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The Steiner Tree Problem in Graphs

Given:
. G = (V , E ): undirected graph
. T ⊆ V : subset of vertices
. c ∈ RE

>0: positive edge costs

A tree S ⊆ G is called Steiner tree in (G , T , c) if T ⊆ V [S]

Steiner Tree Problem in Graphs (SPG)
Find a Steiner tree S in (G , T , c) with minimum edge costs

∑
e∈E [S]

c(e)

SPG (decision variant) is one of Karp’s 21 NP-complete problems.
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .
Rooted prize-collecting Steiner tree
problem

E.g. An algorithmic framework for the exact solution of the prize-collecting
Steiner tree problem (Ljubic et al., 2006)

Thorsten Koch · Daniel Rehfeldt 3 / 25



Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .
Rectilinear Steiner minimum tree
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E.g. Phylogenetic analysis of multiprobe fluorescence in situ hybridization
data from tumor cell populations (Chowdhury et al., 2013)
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Maximum-weight connected subgraph
problem

E.g. Efficient activity detection with max-subgraph search
(Chen, Grauman, 2012)
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E.g. Rectilinear group Steiner trees and applications in VLSI design
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Applications

Some real-world applications of Steiner trees:

. design of fiber optic networks

. prediction of tumor evolution

. deployment of drones

. computer vision

. wire routing

. computational biology

. . . .

Maximum-weight connected subgraph
problem

Real-world applications usually require variations of SPG
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How it started...Jack

What we wanted: Solver for many different Steiner problem variants

What we had: an old solver for SPG: Jack-III; based on
. transformation into a Steiner arborescence problem and ...
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Formulation

... cutting plane algorithm based on flow balance directed-cut
formulation:

Formulation

min cT y
y(δ+

W ) > 1 for all W ⊂ V , r ∈W , (V \W ) ∩ T 6= ∅
y(δ−v ) 6 y(δ+

v ) for all v ∈ V \ T
y(δ−v ) > y(a) for all a ∈ δ+

v , v ∈ V \ T
y(a) ∈ {0, 1} for all a ∈ A
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Framework
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SCIP plus Jack

SCIP-Jack

JackSCIP
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A Steiner class solver
SCIP-Jack can solve SPG and 11 related problems:

Abbreviation Problem Name

SPG Steiner tree problem in graphs
SAP Steiner arborescence problem
RSMT Rectilinear Steiner minimum tree problem
OARSMT Obstacle-avoiding rectilinear Steiner minimum tree problem
NWSTP Node-weighted Steiner tree problem
PCSTP Prize-collecting Steiner tree problem
RPCSTP Rooted prize-collecting Steiner tree problem
MWCSP Maximum-weight connected subgraph problem
RMWCSP Rooted maximum-weight connected subgraph problem
DCSTP Degree-constrained Steiner tree problem
GSTP Group Steiner tree problem
HCDSTP Hop-constrained directed Steiner tree problem

Thorsten Koch · Daniel Rehfeldt 8 / 25



SCIP-Jack

SCIP-Jack works by combining generic and problem specific
algorithms:

. generic

I extremly fast separator routine based on new max-flow
implementation

I all general methods provided by SCIP
e.g., generic cutting planes and sophisticated branching

. problem specific

I efficient transformations to Steiner arborescence problem
(needed for applying generic separator)

I preprocessing routines
I primal and dual heuristics
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SCIP-Jack

SCIP-Jack works by combining generic and problem specific
algorithms:
. generic

I extremly fast separator routine based on new max-flow
implementation

I all general methods provided by SCIP
e.g., generic cutting planes and sophisticated branching

. problem specific
I efficient transformations to Steiner arborescence problem

(needed for applying generic separator)
I preprocessing routines
I primal and dual heuristics

Thorsten Koch · Daniel Rehfeldt 9 / 25



Conversions, Heuristics and Preprocessing

Problem
Special Virtual Virtual Special Special

Constraints Vertices Arcs Preprocessing Heuristics

SPG – – X X X
SAP – – – X X
RSMT – X X – –
OARSMT – X X – –
NWSTP – – X – –
PCSTP – X X X X
RPCSTP – X X X X
MWCSP – X X X X
RMWCSP – X X – X
DCSTP X – X – X
GSTP – X X – –
HCDSTP X – – X X
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SCIP-Jack

SCIP-Jack Pre
processing
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Performance of SCIP-Jack for SPG

SCIP-Jack is roughly two orders of magnitude faster than Jack-III
(both using CPLEX 12.6 as LP-solver).
Example: SPG test set E (20 instances, up to 62 500 edges)

. Average run time (shifted geometric mean)
I Jack-III: 32.5 seconds
I SCIP-Jack: 0.3 seconds

. Maximum run time (both for instance e18)
I Jack-III: 688.3 seconds
I SCIP-Jack: 34.1 seconds
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Performance of SCIP-Jack for SPG
Comparison with best free SPG solver from DIMACS competition
Mozartballs (Fischetti et al., 2017)

Mozartballs SCIP-Jack

test set instances solved gap [%] ∅ time [s] solved gap [%] ∅ time [s]

vienna-i-adv. 85 65 0.08 314.3 82 0.01 112.4
E 20 20 – 9.2 20 – 0.3
ALUE 15 13 2.85 137.9 13 1.90 21.5
PUC 50 12 4.09 1299.9 11 2.52 1416.2

. 1 h time limit

. shifted geometric mean for time, arithmetic mean for gap (for unsolved instances)

. 2.3 GHz, 64 GB RAM (Mozartballs) vs. 3.2 GHz, 48 GB RAM (SCIP-Jack)

. LP-solver: CPLEX 12.6 (both)

. MIP-solver: CPLEX 12.6 (Mozartballs) vs. SCIP 4.0 (SCIP-Jack)

Thorsten Koch · Daniel Rehfeldt 13 / 25



Performance of SCIP-Jack for SPG

But: SCIP-Jack still for most SPG instances more than five times
slower than best (but not-freely available) SPG solver (Daneshmand,
Polzin, 2014).

But but: SCIP-Jack is competitive for hard instances. By using the
massively parallel extension of SCIP and 3000 cores we:
. improved primal bounds for 14 SPG benchmark instances
. solved 3 SPG benchmark instances for first time to optimality

Thorsten Koch · Daniel Rehfeldt 14 / 25
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Performance of SCIP-Jack for RPCST

SCIP-Jack is highly competitive for rooted prize-collecting Steiner
tree problems (also for unrooted)
. Example: hardest test instances from DIMACS Challenge 2014

(fiber optic networks, > 20 000 edges)
I run time in first publication (Ljubic ’06): > 4000 seconds (scaled)
I best run time at DIMACS Challenge1: > 100 seconds
I run time SCIP-Jack: < 0.2 seconds

1previous version of SCIP-Jack
Thorsten Koch · Daniel Rehfeldt 15 / 25



Maximum-Weight Connected Subgraph Problem

Given:
. undirected graph G = (V , E )
. vertex weights p ∈ RV

Maximum-Weight Connected Subgraph Problem (MWCS)
Find connected subgraph S ⊆ G such that

∑
v∈V [S]

p(v) is maximized

. ...subject of many recent publications

. e.g. in computer vision and systems biology
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Transformation: MWCSP to SAP
MWCSP P = (V , E , p) is transformed to a Steiner arborescence problem P′ = (V ′, A′, T ′, c′):

1. Substitute each edge {v , w} by two anti-parallel arcs. For each new arc a = (v , w) set

c′(a) =
{
−p(w), if p(w) < 0

0, otherwise

2. Denote set of all v ∈ V with p(v) > 0 by T = {t1, ..., ts};
add for each ti a terminal t′i ; add root r

3. Choose M >
∑

t∈T p(t) (= 9.1) and add arcs (r , t) of cost M for all t ∈ T

4. Add new vertex v0, add 0-cost arcs (ti , v0), (ti , t′i ) and arcs (v0, t′i ) of cost p(ti )

2.17

-1.7 -0.9

1.7 0.9

00

1.7 0.9
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c′(a) + M
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Reduction Techniques for MWCSP

Example for MWCS reduction technique:

Lemma 1
Let vi ∈ V with p(vi) 6 0 and W ⊆ V \ {vi}, W 6= ∅ such that
(W , E [W ]) is connected and ∑

w∈W :p(w)<0 p(w) > p(vi) holds. If{
v ∈ V \W | {vi , v} ∈ E

}
⊆

{
v ∈ V \W | {w , v} ∈ E , w ∈ W

}
is satisfied, then there is at least one optimal solution that does not
contain vi .

Thorsten Koch · Daniel Rehfeldt 18 / 25



Example

v5

1.5

v6

-2

v1

-2

v2

-1

v3

4

v4

-1.9

v1 and incident edges (dashed) can be eliminated, since each neighbor
of v1 is neighbor to W = {v5, v6}.
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Reduction Techniques for MWCSP

. Lemma 1 is only a special case of the actual test used in
SCIP-Jack, but even this special case is already NP-hard.

. the MWCSP reduction techniques of SCIP-Jack are empirically
strong, allowing to solve many instances to optimality already
during preprocessing

Comparison with best results for real-world test set ACTMOD from
DIMACS Challenge:

. Average run time (shifted geometric mean)
I Best DIMACS: 4.1 seconds
I SCIP-Jack: 0.2 seconds

. Maximum run time (for same instance)
I Best DIMACS: 21.6 seconds
I SCIP-Jack: 0.5 seconds

Thorsten Koch · Daniel Rehfeldt 20 / 25
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ACTMOD Detailed

Detailed computational results for test set ACTMOD, number of
vertices (V ), arcs (A), and terminals (T ) given for transformed SAP.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

drosophila001 5298 187214 72 1 0 0.2 24.3855064 1 0.2
drosophila005 5421 187952 195 24 224 0.4 178.663952 1 0.5
drosophila0075 5477 188288 251 1 0 0.3 260.523557 1 0.3
HCMV 3919 58916 56 1 0 0.1 7.55431486 1 0.1
lymphoma 2102 15914 68 1 0 0.1 70.1663087 1 0.1
metabol expr mice 1 3674 9590 151 1 0 0.0 544.94837 1 0.0
metabol expr mice 2 3600 9174 86 1 0 0.0 241.077524 1 0.0
metabol expr mice 3 2968 7354 115 1 0 0.0 508.260877 1 0.0
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Impact of Preprocessing Methods

Results of running each MWCS reduction technique included in
SCIP-Jack exhaustively on 119 instances:

Removed Removed
Reduction Method Vertices[%] Edges[%] ∅ Time [s]

UNPV/BT 41 42 0.01
AVS 59 70 0.01
BT/NNP 88 87 0.02
NPVk 13 10 0.01
PVD 9 11 0.00
DA 88 89 0.10
all (non-exhaustive) 99.99 99.99 0.02

Thorsten Koch · Daniel Rehfeldt 22 / 25



Performance of SCIP-Jack

Comparision on recently published real-world computational biology
test set (SHINY, 39 instances) with two MWCS solvers
Heinz2/GMWCS (H2G) as reported in Solving Generalized
Maximum-Weight Connected Subgraph Problem for Network
Enrichment Analysis (Loboda et al., 2016):
. Average run time (shifted geometric mean)

I H2G: > 8 seconds
I SCIP-Jack: < 0.1 seconds

. Maximum run time
I H2G: > 1000 seconds
I SCIP-Jack: < 0.1 seconds

SCIP-Jack has recently solved large-scale instance (> 300 000 edges)
from the 11th DIMACS Challenge for first time to optimality.
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SCIP-Jack

. is available as part of the SCIP Optimizations Suite
http://scip.zib.de

. has plugin-based structure for easy integration of further variants
or solving methods

. is highly competitive for many Steiner tree problem variants

. more to come ... stay tuned

Thank you very much!

Thorsten Koch · Daniel Rehfeldt 24 / 25
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