
Things to take care of 

• How to read binary files? 
• How to handle size of input dynamically? 
• Data correct?  
 Endianess? (endian.h) 
 all positive? 
 Doublicates (two methods) 

• How to treat errors 
 

Advanced Programming 34 



Handle size of input dynamically 

long get_file_size(FILE* file)  
{ 
    fseek(file, 0L, SEEK_END); 
    long size = ftell(file); 
    rewind(file); 
    return size; 
} 
- Alternatives 
- Note race condition / security 

Advanced Programming 35 



Not so nice 

fread((void*)buffer,sizeof(int),500000001,Quelldatei); 
 
for(int i=0; i<500000001; i++){ 
numbersBig[intNumber-1073741824]=true; 
while(fread(&a,1,sizeof(int),fp) == sizeof(int)) 
 
 
 

Advanced Programming 36 



Design decisions 

1. How to read the input 
   direct read 
   buffered fread 
   memory mapped 
 
 

Advanced Programming 37 



Design decisions 

2. Sort or Bitmap ? 
   Bitmap: 
     - only works for ints up to 31 bit 
     - is a little slower for small numbers of ints 
     - highly specialized, no choice regarding dublicates or negatives 
     + is faster for larger numbers of ints 
     + takes less space for larger numbers of ints 
 
 

Advanced Programming 38 



Design decisions 

3. Store data in static buffer or allocate storage on the heap? 
 

Advanced Programming 39 



Honorable mention 

#! /usr/bin/env python 
import sys 
import numpy as np 
 
filename = sys.argv[1] 
data = np.fromfile(filename, dtype='int32') 
data = np.sort(data) 
data.tofile(sys.stdout, sep='\n') 
print('') # final newline 
 
- Still negatives, doublicates 
 

Advanced Programming 40 



Experiment: Collecting Data at CO@Work-II 

Combinatorial Optimization at Work II took place at ZIB from 
September 21 to October 9, 2009 with 105 participants from 23 
countries.  
 
We wanted to compute the seat allocation for the lecture hall.  
To do this we required ever participant to state their preferences. 
Everyone should send an email with a data file.  
Lets see how long it took... 

Advanced Programming 41 



File Format 

ASCII text with only a LF (ASCII 10) as line separator. 
Fields are separated by a single space (ASCII 32) 
Line 1: ParticipantNo   HasLaptop   EmailAddress 
e.g.      67 1 koch@zib.de 
0 = has no Laptop, 1 = has a Laptop  
Lines 2-???: SeatNumber   PreferenceValue 
 Seat numbers start down at the low entrance, left to right, row by row. 
 The hightest numbered seat is at the window side at the top. 
 Count only seats that are physically there.  

 The seat numbers in the file should be monotonically increasing.  
 The preference values should be between 0 and 100. 

e.g.    12 55 
  13 40 
  14 35 … 

Advanced Programming 42 



Rules Regarding Preference Values 

Allowed values are between 0 and 100 
Only seats which are not available for the participants 
are allowed to get a value of 0 
All numbers 1-100 have to be used at least once 
The average has to be between 40-60 
The difference to an adjacent seat has to be < 40 
The difference to a neighboring seat has to be < 20 
The data should not be randomly generated 
 

Advanced Programming 43 



Specifying Preference Offsets 

Lines ???-???: ParticipantNo   PreferenceOffset 
List indicating persons which you would like or not like to be your seat neighbor. 
(You have to know the ParticipantNo of the person.) 
 
 A ParticipantNo of 0 indicates an empty seat. 

 
 The PreferenceOffset is between -20 and 20 and will be added to your 

PreferenceValue if the person with the given ParticipantNo is your neighbor. 
e.g. 55 17 
  27 -5 
  72 8  
  0 -10 … 

 
 This list can have as many entries as you like, but there should be at least 2 entries, and 

the occurring participant numbers have to be unique and valid. 

Advanced Programming 44 



How To Submit 

Submission of this file is required for the course 
The name of the file has to be ParticipantNo.txt 
It should be attached to an email 
Send the email to koch@zib.de 
The subject of the email should be 
CO@Work: SeatData for ParticipantNo 
Please, as soon as possible. 
 

Advanced Programming 45 

mailto:koch@zib.de


2 Days after the lecture 

Mails received  : 13 
Different Subjects : 4   (10 1 1 1) 
Wrong field spacing : 4  
Seat counts  : 2  (12 1) 
Missing data  : 1 
Too much data : 1 
Ok, from first view : 5 out of 13 

Advanced Programming 46 



3 Days after the lecture 

Mails received  : 23 
Different Subjects : 6   (17 2 1 1 1 1) 
Wrong field spacing : 4  
Seat counts  : 4  (19 1 1)  
Missing data  : 2 
Too much data : 0 
Ok, from first view : 10 
Corrected  : 1 
Add to the specification: 
A seat without a desk is not allowed for the participants 
Seats with a 0 preference value are not relevant for the 
adjacency/neighboring difference rules. 

Advanced Programming 47 



4 Days after the lecture 

Mails received  : 37 
Wrong subject  : 11    
Wrong field spacing : 8  
Strange seat counts : 5  
Missing data  : 2 
Corrected  : 3 
 

Advanced Programming 48 



5 Days after the lecture 

Mails received  : 47 
Data sets  : 41 (6 corrections) 
Wrong subject  : 12 
Wrong attachment name : 2  
Wrong line separator : 29  
Wrong field separator : 10  
Pref. value not used : 11 
Other Errors  : 1 
Number of seats  : 153 - 181 
No complains so far : 4 
 

Advanced Programming 49 



7 Days after the lecture 

Mails received  : 79 
Data sets  : 64  
Wrong subject  : 16 
Wrong attachment name : 2  
Wrong line separator : 45  
Wrong field separator : 11  
Pref.value not used : 22 
Other Errors  : 2 
Number of seats  : 153 - 181 
No complains so far : 8 
 

Advanced Programming 50 



9 Days after the lecture 

Mails received  : 104 
Data sets  : 76  
Wrong subject  : 18 
Wrong attachment name : 2  
Pref. value not used : 19 
Neighbor  difference : 21 
Wrong no/seq. seats:  : 10 
Wrong 0 seats  : 20 
No complains so far : 10 

Advanced Programming 51 



Overview of Errors in Data 

Advanced Programming 52 

E7 E10 E11 E12 E13 E14 E16
5       X
6       X

12     X  X
13       X
16       X
18     X  X
19      X X
20      X  
23     X   
24      X  
26       X
27      X  
36      X  
42     X   
45   X X X X X
47     X   
53     X   
59      X  
63   X  X X  
64   X  X X X
71     X X  

E7 E10 E11 E12 E13 E14 E16
77       X
78 X  X   X X
81    X X  X
98     X   
99 X  X   X  

103     X X  
107   X   X X
108   X   X X
111       X
121       X
128   X   X X
129  X      
134   X X X X  
135     X   
137  X   X X X
139     X  X
145 X  X  X X  
160      X  
166     X X  

E7 bad seatno 

E10 bad offset 

E11 wrong seatno 

E12 bad average 

E13 prefval missing 

E14 neigbour diff 

E16 seat not 0 

Please correct and resubmit 



53 

11 Days after the lecture 

Mails received  : 144 
Wrong subject  : ~23 
Wrong attachment name : 4  
 
Data sets  : 92  
To be corrected  : 28 
Missing   : 6 
 
Pref. value not used : 14 
Neighbor  difference : 18 
Wrong no/seq. seats : 2 

Advanced Programming 



54 

Overview of Errors in Data 

E7 bad seatno 
E10 bad offset 
E11 wrong seatno 
E12 bad average 
E13 prefval missing 
E14 neigbour diff 

Please correct and resubmit 

E7 E10 E11 E12 E13 E14
12     X  
18     X  
23 X  X   X
24      X
27      X
45     X X
47     X  
63   X  X X
71     X X
78 X  X   X
79  X X X X  

103      X
107   X   X
108   X   X
110  X     
114      X
118     X X
128   X   X
134   X X X X
135     X  
136      X
137  X   X X
138     X  
139     X  
160      X
166     X X

Advanced Programming 



55 

13 Days after the lecture 

Mails received   : 159 
Wrong subject   : ~26 
Wrong attachment name  : 4  
 
Data sets   : 94  
To be corrected   : 18 
Missing    : 4 
 
Preference value not used : 9 
Neighbor  difference  : 14 
Wrong no/sequence seats : 3 

Advanced Programming 



56 

Overview of Errors in Data 

E7 bad seatno 
E10 bad offset 
E11 wrong seatno 
E12 bad average 
E13 prefval missing 
E14 neigbour diff 

Please correct and 
resubmit 

E7 E10 E11 E12 E13 E14
18     X  
24      X
27      X
45     X X
63     X  
71     X X
78 X  X   X
79  X X X X  

103      X
107   X   X
108   X   X
114      X
118     X X
128   X   X
134   X X X X
136      X
137  X   X X
138     X  

Advanced Programming 



57 

14 Days after the lecture 

Mails received   : 166 
Wrong subject   : ~28 
Wrong attachment name  : 4  
 
Data sets   : 95  
To be corrected   : 18 
Missing    : 3 
 
Preference value not used : 7 
Neighbor  difference  : 14 
Wrong no/sequence seats : 3 

Advanced Programming 



58 

Overview of Errors in Data 

E7 bad seatno 
E10 bad offset 
E11 wrong seatno 
E12 bad average 
E13 prefval missing 
E14 neigbour diff 

Please correct and 
resubmit 

E7 E10 E11 E12 E13 E14
24      X
27      X
45     X X
71     X X
78 X  X   X
79  X X X X  
92     X X

107   X   X
108   X   X
114      X
118     X X
128   X   X
134   X X X X
136      X
137  X   X X

Advanced Programming 



59 

15 Days after the lecture – the final day 

Mails received   : 172 
Wrong subject   : ~31 
Wrong attachment name  : 4  
 
Data sets   : 95  
To be corrected   : 13 
 
Preference value not used : 5 
Neighbor  difference  : 13 
Wrong no/sequence seats : 2 

Advanced Programming 



60 

Subject Variations 

The subject of the email should be 
CO@Work: SeatData for ParticipantNo 

CO@Work: SeatData for 022 
CO@Work:SeatData for 222 
CO@Work:SeatDatafor222 
CO@work: SeatData for 222 
CO@Work: Seat Data for 222 
Co@Work: SeatData for 222 
CO@Work: SeatData for Participant222 
CO@Work: SeatData for ParticipantNo 
Co@Work: SeatData for Participan222 
CO@WORK:  seatdata for 222 
COatWork: SeatData for 222 
COatWork for 222 
SeatData for 222 
SeatData for ParticipantNo 222 
set data for participant number 222 
data set participant number 222 
Sitting assignment 
Seats assignment 

Advanced Programming 



61 

Overview of Errors in Data 

E7 bad seatno 
E10 bad offset 
E11 wrong seatno 
E12 bad average 
E13 prefval missing 
E14 neigbour diff 

Sorry,  
too late to correct! 

E7 E10 E11 E12 E13 E14
24      X
27      X
45     X X
71     X X
78 X  X   X
92     X X

107   X   X
108   X   X
114      X
128   X   X
134   X X X X
136      X
137  X   X X

Wrong line 1: 81, 129 

Advanced Programming 



Data 

You would think a …   
 … cellular network operator knows where its base stations are located? 
 … fixed network operator can tell where the parts of its network are connected? 
 … chemical company knows how many plants they have? 
 … 5 m long pipeline cannot have a height difference from end-to-end of 100 m? 

 
 Many companies have their data in Excel. 

There is no formal validation or referential integrality check. 
 If they did formal validation, usually they found there was information they 

needed which they could not input and they started to “reuse” some data fields. 
 If there is not at least 1 error per 100 data sets you are not looking hard enough. 
 Usually the data changes all the time. 
 They might not want to give it to you. 
 The data might just not exist. 
The first result of an optimization project is usually to improve the quality of 
planning data available at the company. 
 

 
Advanced Programming 62 



Exercise 2: What to do 

Write a program in C or your favorite compiled language, which takes no 
input and produces a copy of its own source code as its only output.  
 
The program should be as short as possible (not important) and have at 
least one character (because there are languages where the empty 
program is a valid program). 
 
The standard terms for these programs in the computability theory and 
computer science literature are "self-replicating programs", "self-
reproducing programs", and "self-copying programs". 
Otherwise it is called a \emph{Quine}. 
{\bf Please}, given the info above it is easy enough to look this up in the 
Internet. The purpose of this excercise is that you try it youself. 
We will discuss the most interesting ones in the lecture. 
 
\section*{How to report} 
 

     
        

Advanced Programming 63 



Exercise 2: How to report 

 
Send the source code to <thorsten.koch@tu-berlin.de> with a  
subject of APPFS ex2 vorname nachname 

Advanced Programming 64 

mailto:thorsten.koch@tu-berlin.de
mailto:thorsten.koch@tu-berlin.de
mailto:thorsten.koch@tu-berlin.de


Thorsten Koch, Zuse Institute Berlin (ZIB) 65 

Combinatorial Optimization at Work 
A course at TU Berlin in cooperation with MATHEON, the Berlin Mathematical School and COST TD1207 

 

Everything you every wanted to know about LP/MIP  
and real-world industrial applications 

(lectures and exercises) 
 

Dates of the course:  September 28 – October 9, 2015 
Language: English 
Location:  Zuse Institute Berlin 
Application deadline:  August 1, 2015 
Participation fee: none 
URL (info/application):  http://co-at-work.zib.de 
Intended audience:      master/PhD students, Post-docs 
Contact: coaw@zib.de 
Lectures by: M. Grötschel, B. Bixby, A. Martin, R. Borndörfer, T. Koch, 
 the SCIP Team, developers of Gurobi, XPress, CPlex, 
 Mosek, Gams, ThinkCubic, and many more 
    

http://co-at-work.zib.de/
mailto:coaw@zib.de

	Things to take care of
	Handle size of input dynamically
	Not so nice
	Design decisions
	Design decisions
	Design decisions
	Honorable mention
	Experiment: Collecting Data at CO@Work-II
	File Format
	Rules Regarding Preference Values
	Specifying Preference Offsets
	How To Submit
	2 Days after the lecture
	3 Days after the lecture
	4 Days after the lecture
	5 Days after the lecture
	7 Days after the lecture
	9 Days after the lecture
	Overview of Errors in Data
	11 Days after the lecture
	Overview of Errors in Data
	13 Days after the lecture
	Overview of Errors in Data
	14 Days after the lecture
	Overview of Errors in Data
	15 Days after the lecture – the final day
	Subject Variations
	Overview of Errors in Data
	Data
	Exercise 2: What to do
	Exercise 2: How to report
	Combinatorial Optimization at Work

