
Advanced	practical	Programming
for	Scientists

SS2017

Thorsten Koch
Zuse Institute Berlin

TU Berlin

Planned	topics

Overview: Imperative,	OOP,	Functional,	side	effects,	thread	safe,	Design	by	contract
Design: Information	hiding,	Dependencies,	Coding	style,	Input	checking,	Error	
Handling
Design: Overall	program	design,	Data	structures,	Memory	allocation		
Tools: git,	gdb,	undodb,	doxygen
Languages	and	correctness:	Design	errors/problems	C/C++,	C89	/	C99	/	C11,	
Compiler	switches,	assert,	flexelint,	FP,	How	to	write	correct	programs	
Testing:	black-box,	white-box,	unit	tests,	regression	tests,	error	tests,	speed	tests
Tools:	gcov,	jenkins,	cmake,	doxygen,	make,	gprof,	valgrind,	cppcheck,	clang
Software	metrics:	Why,	Examples,	Is	it	useful?	Control	flow	complexity
Parallel	programming:	OpenMP,	MPI,	pthreads,	OpenCL
Program	optimization:	Code	optimization,	linking	libraries
How	to	design	large	programs
Code-shootout	and	comparison:	Documentation,	Release	management

All	information	is	subject	to	change.

Advanced	Programming 4

Vorlesung	12.05:	Digital	Future

Please register yourself via	
https://science-match.tagesspiegel.de/the-digital-future-may-2017
Voucher/VIP	Code:	*future17-1*

Advanced	Programming 5

Administrative	affairs

All	emails	related	to	this	lecture	should	start	with	APPFS	in	the	subject.

Everybody	participating	in	this	lecture,	please	send	an	email	to	
<rehfeldt@zib.de>	with	your	Name	and	Matrikel-Nr.

We	will	setup	a	mailing	list	for	announcements	and	discussion.	
Everything	is	here	http://www.zib.de/koch/lectures/ss2017_appfs.php

If	you	need	the	certificate,	regular	attendance,	completion	of	homework	
assignments,	and	in	particular	participation	in	our	small	programming	
project	is	expected.	Grades	will	be	based	on	the	outcome	and	a	few	
questions	about	it	J .

No	groups.

Advanced	Programming 6

Exercises	(plan)

Exercises	part	I:	Reading	and	writing	Data
1. 21.04.	Reading	csv
2. 28.04.	Reading	xml	
3. 05.05.	Reading	binary	
4. 05.05.	Checking	input	data	

Exercise	part	II:	Time	series	prediction	
5. 26.05.	Making	it	work	1	(make)	
6. 02.06.	Making	it	work	2	(Documentation,	fixing	input	data)	
7. 09.06.	Testing	
8. 16.06.	Measuring	performance,	serializing	data	structures	
9. 23.06.	Analyzing	code	quality	
10. 30.06.	Linking	third	party	libraries	(static	vs.	shared)	
11. 07.07.	Making	it	better

Advanced	Programming 7

How	to	submit	exercises

• You	can	submit	the	exercises	in	any	programming	language.	

• It	has	to	run	on	my	Rasberry-pi	running	Linux

• Example	solutions	will	be	provided	at	least	in	one	of	
the	following	languages:	C99,	C++14,	python3,	Ada2012.

• If	you	use	anything	else,	you	are	on	your	own.	

• I	will	judge	your	code	nevertheless.	

Advanced	Programming 8

Register	at	github.com
Go	to	https://github.com/mattmilten/appfs

Fork	
Change	
Pull	request

Create	a	new folder with your name and then make a	pull	request

Advanced	Programming 9

Advanced	Programming 10

Advanced	Programming 11

Advanced	Programming 12

Attitudes

Algorithm	engineering	refers	to	the	process	required	to	transform	a	
pencil-and-paper	algorithm	into	a	robust,	efficient,	well	tested,	and	
easily	usable	implementation.	

— Bader,	Moret,	Sanders

Real	Programmers	don't	comment	their	code.	If	it	was	hard	to	write,	it	
should	be	hard	to	understand	and	harder	to	modify.

— Fortune	(6)

Beware	of	bugs	in	the	above	program.	I	have	only	proved	it	correct,	
not	tried	it.

—D.E.Knuth

The	single	most	important	rule	of	testing	is	to	do it.
— Kernighan,	Pike

Laws,	Rules,	and	Objectives

• Laws describe	the	feasible	region	of	a	solution
• Objectives (are	directions)	describing	which	solution	to	prefer	
• Rules try	to	exclude	(rule	out)	bad	solutions

“Look,	that's	why	there's	rules,	understand?	
So	that	you	think	before	you	break	'em.”	

―	Terry	Pratchett,	Thief	of	Time	

In	general	I	recommend	to	follow	rules,	until	you	are	sure	you	understand	
what	the	rules	wanted	to	achieve	and	you	believe	your	objectives	are	
served	better	by	not	obeying	the	rule.

But	think	first!

If	the	union	of	all	rules	defines	an	empty	space,	resist	the	temptation	to	change	the	objective	to	look	for	a	solution	that	violates	the	least	
number	of	rules.	Slack	solutions	usually	have	a	horrible	objective	value.

Advanced	Programming 13

Examples

The	speed	of	light	c in	vacuum	is	a	universal	physical	constant.	Its	exact	
value	is	299792458 m/s.	According	to	special	relativity,	c is	the	maximum	
speed	at	which	all	conventional	matter	and	hence	all	known	forms	of	
information	in	the	universe	can	travel.	(Wikipedia)

“Everything	should	be	made	as	simple	as	possible,	but	no	simpler.”
― Albert	Einstein

Don’t	use	goto!
See	https://softwareengineering.stackexchange.com/questions/125715/do-we-still-have-a-case-against-the-goto-statement

A	designer	knows	he	has	achieved	perfection	not	when	there	is	nothing	left	
to	add,	but	when	there	is	nothing	left	to	take	away.

―	Antoine	de	Saint-Exupery	

Advanced	Programming 14

Imperative	Programming

In	computer	science	terminology,	imperative	programming	is	a	
programming	paradigm	that	describes	computation	in	terms	of	statements
that	change	a	program	state.	In	much	the	same	way	that	imperative	mood	
in	natural	languages	expresses	commands	to	take	action,	imperative	
programs	define	sequences	of	commands	for	the	computer	to	perform.

Imperative	programming,	http://en.wikipedia.org/w/index.php?title=Imperative_programming&oldid=624302389 (last	visited	Sept.	21,	2014)
.	

Imperative	Programmierung	ist	ein	Programmierparadigma.	Danach	werden	Programme	so	
entwickelt,	dass	„ein	Programm	aus	einer	Folge	von	Anweisungen	besteht,	die	vorgeben,	in	
welcher	Reihenfolge	was	vom	Computer	getan	werden	soll	“.	

Die	imperative	Programmierung	ist	das	am	längsten	bekannte	Programmierparadigma.	Diese	
Vorgehensweise	war,	bedingt	durch	den	Sprachumfang	früherer	Programmiersprachen,	
ehemals	die	klassische	Art	des	Programmierens.	Sie	liegt	dem	Entwurf	von	vielen	
Programmiersprachen,	zum	Beispiel	ALGOL,	Fortran,	Pascal,	Ada,	PL/I,	Cobol,	C	und	allen	
Assemblersprachen	zugrunde.

Seite	„Imperative	Programmierung“.	In:	Wikipedia,	Die	freie	Enzyklopädie.	Bearbeitungsstand:	20.	September	2014,	14:27	UTC.	URL:
http://de.wikipedia.org/w/index.php?title=Imperative_Programmierung&oldid=134202110 (Abgerufen:	21.	September	2014,	20:41	UTC)	

Advanced	Programming 15

Imperative	Programming

I	am	in	command!

input->putput->output
Data	separated	from	instructions	(more	or	less	J as	instructions	are	data)	
Von-Neumann	Architecture/Stored-Program-Computer
Access	Memory,	do	computations	incl.	conditional,	PC	program	counter
->	allows:	goto (jump),	if	(conditional),	while	(loop)

1. Do	it!
2. Anyway!

Structured	programming	vs.	goto

Blocks,	subroutines,	scopes.

Advanced	Programming 16

Object-Oriented Programming

Building	your	own	world	of	objects

Object-oriented	programming	attempts	to	provide	a	model	for	
programming	based	on	objects.	OO	programming	integrates	code	and	data	
using	the	concept	of	an	“object”.	An	object	is	an	abstract	data	type	with	the	
addition	of	polymorphism and	inheritance.	

An	object	has	both	state	(data)	and	behavior	(code).

->	Information	hiding
->	polymorphism	comes	naturally
->	single	vs.	multiple	inheritance.
->	templates	and	generics

Advanced	Programming 17

Functional	Programming

The	way	mathematicians	think.
Functional	programming	is	a	style	of	building	the	structure	and	elements	of	
computer	programs,	that	treats	computation	as	the	evaluation	of	
mathematical	functions	and	avoids	changing	state	and	mutable	data.	
In	functional	code,	the	output	value	of	a	function	depends	only	on	the	
arguments	that	are	input	to	the	function,	so	calling	a	function	f	twice	with	
the	same	value	for	an	argument	x	will	produce	the	same	result	f(x)	both	
times.
Eliminating	side	effects,	i.e.	changes	in	state	that	do	not	depend	on	the	
function	inputs,	can	make	it	much	easier	to	understand	and	predict	the	
behavior	of	a	program,	which	is	one	of	the	key	motivations	for	the	
development	of	functional	programming.
->	side	effects	/	mutable	state	->	rand(),	getchar(),	putchar()
->	call	by	value,	call	by	reference
->	thread	safeness	->	errno

Advanced	Programming 18

Programming Paradigms

• Imperative	programming	– defines	computation	as	statements	that	change	a	
program	state	(Assembler)

• Procedural	programming,	structured	programming	– specifies	the	steps	the	
program	must	take	to	reach	the	desired	state	(C,	Pascal,	Fortran	77)

• Functional	programming	– treats	computation	as	the	evaluation	of	
mathematical	functions	and	avoids	state	and	mutable	data	
(Lisp,	ML,	Haskell,	Erlang,	Ocaml)

• Object-oriented	programming	(OOP)	– organizes	programs	as	objects:	data	
structures	consisting	of	datafields and	methods	together	with	their	interactions	
(Smalltalk,	C++,	Java,	Eiffel)

• Declarative	programming	– defines	computation	logic	without	defining	its	
control	flow	(Prolog)

• Event-driven	programming	– the	flow	of	the	program	is	determined	by	events,	
such	as	sensor	outputs	or	user	actions	(mouse	clicks,	key	presses)	or	messages	
from	other	programs	or	threads	(JavaScript)

Advanced	Programming 19

Have	you	ever	...

• wasted	a	lot	of	time	coding	the	wrong	algorithm?	
• used	a	data	structure	that	was	much	too	complicated?	
• tested	a	program	but	missed	an	obvious	problem?	
• spent	a	day	looking	for	a	bug	you	should	have	found	in	five	minutes?	
• needed	to	make	a	program	run	three	times	faster	and	use	less	memory?	
• struggled	to	move	a	program	from	one	architecture	to	another?	
• tried	to	make	a	modest	change	in	someone	else’s	program?	
• rewritten	a	program	because	you	couldn’t	understand	it?	

Was	it	fun?

From:	Kernighan,Pike „The	practise of programming“

Advanced	Programming 21

Design	goals

These	include	

• simplicity,	which	keeps	programs	short	and	manageable;	
• clarity,	which	makes	sure	they	are	easy	to	understand,	for	people	

as	well	as	machines;	
• generality,	which	means	they	work	well	in	a	broad	range	of	

situations	and	adapt	well	as	new	situations	arise;	and	
• automation,	which	lets	the	machine	do	the	work	for	us,	freeing	us	

from	mundane	tasks.

From:	Kernighan,Pike „The	practise of programming“
Advanced	Programming 22

Winner	OSC1990	Best	small programm

v,i,j,k,l,s,a[99];

main()

{

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k=i<s,
j+=(v=j<s&&(!k&&!!printf(2+"\n\n%c"-(!l<<!j),
" #Q"[l^v?(l^j)&1:2])&&++l||a[i]<s&&v&&v-i+j&&
v+i-j))&&!(l%=s),
v||(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[--i]);

}

What might it possibly do?

Advanced	Programming 23

How	to	achieve	this

• Be	able	to	follow	control	flow	(-imperative,	+structured,	-OO,	+functional)
• Structuring	programs	into	units	(-imperative,	+structured,	+OO)	
• Minimize	dependencies	(between	components)

• Minimize	scope	
• Minimize	side	effects	(+functional)
• Data	hiding	(+OO)
• How	about	things	happening	automatic?	

(member	functions	in	C++,	Garbage	collection)
• Being	clever?:	while(*s++	=	*t++);
• DbC

Advanced	Programming 24

Something	to think about

int data[10000]; // all 0..255

long long fun = 0;

unsigned i;

[…]

int t = (data[i] - 128) >> 31;

fun += ~t & data[i];

Advanced	Programming 25

This	is not	the way
/* The Computer Language Benchmarks Game http://benchmarksgame.alioth.debian.org/

Contributed by Dmitry Vyukov

*/

#define _GNU_SOURCE

#include <stdlib.h>

[…]

#define CL_SIZE 64

void* cache_aligned_malloc(size_t sz)

{

char* mem;

char* res;

void** pos;

mem = (char*)malloc(sz + 2 * CL_SIZE);

if (mem == 0)

exit(1);

res = (char*)((uintptr_t)(mem + CL_SIZE) & ~(CL_SIZE - 1));

pos = (void**)(res - sizeof(void*));

pos[0] = mem;

return res;

}

Advanced	Programming 26

Design	by	Contract

(DbC),	is	an	approach	for	designing	software.	
It	prescribes	that	software	designers	should	define	formal,	precise	and	
verifiable	interface	specifications	for	software	components,	which	extend	
the	ordinary	definition	of	abstract	data	types	with	preconditions,	post-
conditions	and	invariants.	
These	specifications	are	referred	to	as	“contracts”,	in	accordance	with	a	
conceptual	metaphor	with	the	conditions	and	obligations	of	business	
contracts.

Pre-conditions
Post-conditions
Invariants

Advanced	Programming 28

Exercise 1:	Setup

Please	check	out	the	data	for	this	exercise	located	here:
https://github.com/mattmilten/appfs

You	will	find	a	program	named	ex1_gen used	to	generate	the	input	data.
Run	this	program	as	follows:

./ex1_gen 100000000 >ex1.dat

The	file	ex1.dat should	then	contain	roughly	100	million	lines.
You	can	check	by	

wc -l ex1.dat

Size	should	be	around	2GB.
The	first	number	is	123456789.	

Advanced	Programming 29

Exercise	1:	File	Format

Each	line	should	consists	of	
• a	sequence-number,	
• a	location	(1	or	2),	and	
• a	floating	point	value	>	0.

Empty	lines	are	allowed.	Comment	lines	start	with	a	”#”.	
Everything	after	a	”’#”	on	a	line	should	be	ignored.

Read	in	the	data	and	compute	the	geometric	mean	for	each	location.
Be	aware	that	there	might	be	some	errors	in	the	data.

Advanced	Programming 30

Exercise 1:	What	to	do

Write	a	program	named	ex1 in	C	or	your	favorite	language,	which

1. Reads	in	the	data	from	ex1.dat

2. Compute	the	Geometric	Mean for	both	locations
Output	should	look	like:

File:	ex1.dat	with	100001235	lines
Valid	values	Loc1:	50004598	with	GeoMean:	36.7817
Valid	values	Loc2:	49994703	with	GeoMean:	36.7825

Advanced	Programming 31

Exercise 3:	How	to	report

1. Check	in	the	source	code	into	github as	explained

2. use	time ex1 ex1.dat
to	get	the	runtimes	of	your	program

3. Copy	the	output	of	your	program

Send	the	output	of	time,	and	your	ex1 with
subject	of	APPFS	ex1	vorname nachname
per	email	to	<koch@zib.de>

Deadline:	27.04.		16	Uhr	(earlier would be better)

Advanced	Programming 32

