
Advanced practical Programming
for Scientists

WS2014/15

Thorsten Koch

Zuse Institute Berlin

TU Berlin

Choices

int verb_level vs enum Verbosity

problem with enum is that actually we are hardly ever comparing == but usually <= >=.
Where is the extra benefit for handling an enum compared to the int?

where to put the definition: bip.h or ex7.h

where to store it:
• global variable (threads? problem?)
• pass through all functions
• store in central data structure like BIP

Belongs in a sense to ex7.h but then we would have a cycle between bip.h and ex7.h
Extra module with static variable, called from everybody.
Could have verbosity.h with just the defines.

Advanced Programming 2

Choices

Only have ac no ar. Since we are changing and reordering the input file we want to have the
original (or not)?

Again, do these belong into bip.h ?

double min_coef_val;

double max_coef_val;

int verb_level;

int read_rows;

Advanced Programming 3

 if (x & updatemask)

 {

 for(k = 0; k < rows; k++)

 r[k] += modcol[k];

 }

 else /* bit changed from 1 to 0 */

 {

 for(k = 0; k < rows; k++)

 r[k] -= modcol[k];

 }

Vs.

 for(k = 0; k < rows; k++)

 if (x & updatemask)

 r[k] += modcol[k];

 else

 r[k] -= modcol[k];

Vs.

 for(k = 0; k < rows; k++)

 r[k] += (x & updatemask) ? modcol[k] : -modcol[k];

Advanced Programming 4

Changes

• Introduced ac.
Filled in preprocess() after reading, instead of changing and copying the
data in ex7 main().

• Put the enumerate() feasibility check into subroutine. Notice: inline.
• enumerate part of BIP. Introduces constructer/deconstructor

Advanced Programming 5

Details

bip.h
• Naming: If the function does something there is a verb.
• If it just reports a property of the data structure the implicit 'get' is omitted.

Problem BIP has three stages:
• Allocated
• ar read in
• preprocessing done and ac build

C99:
double* r = malloc((size_t)rows * sizeof(*r));

double r[rows];

Advanced Programming 6

Coverage test

Use –DNDEBUG yes or no?

No: Easier to get 100%. Can be difficult to produce coverage for certain
assert related checking function as the situation should/could never
happen.

Yes. Checking code has to be part of coverage test. Otherwise it is unclear
whether the checking actually happens. Also it may be unclear whether the
checks are correct.

Advanced Programming 7

Problem: dependencies

Code gets hard to change because of many dependencies.

• splitline should be named split_string.
• Change of the signature and sematics of a function including

errors. -> Lots of changes in code, documentation, tests.
• While code will mostly automatically stay coherend (compiler will

find not adapted signatures) documentation and tests might not.

=> Once it is finished and polished you do not want to change it
anymore. Support through DevEnv is needed that take care
automatically to allow refactoring.

Advanced Programming 8

Defensive Programming

 408 :
 409 : default :
 410 0 : abort();
 411 : }
 412 : }

Good defensive programming.

Compiler might or might not detect not reachable. Coverage will detect.
Defense is against changes in the code that make it reachable again.

Advanced Programming 9

Short circuit evaluation

 int k;

 for(k = 0; (k < bip->equs) && (r[k] == 0.0); k++)

 ;

 if (k == bip->equs)

 for(; (k < bip->rows) && (r[k] <= 0.0); k++)

 ;

 if (k < bip->rows)

 return 0;

 (*report_sol)(bip, x);

 solution_count++;

Advanced Programming 10

 k := 1;

 if (k < Equs) then

 loop

 if r(k) /= 0.0 then feasible := false; exit; end if;

 if k = Equs then exit; end if;

 k := k + 1;

 end loop;

 end if;

 if feasible then

 if k < Rows then

 loop

 if r(k) > 0.0 then feasible := false; exit; end if;

 if k = Rows then exit; end if;

 k := k + 1;

 end loop;

 end if;

 if feasible then

 Report_solution(Inst, x);

 Solution_Count := Solution_Count + 1;

 end if;

 end if;

Advanced Programming 11

Ariane 5

On 4 June 1996 the maiden flight of the Ariane 5 launcher ended in a failure, about
40 seconds after initiation of the flight sequence. At an altitude of about 3700 m,
the launcher veered off its flight path, broke up and exploded. The failure was
caused by "complete loss of guidance and attitude information" 30 seconds after
liftoff.
The problem was caused by an `Operand Error' in converting data in a subroutine
from 64-bit floating point to 16-bit signed integer. One value was too large to be
converted, creating the Operand Error. This was not explicitly handled in the
program (although other potential Operand Errors were) and so the computer, the
Inertial Reference System (SRI) halted, as specified in other requirements. There are
two SRIs, one `active', one `hot back-up' and the active one halted just after the
backup, from the same problem. Since no inertial guidance was now available, and
the control system depends on it, we can say that the destructive consequence was
the result of `Garbage in, garbage out' (GIGO). The conversion error occurred in a
routine which had been reused from the Ariane 4 vehicle, whose launch trajectory
was different from that of the Ariane 5. The variable containing the calculation of
Horizontal Bias (BH), a quantity related to the horizontal velocity, thus went out of
`planned' bounds (`planned' for the Ariane 4) and caused the Operand Error.

Advanced Programming 12

Requirements and Testing

a) The operand range in the module was deliberately not protected;
b) this was because engineering analysis for its use in Ariane 4 had shown the

operand would never go out of bounds;
c) the range requirement stemming from this analysis was not transferred to the

requirements for the Ariane 5;
d) testing was done against requirements

this is more properly classified as a requirements error rather than a programming
error. The program was written against Ariane 4 requirements; these requirements
were not transferred to the Ariane 5 requirements spec; the Ariane 5 requirements
therefore did not state the range requirement; the (implicit in Ariane 5) range
requirement was in conflict with the behavior of Ariane 5 (as in fact explicated in
other Ariane 5 requirements); requirements came up against behavior and the
rocket was destroyed. (It is not surprising that it was a requirements error - over
90% of safety-critical systems failures are requirements errors, according to a JPL
study that has become folklore)

Advanced Programming 13

Ariane 5

Advanced Programming 14

Was has this to do with us?

Your proof / paper will look the same for the same reasons.

Advanced Programming 15

	Advanced practical Programming�for Scientists
	Choices
	Choices
	Slide Number 4
	Changes
	Details
	Coverage test
	Problem: dependencies
	Defensive Programming
	Short circuit evaluation
	Slide Number 11
	Ariane 5
	Requirements and Testing
	Ariane 5
	Was has this to do with us?

