar(row,varInFnc);
% joins the variables in cell_arr with logical AND
str = strjoin(cell_arr ,' & ');
str_eq=[str_eq str];

Finally the logical equation are written into the output file:

% write the logical equation in the text file , joined by logical OR
fprintf(fileID ,'%s, %s\n',cur_var ,strjoin(str_eq ,' | '));

3 Conclusion

In this report a possible implementation of a translating scheme for ODE system into a Boolean
model has been presented. The application of the software is feasible only if the following input
requirements are met: all continuous variables in the ODE system are normalized to the interval
[0,1]; the right hand side functions consist of sums and products of monotone functions; the
monotone functions only take values in [0,1]. The user of the software has to check if these
assumptions are fulfilled and to parenthesize the monotone functions occurring in the right hand
side as described in the implementation section. It is reasonable to automatize this preprocessing
step by implementing a procedure, which additionally check for global monotonicity. Instead
of parenthesizing, a method for decomposing the right hand side into expressions representing
monotone functions would lead to more user friendly application of the software. In order to extend
the scope of the software it is recommended to implement SBML3 import functionality.

4 Application example

The following example demonstrates the conversion from ODE system into Boolean model using
the software. The cascade model for the mitotic oscillator is taken from Goldbeter (1991).

3SBML is a model representation format and infrastructure to foster interactions between qualitative modeling for-
malisms and tools.

5



Proc. Natl. Acad. Sci. USA 88 (1991)

- i Cyclin Vd

M+ M
,V2

V3 X
X+ ~~~x

~V4
with

FIG. 1. Minimal cascade model for mitotic oscillations. Cyclin is
synthesized at a constant rate (vi) and triggers the transformation
of inactive (MI) into active (M) cdc2 kinase by enhancing the rate
of a phosphatase (E1); a kinase (E2) reverts this modification. In
the second cycle of the phosphorylation-dephosphorylation cas-
cade, cdc2 kinase (identical to E3) elicits the transition from the
inactive (X+) into the active (X) form of a protease that de-
grades cyclin; the activation of cyclin protease is reverted by a
phosphatase (E4). Vi (i = 1-4) denotes the effective maximum rate
of each of the four converter enzymes; vd denotes the maxi-
mum rate of cyclin degradation by protease X. As shown in Fig. 3,
this minimal cascade is capable of autonomous oscillatory be-
havior.
keep the model simple and to allow for the straightforward
generation of thresholds (see below), the formation of a
complex between cyclin and cdc2 kinase will not be taken into
account; instead, it is assumed that cyclin drives cdc2 activa-
tion by enhancing the velocity ofan "activase" which (see the
above discussion) might primarily represent a tyrosine (and,
possibly, threonine) phosphatase. Such a direct activation of
the phosphatase acting on phosphorylated cdc2 kinase is one
of the hypothetical mechanisms originally put forward for
cyclin action (7, 22). A further assumption is that the maximum
activity ofthe kinase inactivating cdc2-the cdc2 "inactivase"
(7)-remains constant throughout the cell cycle.
That okadaic acid, an inhibitor of phosphatase 2A, behaves

as a mitotic inducer has suggested that the phosphatase acting
on cdc2 might be activated through phosphorylation and inac-
tivated by phosphatase 2A (23-26). This minimal model will not
take into account the possible modification of the activase, nor
will it differentiate the roles of cyclins A and B, which appear
to cooperate in the activation of cdc2 kinase (27, 28).

In line with the observation that the kinase activity of the
cdc2 protein promotes cyclin degradation (8), it is assumed
that cdc2 kinase activates a cyclin protease, designated as X
(as in ref. 8), by reversible phosphorylation (Fig. 1); the
maximum activity of the phosphatase inactivating that pro-
tease is taken as constant throughout the cycle. There is
evidence that the pathway of cyclin degradation is itself a
bicyclic phosphorylation cascade, the first step of which
would be controlled by cdc2 kinase (8, 16, 25, 26). Consid-
eration of a multicyclic rather than monocyclic cascade
leading to the activation of the protease by cdc2 kinase
would, however, not significantly affect the results presented
here. Cyclin was recently shown to be degraded by the
ubiquitin pathway (29); activation of cyclin degradation by
cdc2 kinase could accordingly result from the phosphoryla-
tion of a protein that would promote the conjugation
of ubiquitin to cyclin, leading to rapid cyclin destruction
(29).
Thus, the three variables of the minimal model are cyclin,

the active (i.e., dephosphorylated) form of cdc2 kinase, and
the active (i.e., phosphorylated) form of cyclin protease. The
dynamics of the bicyclic cascade of post-translational mod-

ification is governed by the following system of kinetic
equations:

dC C
= VI -VdX - kdC,dt i Kd + C

dM (1-M) M
dt K1 + (1 -M) K2 + M

dX (1 - X)V=3dt -K3+(1-X)
x

- V4 K4 + X [1]

[2]C
c

In the above equations, C denotes the cyclin concentra-
tion, while M and X represent the fraction of active cdc2
kinase and the fraction ofactive cyclin protease; (1 - M) thus
represents the fraction of inactive (i.e., phosphorylated) cdc2
kinase, while (1 - X) represents the fraction of inactive (i.e.,
dephosphorylated) cyclin protease. As to parameters, v; and
Vd denote, respectively, the constant rate of cyclin synthesis
and the maximum rate of cyclin degradation by protease X
reached forX = 1; Kd and & denote the Michaelis constants
for cyclin degradation and for cyclin activation of the phos-
phatase acting on the phosphorylated form of cdc2 kinase; kd
represents an apparent first-order rate constant related to
nonspecific degradation of cyclin (this facultative reaction,
whose contribution is much smaller than that of cyclin
degradation by protease X, is not needed for oscillations; its
sole effect is to prevent the boundless increase of cyclin in
conditions where the specific protease would be inhibited).
The normalized parameters Vi and Ki (i = 1-4) characterize

the kinetics of the enzymes E, (i = 1-4) involved in the two
cycles of post-translational modification: on one hand, the
phosphatase (E1) and the kinase (E2) acting on the cdc2
molecule, and on the other hand, the cdc2 kinase (E3) and the
phosphatase (E4) acting on the cyclin protease (see Fig. 1).
For each converter enzyme, the two parameters Vi and Ki are
the effective maximum rate and the Michaelis constant,
divided by the total amount of relevant target protein-i.e.,
MT (total amount ofcdc2 kinase) for enzymes E1 and E2, and
XT (total amount of cyclin protease) for enzymes E3 and E4;
both MT (4, 11, 12) and XT will be considered as constant
throughout the cell cycle. The expressions for the effective
maximum rates V1 and V3 are given by Eq. 2. These expres-
sions reflect the assumption that cyclin activates phosphatase
E1 in a Michaelian manner; VM1 denotes the maximum rate
of that enzyme reached at saturating cyclin levels. On the
other hand, the effective maximum rate of cdc2 kinase is
proportional to the fraction of active enzyme; VM3 denotes
the maximum velocity of the kinase reached for M = 1.

All nonlinearities in the model are of the Michaelian type.
In other words, no form of positive cooperativity is assumed,
neither in the proteolysis of cyclin or in the activation by
cyclin of the phosphatase acting on cdc2 nor in any of the
reactions of covalent modification. The self-amplification
effect due to the possible activation of cdc2 kinase by the
active form of the cdc2 product (2, 14) has not been consid-
ered (see Discussion). One of the main goals of the present
analysis is, indeed, to determine whether oscillations can
arise solely as a result of the negative feedback provided by
cdc2-induced cyclin degradation and of the thresholds and
time delays built into the cyclin-cdc2 cascade of covalent
modification.

9108 Cell Biology: Goldbeter

Figure 1: From Goldbeter (1991). Cyclin is synthesized at a constant rate v i and triggers the
transformation of inactive M+ into active M cdc2 kinase; a kinase reverts this modification. In the
second cycle of the phosphorylation-dephosphorylation cascade, cdc2 kinase elicits the transition
from the inactive X+ into the active X form of a protease that degrades cyclin; the activation of cyclin
protease is reverted by a phosphatase . V i (i = 1−4) denotes the effective maximum rate of each
of the four converter enzymes; vd denotes the maximum rate of cyclin degradation by protease X

ODE model:

CYCLIN
dC
dt

= vi︸︷︷︸
synthesis

− vdX
[

C
Kd +C

]
︸ ︷︷ ︸
protease degradation

− kdC︸︷︷︸
degradation

MPF
dM
dt

=VM1

[
C

KC +C

] [
(1−M)

K1 +(1−M)

]
︸ ︷︷ ︸

cyclin-stimulated activation

−V2

[
M

K2 +M

]
︸ ︷︷ ︸

inactivation

PROTEASE
dX
dt

= MVM3

[
(1−X)

K3 +(1−X)

]
︸ ︷︷ ︸

activation by MPF

−V4

[
X

K4 +X

]
︸ ︷︷ ︸

inactivation

.

The MATLAB file shown bellow contains the system of ODEs and can be used for numerical
simulations:

% ODE system of the minimal cascade model for the mitotic oscillator involving
% cyclin and cdc2 kinase: BioModels#3, model name "Goldbeter1991 -Min Mit Oscil"
function dy = odecyc(t,y)
% parameters
K1 = .02;
K2 = .02;
K3 =.01;
K4 = .01;
Kc=.5;
Kd=.001;
kd=.046;

6



V2=2;
V4=.7;
vs=.06;
vd=.25;
VM1=4;
VM3=1;
% end of parameters

dy=zeros(3,1);
% equations
% cyclin
dy(1) = vs - vd*y(3)*(y(1))/(Kd + y(1))-kd*y(1);
% M-phase -promoting factor
dy(2) = (y(1)*VM1)/(Kc + y(1))*(1-y(2))/(K1+1-y(2))-(V2*y(2))/(K2+y(2));
% protease
dy(3) = y(2)*VM3*(1-y(3))/(K3+1-y(3))-V4*(y(3))/(K4+y(3));
% end of equations

The ODE model has been stored as ode.m file and the function odeToBNet.m can be called in the
command window as:

>> odeToBNet('ode.m')

In the following the equations after the transition step as well as the corresponding tables are
shown:

x1 = .06 - .25*x3*x1-.046*x1;
x2 = x1*(1-x2)-x2;
x3 = x2*1*(1-x3)-.7*x3;

7



The resulting output file in BoolNet text format can be used for further analysis of the system with
the BoolNet package.

targets , factors
x1, !x1 & !x3 | !x1 & x3 | x1 & !x3
x2, x1 & !x2
x3, x2 & !x3

References

Stötzel C., Röblitz S., and Siebert H. (2015), Complementing ODE-Based System Analysis Using
Boolean Networks Derived from an Euler-like Transformation, PLoS ONE 10(10): e0140954.
doi:10.1371/journal.pone.0140954.

Goldbeter A. (1991), A minimal cascade model for the mitotic oscillator involving cyclin and cdc2
kinase, Goldbeter A. Proc. Natl. Acad. Sci. U.S.A. 1991; 88(20):9107 – 11.

8


	Background
	Implementation
	Conclusion
	Application example

