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INTERIOR POINT METHODS IN FUNCTION SPACE∗

MARTIN WEISER†

Abstract. A primal-dual interior point method for optimal control problems is considered.
The algorithm is directly applied to the infinite-dimensional problem. Existence and convergence
of the central path are analyzed, and linear convergence of a short-step path-following method is
established.
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1. Introduction. Numerical methods for solving optimal control problems gov-
erned by ODEs fall into two categories, the indirect methods [2, 3, 4, 6, 14, 15, 31]
relying on Pontryagin’s maximum principle, and the direct methods [7, 17, 21, 30, 37]
based on the Karush–Kuhn–Tucker necessary conditions. Direct methods can be
characterized by several features. Among them are the following:

(i) Position of discretization: Discretize-then-optimize approaches use an a priori
parameterization of the control and possibly the state variables to reduce the
optimal control problem to a finite-dimensional nonlinear program. These
large nonlinear programs can then be solved by standard NLP solvers. Adap-
tive mesh refinement can be performed after the finite-dimensional optimum
has been reached. On the other hand, optimize-then-discretize approaches
formulate the optimization algorithms directly in the infinite-dimensional
function space, employing discretization only for solving linear operator equa-
tions. Adaptive mesh refinement is used to meet the accuracy requirements
imposed on the solution of the linear equations by the optimization algo-
rithm.
Somewhere in between are function space sequential quadratic programming
(SQP) methods where linear-quadratic programs are discretized.

(ii) Type of optimization algorithm: Among the most popular algorithms em-
ployed for solving the optimization problems arising in optimal control are
SQP and interior point methods. A recent alternative are semismooth New-
ton methods [5, 34].

Discretize-then-optimize methods are covered by a vast amount of published literature
using almost any available algorithm for solving the finite-dimensional NLPs. Solu-
tions on consecutive mesh refinement levels or in consecutive SQP steps often exhibit
pronounced similarities. This redundancy can be directly exploited by active set–type
methods. In contrast, interior point methods are considered to benefit less from this
redundancy [20, 40]. Nevertheless, interior point methods are reported to be very
efficient for solving optimal control problems—a fact that is not well explained by
straightforward application of finite-dimensional interior point convergence theory to
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the discretized problems. The best currently known convergence rates of 1−const /
√
n

would instead predict a pronounced mesh dependence of the convergence.
Among the optimize-then-discretize approaches, the SQP methods dominate the

published material [1, 17, 22, 23, 27, 32, 33]. Here, Robinson’s theory of generalized
equations [29] can be used to analyze the function space methods, which leaves, how-
ever, the question of how to solve the infinite-dimensional linear-quadratic programs.
This is implicitly addressed by infinite-dimensional interior point methods, which have
nevertheless attracted less attention [35, 36, 24].

The present paper presents an infinite-dimensional interior point method directly
applied to optimal control problems in function space in section 2. Existence and
convergence of the central path are analyzed in section 3. Finally, linear convergence
of a theoretical short-step path-following algorithm with classical predictor is shown
in section 4. In particular, the rate of convergence does not depend on the size of any
discretization.

Notation. The Lebesgue spaces and Sobolev spaces of functions with values in
R

n are denoted by Ln
p and (Wm

p )n, respectively. S(x, ρ) is the open ball around x
with radius ρ.

Some variables and operators are constructed such that they have a natural block
partitioning corresponding to the components u and y of x. The individual blocks are
denoted by the corresponding component as a superscript, e.g.,

g(x) =

[
gu(u)
gy(y)

]
and Ψ(g(x), η) =

[
Ψu(gu(u), ηu)
Ψy(gy(y), ηy)

]
.

2. Problem setting. On the time interval Ω = [0, 1] we consider the optimal
control problem

minJ(x) subject to c(x) = 0 a.e.,

r(x) = 0,

g(x) ≥ 0 a.e.

(2.1)

with a partitioning of the variable x = (u, y) ∈ X = Lnu
∞ (Ω)×(W 1

∞)ny (Ω) into controls
and states, a Lagrange-type cost functional

J(x) =

∫ 1

0

f̃(u(t), y(t)) dt,

ordinary differential equations with boundary conditions

c(x) =

[
c̄(x)

y(0) − y0

]
, c̄(x)(t) = c̃(x(t)) − ẏ(t),(2.2)

r(x) = r̃(y(1))(2.3)

as equality constraints, and pointwise state and control constraints

g(x)(t) =

[
g̃u(u(t))
g̃y(y(t))

]
.

For the whole paper, we will restrict the discussion to the fixed time interval Ω and,
hence, simplify the notation by omitting it from the function spaces. We assume all the
functions f̃ : R

nu ×R
ny → R, c̃ : R

nu ×R
ny → R

ny , r̃ : R
ny → R

nr , g̃u : R
nu → R

nηu ,
and g̃y : R

ny → R
nηy to be twice Lipschitz-continuously differentiable.
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For convenience, we give here a theorem on Nemyckii operators in L∞, the
straightforward proof of which can be found in [38].

Theorem 2.1. If f : R
n → R

m is k times differentiable and its kth derivative
satisfies the Lipschitz condition

|f (k)(x) − f (k)(y)| ≤ κ|x− y|,(2.4)

the corresponding Nemyckii operator f defined by f(u)(t) = f(u(t)) maps Ln
∞ into

Lm
∞ and is k times Fréchet differentiable. For 1 ≤ p ≤ ∞ its kth derivative can

be continuously extended to an operator f (k)(u) : (
∏k

j=1 L
n
pk) → Lm

p that inherits

boundedness and Lipschitz continuity from f (k):∥∥∥f (k)(u)
∥∥∥

(
∏k

j=1 Ln
pk)→Lm

p

≤ sup
|x|≤‖u‖Ln∞

|f (k)(x)|,(2.5)

∥∥∥f (k)(u + δu) − f (k)(u)
∥∥∥

(
∏k

j=1 Ln
pk)→Lm

p

≤ κ ‖δu‖Ln
∞
.(2.6)

If in addition f is k + 1 times differentiable and its k + 1st derivative satisfies the
Lipschitz condition

|f (k+1)(x) − f (k+1)(y)| ≤ κ|x− y|,

then f maps (W 1
∞)n into (W 1

∞)m and is k times differentiable. For p ≥ 1 its kth

derivative can be continuously extended to an operator f (k)(u) : (
∏k

j=1(W
1
pk)

n) →
(W 1

p )m that inherits boundedness and Lipschitz continuity from f (k) and f (k+1):

∥∥∥f (k)(u)
∥∥∥

(
∏k

j=1(W
1
pk)n)→(W 1

p )m
≤ sup

|x|≤‖u‖Ln∞

(k + 1)|f (k)(x)| + |f (k+1)(x)|,(2.7)

∥∥∥f (k)(u + δu) − f (k)(u)
∥∥∥

(
∏k

j=1(W
1
pk)n)→(W 1

p )m
≤ (k + 2)κ ‖δu‖(W 1

∞)n .

If the derivatives of f : R
n → R

n and g : R
n → R

n commute, then so do the
derivatives of the corresponding Nemyckii operators f ′ and g′.

With Theorem 2.1 earlier, we conclude that

J :Lnu
∞ × (W 1

∞)ny → R,

c :Lnu
∞ × (W 1

∞)ny → Lny
∞ , and

g :Lnu
∞ × (W 1

∞)ny → L
nηu∞ × L

nηy
∞

are twice Lipschitz-continuously differentiable operators.
The aim of the interior point method discussed here is to approximate Kuhn–

Tucker points x∗. These are feasible points characterized by the existence of Lagrange
multipliers λc ∈ R

ny × (L
ny
∞ )∗, λr ∈ R

nr , and η ∈ (L
nηu∞ )∗ × ((W 1

∞)nηy )∗ such that
the following conditions are satisfied:

J ′(x∗) − c′(x∗)
∗λc − r′(x∗)

∗λr − g′(x∗)
∗η = 0,(2.8)

c(x∗) = 0, r(x∗) = 0,

g(x∗) ≥ 0, η ≥ 0, 〈η, g(x∗)〉 = 0.



INTERIOR POINT METHODS IN FUNCTION SPACE 1769

Under certain assumptions (see, e.g., [26, 28]) these conditions are necessary for x∗ to
be a local solution of (2.1). Thus, Kuhn–Tucker points are promising candidates for
solutions.

Unfortunately, the unwieldy complementarity condition (2.8) is difficult to handle
numerically. The idea of primal-dual interior point methods is to relax the comple-
mentarity condition by

η · g(x) = μ, η ≥ 0, g(x) ≥ 0(2.9)

and to consider the homotopy μ → 0. Alternatively, complementarity functions
ψ(a, b;μ) : R

2 × R → R can be used to construct Nemyckii operators Ψ such that

Ψ(g(x), η;μ) = 0

is more or less equivalent to the classical interior point relaxation (2.9).

These relaxations, however, are only well defined if η ∈ L1, and are continuously
differentiable only in case η ∈ L∞. Note that this is required to hold only during
the homotopy for μ > 0, not at the Kuhn–Tucker point itself. We will prove in
Theorem 3.4 that the homotopy can indeed be performed in the more regular setting
of η ∈ L

nηu∞ × L
nηy
∞ ⊂ (L

nηu∞ )∗ × ((W 1
∞)nηy )∗ for μ > 0.

Define the Lagrangian

L(x, λc, λr, η) = J(x) − 〈λc, c(x)〉 − 〈λr, r(x)〉 − 〈η, g(x)〉.

Let

F (x, λc, λr, η;μ) =

⎡
⎢⎢⎣
∂xL(x, λc, λr, η)

−c(x)
−r(x)

Ψ(η, g(x);μ)

⎤
⎥⎥⎦ .(2.10)

As will be shown in Theorem 3.2 later, F maps

V × R+ = (Lnu
∞ × (W 1

∞)ny ) × (Rny × Lny
∞ ) × R

nr × (L
nηu∞ × L

nηy
∞ ) × R+(2.11)

into

Z = (Lnu
∞ × (W 1

1 )ny∗) × (Rny × Lny
∞ ) × R

nr × (L
nηu∞ × L

nηy
∞ ).

3. The central path. The main object of analytical interest is the central path
defined by the homotopy (2.9) in μ. First we consider its actual existence in the
regular setting given by (2.11) before discussing convergence.

Throughout the paper, we will use the Fischer–Burmeister function [18]

ψ(a, b;μ) = a + b−
√
a2 + b2 + 2μ(3.1)

as an example from a large class of different complementarity functions (see [11, 12,
13, 25]).

3.1. Existence. We begin with establishing some bounds on derivatives of the
complementarity function and their inverses.
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Lemma 3.1. The complementarity function Ψ defined via (3.1) maps Ln
∞×Ln

∞×R

continuously into Ln
∞. Its derivative ∂gΨ(g, η;μ) is symmetric positive semidefinite,

bounded by

‖∂gΨ‖L∞→L∞
≤ 2,(3.2) ∥∥(∂gΨ)−1

∥∥
L∞→L∞

≤ max

(
3,

2

μ
‖g‖2

L∞

)
,(3.3)

and Lipschitz continuous with a Lipschitz constant of μ−1/2. The corresponding holds
for ∂ηΨ(g, η;μ). Furthermore, the derivatives commute.

Proof. The claimed properties of the Nemyckii operator Ψ are directly inherited
from ψ due to Theorem 2.1. From (1+φ)−1/2 ≤ max(1−φ/4, 2/3) for φ > 0 we infer

min

(
μ

2a2
,
1

3

)
= 1 − max

(
1 − μ

2a2
,
2

3

)
≤ 1 − 1√

1 + 2μ
a2

(3.4)

≤ 1 − 1√
1 + b2

a2 + 2μ
a2

= 1 − |a|√
a2 + b2 + 2μ

≤ ∂aψ(a, b;μ)

≤ 1 +
|a|√

a2 + b2 + 2μ
≤ 2.

Thus, ∂aψ is uniformly positive definite. Due to Theorem 2.1, the derivative
∂gΨ(g, η;μ) of the Nemyckii operator Ψ is bounded by (3.2) and has an inverse that
is bounded by (3.3).

As for the Lipschitz continuity, we estimate

|∂2
aψ| =

∣∣∣∣∣∣∣
√
a2 + b2 + 2μ− a2√

a2+b2+2μ

a2 + b2 + 2μ

∣∣∣∣∣∣∣ ≤
1 − a2

a2+b2+2μ√
a2 + b2 + 2μ

≤ 1√
2μ

and

|∂abψ| =

∣∣∣∣ ab

(a2 + b2 + 2μ)3/2

∣∣∣∣ ≤ |ab|
(2|ab| + 2μ)3/2

≤ 2

3
√

6μ

such that ‖ψ′′‖ ≤ μ−1/2. This Lipschitz constant for ∂aψ is inherited by ∂gΨ. Because
of symmetry, the same holds for ∂ηΨ, which commutes with ∂gΨ.

Theorem 3.2. The complementarity formulation (2.10) is a continuously differ-
entiable mapping from V × R+ to Z. Moreover, for any bounded set D ⊂ V there is
a constant c(D) such that the derivative ∂vF satisfies the Lipschitz condition

‖∂vF (v + δv;μ) − ∂vF (v;μ)‖V→Z ≤ c(1 + μ−1/2) ‖δv‖V(3.5)

on D.
Proof. The image spaces and differentiability of the second to fourth component

of F have already been established in section 2 and Lemma 3.1. Only the adjoint
expression

J ′(x) − c′(x)∗λc − r′(x)∗λr − g′(x)∗η
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remains to be discussed. We consider the terms separately.
First we write J(x) = 〈1, f̃(x)〉 with f̃ ′(x) ∈ L(Lnu

1 × (W 1
1 )ny , L1) due to Theo-

rem 2.1 and thus obtain

J ′(x) = f̃ ′(x)∗1 ∈
(
Lnu

1 × (W 1
1 )ny

)∗
.(3.6)

With δ0 denoting the point evaluation of the y component at t = 0, we have

c′(x) =

[
c̄′(x) − ∂t

δ0

]
∈ L

(
Lnu

1 × (W 1
1 )ny → L

ny

1 × R
nr
)

again by Theorem 2.1 such that

c′(x)∗λc ∈
(
Lnu

1 × (W 1
1 )ny

)∗
.(3.7)

Similarly, we obtain

r′(x)∗λr ∈
(
Lnu

1 × (W 1
1 )ny

)∗
and g′(x)∗η ∈

(
Lnu

1 × (W 1
1 )ny

)∗
.(3.8)

Collecting (3.6)–(3.8), F (v;μ) ∈ Z is verified. Continuous differentiability is inherited
from J , c, g, and ψ.

As for the Lipschitz continuity of the derivative, we have to estimate the differ-
ences of

∂vF (v;μ) =

⎡
⎢⎢⎣

∂2
xL(v) −c′(x)∗ −r′(x)∗ −g′(x)∗

−c′(x)
−r′(x)

∂gΨ(g(x), η;μ)g′(x) ∂ηΨ(g(x), η;μ)

⎤
⎥⎥⎦

for arguments v1 and v2. We cover the blocks separately. First we see that

c′(x1) − c′(x2) = c̃′(x1) − c̃′(x2).

Since x1 and x2 are bounded in terms of D, the derivative of the Nemyckii operator
c̃ inherits the Lipschitz constant κc(D) of c̃′ due to (2.6) of Theorem 2.1 with p = ∞.
Thus, we conclude

‖c′(x1) − c′(x2)‖X→L
ny
∞ ×R

ny ≤ κc(D)‖x1 − x2‖X .

Analogously, we obtain

‖g′(x1) − g′(x2)‖X→L
nη
∞

≤ κg(D)‖x1 − x2‖X .

Concerning the dual operators c′(x)∗ and g′(x)∗, we apply Theorem 2.1 with p = 1
in (2.6) and obtain

‖c′(x1)
∗ − c′(x2)

∗‖Lny
∞ ×R

ny→Lnu∞ ×((W 1
1 )ny )∗ ≤ κc(D)‖x1 − x2‖X

and

‖g′(x1)
∗ − g′(x2)

∗‖Lnη
∞ →Lnu∞ ×((W 1

1 )ny )∗ ≤ κg(D)‖x1 − x2‖X .

Similar estimates for r′(x) and r′(x)∗ are straightforward. As for ∂2
xL(v), we estimate

‖J ′′(x1) − J ′′(x2)‖X→Lnu∞ ×((W 1
1 )ny )∗ ≤ κf (D)‖x1 − x2‖X ,

‖c′′(x1)
∗ − c′′(x2)

∗‖X×L
ny
∞ ×R

ny→Lnu∞ ×((W 1
1 )ny )∗ ≤ κc(D)‖x1 − x2‖X ,

‖g′′(x1)
∗ − g′′(x2)

∗‖X×L
nη
∞ →Lnu∞ ×((W 1

1 )ny )∗ ≤ κg(D)‖x1 − x2‖X
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as before. In view of

c′′(x1)
∗λc1 − c′′(x2)

∗λc2 = c′′(x1)
∗(λc1 − λc2) + (c′′(x1)

∗ − c′′(x2)
∗)λc2

and the boundedness of c′′(x1)
∗ due to (2.5) of Theorem 2.1, we derive a constant

κ(D) for

‖c′′(x1)
∗λc1 − c′′(x2)

∗λc2‖X→Lnu∞ ×((W 1
1 )ny )∗ ≤ κ̄c(D)‖v1 − v2‖X .

Treating r′′(x)∗λr and g′′(x)∗η similarly, we obtain the desired estimate

‖∂2
xL(v1) − ∂2

xL(v2)‖X→Lnu∞ ×((W 1
1 )ny )∗ ≤ κL(D)‖v1 − v2‖X .

Up to now, the Lipschitz constants have been completely independent of μ. For the
blocks ∂gΨ(v)g′(x) and ∂ηΨ(v) we obtain a Lipschitz constant of κΨ ≤ const(1 +
μ−1/2). Combining the Lipschitz constants of the individual blocks finally veri-
fies (3.5).

In order to prove the existence of the central path via an implicit function theorem,
we first have to establish bounds on the inverse of ∂vF .

Theorem 3.3. Suppose there exist an open bounded set D ⊂ V and constants
β > 0 and α > 0 such that the following conditions hold uniformly for all v ∈ D and
μ > 0:

1. The state equation satisfies the following inf-sup condition:

inf
ξ∈Rnr

sup
δu∈Lnu

2

ξT∂yr(x)∂yc(x)−1∂uc(x)δu

|ξ| ‖δu‖Lnu
2

≥ β.

(The linearized state equation is controllable.)
2. A strengthened Legendre–Clebsch-type condition holds:

ξTMu(t)ξ ≥ α|ξ|2

for all ξ ∈ R
nu and almost all t ∈ Ω. Here,

Mu(t) := ∂2
uf̃(x(t)) − ∂2

uc̃(x(t))Tλc(t) − (g̃u)′′(u(t))T ηu(t)

+ (g̃u)′(u(t))T∂ηψ(g̃u(u(t)), ηu(t);μ)−1∂gψ(g̃u(u(t)), ηu(t);μ)(g̃u)′(u(t)).

3. The augmented second derivative of the Lagrangian is uniformly positive def-
inite on the nullspace of the state equation:

〈ξ, (∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1∂gΨ(g(x), η)g′(x))ξ〉 ≥ α‖ξ‖2

Lnu
2 ×(W 1

2 )ny

for all ξ ∈ ker c′(x).
Then ∂vF (v;μ) has an inverse which is bounded by∥∥∂vF (v;μ)−1

∥∥
Z→V

≤ const(1 + μ−3)(3.9)

uniformly for v ∈ D.
Proof. We show that there is a unique solution of ∂vF (v;μ)Δv = z with ‖Δv‖V ≤

const(1 + μ−3) ‖z‖Z .
In order to simplify the notation, let C = −c′(x), Cu = −∂uc(x), Cy = −∂yc(x),

and analogously G,Gu, Gy, R, and Ry. Define Ψη = ∂ηΨ(g(x), η), Ψg = ∂gΨ(g(x), η),
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Ψu
η = ∂ηuΨu(gu(u), ηu), Ψu

g = ∂guΨu(gu(u), ηu), and analogously Ψy
η and Ψy

g . More-
over, let Mu = ∂2

uL(v) + G∗
u(Ψu

η)−1Ψu
gGu, and analogously My. Finally, let Muy =

∂uyL(v) and Myu = ∂yuL(v).
The state derivative Cy represents the linearization of the initial value prob-

lem (2.2) and has a bounded solution for any right-hand side. Thus, Cy has a bounded
inverse. More precisely, for any p ≥ 1,

C−1
y : Lny

p → (W 1
p )ny is bounded uniformly for v ∈ D.(3.10)

Therefore, we can define the solution operator S = C−1
y Cu.

In the following, we will refrain from writing the number of components of the
function spaces, which should be clear from context.

In a first step, we reduce the system

∂vF (v;μ)(Δx,Δλc,Δλr,Δη)T = [za, zc, zr, zp]
T

to a simple saddle point problem. Elimination of the inequality constraints’ multipliers
Δη = Ψ−1

η (zp − ΨgGΔx) by Lemma 3.1 yields the equivalent system⎡
⎢⎢⎣
Mu Muy C∗

u

Myu My C∗
y R∗

y

Cu Cy

Ry

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Δu
Δy
Δλc

Δλr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
z̄ua
z̄ya
zc
zr

⎤
⎥⎥⎦ ,

where (z̄ua , z̄
y
a)T = z̄a = za − G∗Ψ−1

η zp. Then, Δy = C−1
y zc − SΔu and Δλc =

C−∗
y (z̄ya −MyC

−1
y zc − (Myu −MyS)Δu−R∗

yΔλr) can be eliminated, which yields[
Mu + S∗MyS − (MuyS + S∗Myu) −S∗R∗

y

−RyS

] [
Δu
Δλr

]
=

[
ẑua
ẑr

]
.(3.11)

Here we set ẑua = z̄ua −MuyC
−1
y zc − S∗(z̄ya −MyC

−1
y zc) and ẑr = zr −RyC

−1
y zc.

In the second step, we establish the existence of a bounded solution of (3.11), first
in Lnu

2 ×R
nr and then in Lnu

∞ ×R
nr . Due to Theorem 2.1 and the observation (3.10),

Mu, S∗MyS, MuyS, and S∗Myu can all be continuously extended to L2. Then,
Mu+S∗MyS−(MuyS+S∗Myu) : Lnu

2 → Lnu
2 is positive definite due to assumption 3.

Moreover, RyS satisfies the inf-sup-condition of assumption 1. Therefore, Brezzi’s
splitting theorem [10, 8] guarantees the existence of a solution (Δu,Δλr) ∈ Lnu

2 ×R
nr

of (3.11) with

‖Δu‖L2 ≤ const
(
‖ẑua‖L2 + κ|ẑr|

)
and(3.12)

|Δλr| ≤ const
(
κ‖ẑua‖L2 + κ2|ẑr|

)
,

where

κ = 1 + ‖Mu + S∗MyS − (MuyS + S∗Myu)‖L2→L2 ,

and the constants depend on α and β. Using Lemma 3.1 and, again, the exten-
sion of Nemyckii operators to L2 provided by Theorem 2.1, we obtain the following
dependencies on μ:

‖Mu‖L2→L2
= ‖∂2

uL‖L2→L2
+ ‖G∗

u

(
Ψu

η

)−1
Ψu

gGu‖L2→L2

≤ const +‖G∗
u‖L2→L2‖

(
Ψu

η

)−1
Ψu

g‖L2→L2‖Gu‖L2→L2

≤ const(1 + ‖
((

Ψu
η

)−1
Ψu

g‖L2→L2

)
≤ const(1 + μ−1),
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‖My‖W 1
2 →(W 1

2 )∗ = ‖∂2
yL‖W 1

2 →(W 1
2 )∗ + ‖G∗

y

(
Ψy

η

)−1
Ψy

gGy‖W 1
2 →(W 1

2 )∗

≤ const +‖G∗
y‖L2→(W 1

2 )∗‖Ψ
(y
η

)−1
Ψy

g‖L2→L2‖Gy‖W 1
2 →L2

≤ const
(
1 + ‖

(
Ψy

η

)−1
Ψy

g‖L2→L2

)
≤ const(1 + μ−1),(3.13)

κ ≤ 1 + ‖Mu‖L2→L2
+ const ‖My‖W 1

2 →(W 1
2 )∗ + const

≤ const(1 + μ−1).

As for Δu and Δλr, we first observe

‖z̄ua‖L2 ≤ ‖za‖L2 + ‖G∗
u

(
Ψu

η

)−1
zup ‖L2 ≤ const(1 + μ−1)‖z‖Z ,

‖S∗MyC
−1
y zc‖L2 ≤ ‖S∗‖(W 1

2 )∗→L2
‖My‖W 1

2 →(W 1
2 )∗‖C−1

y zc‖W 1
2

≤ const(1 + μ−1)‖zc‖L2 ≤ const(1 + μ−1)‖z‖Z ,

and hence

‖ẑua‖L2 ≤ const(1 + μ−1)‖z‖Z .(3.14)

From this we conclude that

‖Δu‖L2
≤ const(1 + μ−1)‖z‖Z and |Δλr| ≤ const(1 + μ−2).

Moreover, |ẑr| ≤ const ‖z‖Z is evident from (3.10). Observing that S : Lnu
2 → (W 1

2 )ny

and S∗ : (W 1
1 )ny∗ → Lnu

∞ due to (3.10), and additionally R∗
y : R

nr → (W 1
1 )ny∗, we

infer

(S∗MyS −MuyS − S∗Myu) : Lnu
2 → Lnu

∞ and S∗R∗
y : R

nr → Lnu
∞

such that (3.11) implies

MuΔu = ẑua − (S∗MyS −MuyS − S∗Myu)Δu + S∗R∗
yΔλr ∈ Lnu

∞ .

Using assumption 2, the desired regularity Δu ∈ Lnu
∞ is readily established

‖Δu‖L∞ ≤ const ‖ẑua − (S∗MyS −MuyS − S∗Myu)Δu + S∗R∗
yΔλr‖L∞ .(3.15)

In order to estimate the right-hand side of (3.15), we first note that since ẏ appears
linearly in c, My is a Nemyckii operator. We thus infer

‖My‖L∞→L∞ ≤ ‖∂2
yL‖L∞→L∞ + ‖G∗

y‖L∞→L∞‖(Ψy
η)

−1Ψy
g‖L∞→L∞‖Gy‖L∞→L∞

≤ const(1 + μ−1),

where we used Theorem 2.1 to obtain Gy ∈ L(L1, L1), which implies G∗
y ∈ L(L∞, L∞).

Then we derive upper bounds for the individual terms in (3.15) as follows:

‖S∗MyS −MuyS − S∗Myu‖L2→L∞‖Δu‖L2

≤ ‖S∗‖L∞→L∞‖My‖L∞→L∞‖S‖L2→L∞ const(1 + μ−1)‖z‖Z
≤ const(1 + μ−2)‖z‖Z ,

‖S∗R∗
y‖Rnr→L∞ |Δλr| ≤ const(1 + μ−2)‖z‖,
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and ‖ẑua‖L∞ ≤ const(1 + μ−1) analogously to (3.14). Thus, we conclude

‖Δu‖L∞ ≤ const(1 + μ−2)‖z‖Z .(3.16)

In the final step of the proof, we will now trace back the elimination chain from
the beginning. First we get

‖Δλc‖Rnr×L∞ = ‖C−∗
y

(
z̄ya −MyC

−1
y zc − (Myu −MyS)Δu−R∗

yΔλr

)
‖Rnr×L∞

(3.17)

≤ const ‖z̄ya −MyC
−1
y zc − (Myu −MyS)Δu−R∗

yΔλr‖(W 1
1 )∗

≤ const
(
‖z̄ya‖(W 1

1 )∗ + ‖My‖L∞→L∞‖C−1
y zc‖W 1

1

+ ‖Myu −MyS‖L∞→L∞‖Δu‖L∞

+ ‖R∗
y‖Rnr→(W 1

1 )∗ |Δλr|
)

≤ const
(
‖zya −G∗

y(Ψ
y
η)

−1
(
zyp − Ψy

wz
y
s

)
‖(W 1

1 )∗ + (1 + μ−1)‖z‖Z

+ (1 + μ−1)‖Δu‖L∞ + |Δλr|
)

≤ const
(
‖z‖Z + ‖G∗

y‖L∞→(W 1
1 )∗‖

(
Ψy

η

)−1‖L∞→L∞‖zyp − Ψy
wz

y
s‖L∞

+ (1 + μ−3)‖z‖Z
)

≤ const(1 + μ−3)‖z‖Z .

The state Δy is bounded by

‖Δy‖W 1
∞

≤ ‖C−1
y zc‖W 1

∞
+ ‖S‖L∞→W 1

∞
‖Δu‖L∞ ≤ const(1 + μ−2)‖z‖Z .(3.18)

Finally, we obtain for the Lagrange multiplier Δη the estimate

‖Δη‖L∞ ≤ ‖Ψ−1
η ‖L∞→L∞

(
‖zp‖L∞ + ‖ΨgGΔx‖L∞

)
(3.19)

≤ const(1 + μ−3)‖z‖Z .

Collecting (3.12) and (3.16)–(3.19) we obtain the claim (3.9).
Now we are ready to prove that the central path exists locally, and that it can be

continued up to μ = 0 unless it leaves its bounded set of definition.
Corollary 3.4. Suppose the assumptions of Theorem 3.3 are satisfied. If there

are v0 ∈ D and μ0 > 0 with F (v0;μ0) = 0, then there exists a maximal open interval
Iμ ⊂ R+ around μ0 and a continuously differentiable central path v : Iμ → D with the
following properties:

1. v(μ0) = v0.
2. F (v(μ);μ) = 0 for all μ ∈ Iμ.
3. Either dist(v(Iμ), ∂D) = 0 or inf Iμ = 0 holds.

Proof. Due to Theorems 3.2 and 3.3 there is an open neighborhood of (v0, μ0)
on which F and ∂vF are continuous and ∂vF is bijective. The implicit function the-
orem (cf. [41, Thm. 4.B]) guarantees the existence of a continuously differentiable
central path v(μ) with F (v(μ), μ) = 0 on an open interval around μ0. A closer in-
spection of the proof of the implicit function theorem and using the bounds derived in
Theorems 3.2 and 3.3 shows that there is a constant ε = ε(dist(v0, D)) independent
of μ such that v(μ) exists on the open interval ]μ0 − εμ−4, μ0 + εμ−4[.
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Let Iμ ⊂ R+ be a maximal open interval around μ0, such that property 2 holds.
Now assume that property 3 does not hold, i.e., dist(v(Iμ), ∂D) ≥ ε > 0 and δ =
inf Iμ > 0. We consider μ = δ + εδ−4/2 with ε = ε(ε). Again, due to the implicit
function theorem, there is an open interval Jμ = ]μ−εμ−4, μ+εμ−4[ such that property
2 holds on Jμ and hence on Jμ ∪ Iμ. Since μ− εμ−4 < δ, this consequence contradicts
the maximality of Iμ, and property 3 must be true.

3.2. Convergence. Corollary 3.4 does not guarantee the existence of the cen-
tral path for all μ > 0, since the path may reach the boundary of D for some
μlim > 0. Moreover, the upper bound for ‖∂vF (v;μ)−1‖ which has been established in
Theorem 3.3 is useless for proving convergence of the path towards a Kuhn–Tucker
limit point. The two reasons are the possible occurrence of Dirac parts in the state
constraints’ multipliers at the beginning or end of constrained arcs, and the naive
block elimination of the multipliers Δη in the proof of Corollary 3.4.

Under more restrictive assumptions, in particular, the restriction to purely control
constrained problems, a splitting into nearly active and nearly inactive constraints
can be used to show both boundedness of the central path and independence of
‖∂vF (v;μ)−1‖ with respect to μ.

Definition 3.5. For some ρ > 0 and functions u ∈ Lnu
∞ and η ∈ L

nu
η

∞ (Ω), de-
fine the characteristic function χA = χA(t;u, η, μ) of the nearly active set vector ΩA

componentwise as

χA
i (t) =

{
1, g̃ui (ui(t)) ≤ ρηui (t),

0 otherwise.

The corresponding characteristic function χI of the nearly inactive set vector ΩI is

defined as 1 − χA, where 1 ∈ L
nu
η

∞ is the constant function with value 1.
Note that pointwise multiplication with χA defines an orthogonal projector onto

the corresponding L∞ space over the nearly active set vector ΩA.
First we address the issue of the central path leaving a bounded domain of def-

inition. Assuming a suitable constraint qualification for nearly active constraints of
points on the central path, we establish a priori bounds for the central path.

Theorem 3.6. Suppose ny
η = 0; i.e., there are no state constraints. Assume that

the following conditions are satisfied:
(i) The feasible region Du := {u ∈ Lnu

∞ : g(u) ≥ 0} is bounded.
(ii) The state contribution function in the state equation is linearly bounded:

|c̃(u, y)| ≤ const(1 + |y|) for all y ∈ R
ny and u ∈ Du.

Then there is a bounded set Dy ⊂ (W 1
∞)ny such that for all μ > 0 every solution v of

F (v;μ) = 0 satisfies u ∈ Du and y ∈ Dy.
If, in addition, there is a constant β > 0 such that the equality constraints and

nearly active control constraints satisfy the inf-sup condition

inf
h∈Rnr ,ξ∈L

nu
η

∞

sup
δu∈Lnu

1

hT∂yr(x)∂yc(x)−1∂uc(x)δu + 〈χAξ, g′(u)δu〉
(|h| + ‖χAξ‖

L
nu
η

∞
) ‖δu‖Lnu

1

≥ β(3.20)

uniformly for central path solutions v with x ∈ Du ×Dy, then there is a bounded set
D0 ⊂ V such that v ∈ D0.

Proof. Suppose v = (u, y, λc, λr, η) is a central path solution of F (v;μ) = 0 for
some μ > 0. Since Ψ(g(u), η) = 0 implies g(u) ≥ 0, we have u ∈ Du by assumption (i).
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Assumption (ii) then guarantees the existence of a constant γy < ∞ such that y ∈
S(0, γy) =: Dy.

Now consider the state part of the adjoint equation

∂yJ(x) − ∂yc(x)∗λc − ∂yr(y)
∗λr = 0.

Due to the formulation of c as initial value problem, the inverse of ∂yc(x) : (W 1
1 ) →

L1 × R
ny is uniformly bounded on Du ×Dy. Thus, we can conclude that

‖λc‖L∞×R
ny ≤ ‖∂yc(x)−∗‖(W 1

∞)∗→L∞×R
ny ‖∂yJ(x) − ∂yr(y)

∗λr‖(W 1
∞)∗

≤ const ‖∂yJ(x) − ∂yr(y)
∗λr‖(W 1

∞)∗ .

Since ∂y f̃(x) is uniformly bounded in L
ny
∞ for x ∈ Du×Dy, so is ‖∂yJ(x)‖(W 1

∞)∗ , and
we obtain

‖λc‖L∞×R
ny ≤ const(1 + |λr|).(3.21)

Inserting λc = ∂yc(x)−∗(∂yJ(x) − ∂yr(y)
∗λr) into the control part of the adjoint

equation

∂uJ(x) − ∂uc(x)∗λc − g′(u)∗η = 0,

and splitting the Lagrange multiplier η into nearly active and nearly inactive parts
yields

∂uJ(x) − ∂uc(x)∗∂yc(x)−∗∂yJ(x) − g′(u)∗χIη

= (∂yr(y)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη.

Then the inf-sup condition of assumption (3.20) provides the estimate

β(|λr| + ‖χAη‖L∞) ≤ sup
u∈L1

〈(∂yr(x)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη, u〉
‖u‖L1

≤ ‖(∂yr(x)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη‖L∞

= ‖∂uJ(x) − ∂uc(x)∗∂yc(x)−∗∂yJ(x) + g′(u)χIη‖L∞ .

Note that ‖χIη‖L∞ is bounded by ρ−1‖g(u)‖L∞ and ‖∂yc(x)−∗∂yJ(x)‖L∞×R
ny is

bounded as shown earlier. Similarly, ‖∂uJ(x)‖L∞ is bounded. ‖g′(u)‖L∞→L∞ and
‖∂uc(x)‖L1→L1×R

ny are bounded by Theorem 2.1. Thus, we conclude that

|λr| + ‖χAη‖L∞ ≤ constβ−1.

Combining this with x ∈ Du ×Dy verifies the boundedness of v.
The splitting of the domain into nearly active and inactive regions leads also

to improved estimates for the dependency of the complementarity function on the
homotopy parameter μ.

The reason for the dependence of ‖∂vF (v;μ)−1‖ on μ in Theorem 3.3 is the in-
crease of ‖∂ηΨ−1‖ as μ → 0. This can be overcome by more sophisticated elimination
of variables in the proof. As a preparation, we first prove a refinement of Lemma 3.1.

Lemma 3.7. The Fischer–Burmeister complementarity function satisfies the
following estimates:

‖χA∂gΨ(g(u), η)−1‖L∞→L∞ ≤
(

1 − ρ√
1 + ρ2

)−1

,(3.22)

‖χI∂ηΨ(g(u), η)−1‖L∞→L∞ ≤
(

1 − 1√
1 + ρ2

)−1

.(3.23)
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In particular, both bounds are independent of μ.
Proof. In the relevant inequality (3.4) we now assume that a ≤ ρb. This leads to

∂aψ(a, b;μ) ≥ 1 − 1√
1 + b2

a2 + 2μ
a2

≥ 1 − 1√
1 + 1

ρ2 + 2μ
a2

≥ 1 − 1√
1 + 1

ρ2

.

On the nearly active region, this assumption holds, such that due to the projection
onto the nearly active region the estimate transfers to χA∂gΨ(g(u), η)−1. Thus, (3.22)
is verified. By symmetry, (3.23) is verified using the complementary assumption a >
ρb.

Theorem 3.8. Assume ny
η = 0; i.e., only control constraints are present. Suppose

there exist a bounded set D ⊂ V and constants β > 0 and α > 0 such that the
following conditions hold uniformly for all central path solutions v = v(μ) ∈ D with
F (v(μ);μ) = 0 and μ > 0.

1. State equation and nearly inactive control constraints satisfy the inf-sup con-
dition

inf
h∈Rnr ,ξ∈L

nu
η

p

sup
δu∈Lnu

q

hT∂yr(x)∂yc(x)−1∂uc(x)δu + 〈χAξ, g′(u)δu〉
(|h| + ‖χAξ‖

L
nu
η

p

) ‖δu‖Lnu
q

≥ β

for both (p, q) = (∞, 1) and (p, q) = (2, 2).
2. The augmented second derivative of the Lagrangian

M = ∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1χI∂gΨ(g(x), η)g′(x)

is positive semidefinite on the nullspace of the linearized state equation:

〈ξ,Mξ〉 ≥ 0 for ξ ∈ ker c′(x),(3.24)

〈ξ,Mξ〉 ≥ α‖ξ‖2
Lnu

2 ×(W 1
2 )ny for ξ ∈ ker c′(x) ∩ kerχAg′(u).(3.25)

Then ∂vF (v;μ) has an inverse which is bounded uniformly for (v, μ) ∈ D × R+.
Before delving into the proof, let us briefly discuss the assumptions of Theo-

rem 3.8. Mostly, they have counterparts in well-known optimality conditions, but
they need to be extended a priori to a neighborhood of the central path in order to
be able to show convergence.

Assumption 1 is a direct generalization of the linear independence constraint qual-
ification (LICQ; see, e.g., [19, Def. 2.9]) from nonlinear programming to the infinite-
dimensional setting. It is also a reinterpretation of regular points (cf. [28, (2.1)]) in
the setting of interior points. It provides uniqueness of the Lagrange multipliers and
is therefore necessary for proving invertibility of ∂vF .

Convexity of the Lagrangian on the nullspace of the linearized state equation
is generally required for sufficient second order optimality conditions. In particular,
requirement (3.25) can be interpreted as an adaptation of the convexity condition
given by Maurer [28, Thm. 3.5], whereas (3.24) is only technically necessary for in-
voking a certain saddle point lemma in the proof. In the control constrained setting,
the Legendre–Clebsch condition that has been assumed explicitly in Theorem 3.3 is
implied by the earlier convexity assumption.

Lemma 3.9. Assumption 2 of Theorem 3.8 implies a strengthened Legendre–
Clebsch-type condition for almost all t ∈ Ω:

Mu(t) := ∂2
uf̃(x(t)) − ∂2

uc̃(x(t))Tλc(t) − g̃′′(u(t))T η(t)

+g̃′(u(t))T∂ηψ(g̃(u(t)), η(t);μ)−1χI∂gψ(g̃(u(t)), η(t);μ)g̃′(u(t))
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satisfies

ξTMu(t)ξ ≥ 0 for ξ ∈ R
nu ,(3.26)

ξTMu(t)ξ ≥ α|ξ|2 for ξ ∈ kerχA(t)g̃′(u(t)).(3.27)

Proof. Let ξ ∈ R
nu be arbitrary and define δu = ξχ[t−ε,t+ε] for arbitrary

t ∈ int(Ω) and sufficiently small ε > 0. Defining Myu, Muy, and S as in The-
orem 3.3, we introduce δy = Sδu such that (δu, δy) ∈ ker c′(x). From standard
ODE theory we know that ‖δy‖L∞ ≤ const ‖δu‖L1 ≤ const ε. Let Mu = ∂2

uL(v) +
g′(u)∗χIΨη(g(u), η)−1Ψg(g(u), η)g′(u), My = ∂2

yL(v), and

M =

[
Mu Muy

Myu My

]
.

Since My, Myu, and Muy are uniformly bounded Nemyckii operators, we have by (3.24)

〈δu,Muδu〉 = 〈(δu, δy),M(δu, δy)〉 − 〈δy,Myδy〉 − 〈δy,Muyδu〉 − 〈δu,Myuδy〉
≥ 0 − const ‖δy‖2

L∞ − 2 const ‖δy‖L∞‖δu‖L1

≥ − const ε2

for all t and ε > 0, and hence ξTMu(t)ξ ≥ 0 for all ξ and almost all t ∈ Ω, which
verifies (3.26). Restricting ξ to kerχA(t)g̃′(u(t)) and using (3.25) instead of (3.24)
finally proves (3.27).

Proof of Theorem 3.8. The structure and line of argument is similar to the
proof of Theorem 3.3. We, therefore, concentrate on the differences and exten-
sions. Define C,Cu, Cy, R,Ry,Muy,Myu, and S as before. Let G = −g′(u). Define
Ψg = ∂gΨ(g(u), η) and analogously Ψη. Finally, define Mu and My as in Lemma 3.9.

As before, the first step consists of eliminating the Lagrange multiplier, but here
only the nearly inactive part χIη = χIΨ−1

η (zp−ΨgGΔu). In order to symmetrize the
remaining system, the nearly active part of the complementarity equation is multiplied
by Ψ−1

g : ⎡
⎢⎢⎢⎢⎣
Mu Muy C∗

u G∗χA

Myu My C∗
y R∗

y

Cu Cy

Ry

χAG −χAΨ−1
g Ψη

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δu
Δy
Δλc

Δλr

χAΔη

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

z̄ua
zya
zc
zr

χAΨ−1
g zp

⎤
⎥⎥⎥⎥⎦

with z̄ua = zua −G∗χIΨ−1
η zp. Note that χA, Ψ−1

g , and Ψη commute. Continuing with
the elimination of Δy and λc as in the proof of Theorem 3.3, we end up with⎡

⎣ T −(RyS)∗ G∗χA

−RyS
χAG −χAΨ−1

g Ψη

⎤
⎦
⎡
⎣ Δu

Δλr

χAΔη

⎤
⎦ =

⎡
⎣ ẑua

ẑr
χAΨ−1

g zp

⎤
⎦ ,

where T = Mu+S∗MyS−(MuyS+S∗Myu), ẑua = z̄ua−MuyC
−1
y zc−S∗(z̄ya−MyC

−1
y zc),

and ẑr = zr −RyC
−1
y zc. Due to assumption 2, T is positive definite on the nullspace

of χAG and positive semidefinite on the whole space. Assumption 1 provides the
inf-sup condition for the combined operator[

−RyS
χAG

]
,
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and χAΨ−1
g Ψη is positive semidefinite. In this situation, the application of Brezzi’s

splitting theorem is substituted by a theorem of Braess and Blömer [9] on sad-
dle point problems with penalty term. This guarantees the existence of a solution
(Δu,Δλr, χ

AΔη) ∈ Lnu
2 × R

nr × L2(Ω
A) with

‖Δu‖L2 + |Δλr| + ‖ΔηA‖L2
≤ constκ(‖ẑua‖L2

+ |ẑr| + ‖χAΨ−1
g zp‖L2

),

where κ = ‖T‖+‖RyS‖+‖GA‖+‖χAΨ−1
g Ψη‖+α+β. Note that due to Lemma 3.7 the

operators χAΨ−1
g Ψη and χIΨ−1

η Ψg are bounded independently of μ. This property is

inherited by κ and ‖χAΨ−1
g zp‖, such that ‖Δu‖L2 , |Δλr|, and ‖χAΔη‖L2 are bounded

independently of μ.
Subsequently, the L∞-regularity of Δu and χAΔη is established. As in the proof

of Theorem 3.3, we have

(S∗MyS −MuyS − S∗Myu)Δu + S∗R∗
yΔλr ∈ Lnu

∞

such that for almost all t ∈ Ω the finite-dimensional linear equation system[
Mu(t) g̃′(u(t))TχA(t)

χA(t)g̃′(u(t)) −B

] [
Δu(t)

χAΔη(t)

]
=

[
a

χA(t)b

]
(3.28)

holds, with B = χA(t)∂gψ(g(u(t)), η(t))−1∂ηψ(g(u(t)), η(t)). Here, a and b denote
generic right-hand side vectors the norm of which is bounded by a constant inde-
pendent of μ. By Lemma 3.9, Mu(t) is positive definite on the nullspace of g̃′(u(t)),
such that we can again apply the lemma by Braess and Blömer, now for the finite-
dimensional equation (3.28). This yields

|Δu(t)| + |χAΔη(t)| ≤ const(‖Mu(t)‖ + ‖g̃′(u(t))‖ + ‖B‖ + α + β)(|a| + |b|)(3.29)

for almost all t ∈ Ω, and hence

‖Δu‖L∞ ≤ const,(3.30)

‖χAΔηA‖L∞ ≤ const(3.31)

independently of μ. Finally, tracing back the elimination stack as in Theorem 3.3
verifies the claim.

As in Corollary 3.4, local existence of the central path can be shown. Moreover,
the a priori bound of the solution given by Theorem 3.6 eliminates the possibility of
premature termination of the path. Finally, the fact that the inverse of ∂vF can be
bounded independently of μ limits the length of the path and thus ensures conver-
gence.

Theorem 3.10. Assume Theorem 3.6 holds, providing a bounded set D0 ⊂ V
containing the central path. Define D =

⋃
v∈D0

S(v, ε) for some ε > 0. Suppose the
assumptions of Theorem 3.8 hold on D.

If there are v0 ∈ D0 and μ0 > 0 with F (v0;μ0) = 0, then the central path v(μ)
exists for all 0 < μ ≤ μ0 and converges to a Kuhn–Tucker point v(0):

‖v(μ) − v(0)‖V ≤ const
√
μ.

Proof. First we notice that due to Theorem 3.2, there is some ε > 0 such that
∂vF (v;μ)−1 is uniformly bounded on the neighborhood

U =
⋃

(v;μ) with F (v;μ)=0

S((v, μ), ε)
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of the central path solutions v(μ). As in the proof of Theorem 3.4, the central path
exists on a maximal interval Iμ containing μ0. Since due to Theorem 3.6 this central
path is bounded away from ∂D, we have inf Iμ = 0. Thus, the central path exists for
all 0 < μ ≤ μ0.

Next we estimate ∂μF (v(μ);μ). Since only the complementarity function Ψ de-
pends on μ, this is given by ∂μΨ(g(u), η;μ) = −(g(u)2 +η2 +2μ)−1/2. On the central
path, we have g(u) · η = μ a.e. and thus

‖∂μΨ(g(u), η;μ)‖L∞ ≤ (4μ)−1/2.

Now the derivative of the central path is given by

v′(μ) = ∂vF (v(μ);μ)−1∂μF (v(μ);μ).

Theorem 3.8 yields

‖v′(μ)‖V ≤ ‖∂vF (v(μ);μ)−1‖Z→V ‖∂μF (v(μ);μ)‖Z ≤ constμ−1/2.(3.32)

Therefore, the central path is uniformly continuous and converges to some limit point
v(0) ∈ D at a rate of

‖v(μ) − v(0)‖V ≤
∫ μ

0

‖v′(s)‖V ds ≤ const

∫ μ

0

s−1/2 ds = const
√
μ.

The continuity of F on D× [0,∞[ implies that F (v(0); 0) = 0, such that v(0) satisfies
the first order necessary conditions (2.8).

In the remainder of the section, we will apply the preceding theorems to a class
of prototypical optimal control problems. We consider

min

∫ 1

0

(
f̃y(y(t)) +

α

2
|u(t)|2

)
dt

subject to ẏ(t) = Ay(t) + Bu(t),

y(0) = y0,

a ≤ u(t) ≤ b.

Theorem 3.11. Suppose that f̃y is convex and twice Lipschitz-continuously dif-
ferentiable, α > 0, a < b, A ∈ R

ny×ny , and B ∈ R
ny×nu . Assume there are v0 and

μ0 > 0 such that F (v0;μ0) = 0. Then the central path v(μ) converges to a Kuhn–
Tucker point v(0) ∈ D at a rate of

‖v(μ) − v(0)‖ ≤ const
√
μ.

Proof. We restrict the discussion to a scalar control, i.e., nu = 1. The extension
to vector valued controls is straightforward but notationally more involved. We start
with Theorem 3.6, choosing

ρ <
1

μ0

(
b− a

2

)2

(3.33)

for separating nearly active and nearly inactive constraints. Due to the box constraints
and the linearity of the state equation, conditions (i) and (ii) are satisfied. Since no
terminal boundary conditions are given, the inf-sup condition (3.20) simplifies to

inf
ξ∈L2

p

sup
δu∈L1

q

〈χAξ, g′(u)δu〉
‖χAξ‖L2

p
‖δu‖L1

q

≥ β with g′(u) =

(
I
−I

)
.
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Assume that for a central path solution (v, μ) with μ ≤ μ0, the lower constraint
u ≥ a is nearly active at t, i.e., ρηa(t) ≥ u(t) − a. For simplicity, we will omit the
argument t in the following. Together with (3.33) and the interior point condition
ηa(u− a) = μ = ηb(b− u) holding for all central path solutions, this implies

b− u = b− a− (u− a) ≥ b− a−
√
ρηa(u− a) = b− a−√

ρμ

≥ b− a− b− a

2
=

b− a

2
>

√
ρμ =

√
ρηb(b− u).

Squaring and dividing by b−u finally yields b−u > ρηb, which implies that the upper
constraint u ≤ b is nearly inactive whenever the lower constraint is nearly active.
Analogously, the converse can be shown, such that at most one of the two constraints
is active. Since in χAξ at least one component vanishes, we see that

inf
ξ∈L2

p

sup
δu∈L1

q

〈χAξ, g′(u)δu〉
‖χAξ‖L2

p
‖δu‖L1

q

≥ inf
ξ∈L1

p

sup
δu∈L1

q

〈ξ, δu〉
‖ξ‖L1

p
‖δu‖L1

q

≥ 1(3.34)

for both (p, q) = (∞, 1) and (p, q) = (2, 2), which confirms the inf-sup condition.
Now we verify the assumptions of Theorem 3.8 on the whole space D = V . As-

sumption 1 is again the inf-sup condition (3.34). The Legendre–Clebsch condition 2
is satisfied due to α > 0 and the linearity of the constraints, as is the positive defi-
niteness condition 3 for ∂2

xL(v). Since Theorem 3.8 thus holds on V , we can apply
Theorem 3.10, which yields the claim.

Remark 3.12. The main conditions to verify are the inf-sup constraint qualifi-
cation and the convexity. While the latter has been explicitly assumed, the former
is a direct consequence of the box constraints. More complex optimization problems
require more work to verify the assumptions of Theorem 3.10. Nonlinearity of the
state equation needs to be compensated by convexity and an a priori bound on λ as
given by Theorem 3.6 in order to obtain convexity of the Lagrangian with respect to
x. The inf-sup constraint qualification can be shown for more general constraints, e.g.,
pointwise convex polyhedric admissible sets for the control. It needs to be verified
that at most nu constraints are nearly active.

Numerical results for a specific problem of this class are given in [39].

4. A short-step path-following method. With the refined estimates from
section 3.2, we can show linear convergence of a short-step path-following method.
Note that this is a purely theoretical algorithm, since it relies on the exact solution of
operator equations in function space and on knowledge of global Lipschitz constants.
For an implementable approximation via inexact Newton corrector and inexact tan-
gential predictor, we refer to [39].

We consider the following simple algorithm.
Algorithm 4.1.

1 initialize v0, μ0 such that F (v0;μ0) = 0
2 choose σ < 1 sufficiently large
3 while μk > 0
4 advance μk+1 ← σμk

5 compute one corrector step ∂vF (vk;μk+1)δvk = −∂μF (vk;μk+1)
6 advance vk+1 ← vk + δvk, k ← k + 1
The sequence vk of iterates converges to the Kuhn–Tucker point v(0).
First, we recall the essentials of an affine covariant Newton–Mysovskikh theorem

from [16].
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Theorem 4.2. Assume F : X → Y is a differentiable mapping with F (x∗) = 0.
Assume the derivative F ′(x) is invertible on D = S(x∗, δ) and satisfies

‖F ′(x)−1(F ′(y) − F ′(x))‖ ≤ ω‖y − x‖(4.1)

for x, y ∈ D. Let the ordinary Newton sequence xk starting at x0 ∈ D be defined by
xk+1 = xk − F ′(xk)−1F (xk). Then xk converges to x∗ at a rate of

‖xk+1 − x∗‖ ≤ ω

2
‖xk − x∗‖2.

Theorem 4.3. Suppose that F satisfies the assumptions of Theorem 3.10, pro-
viding a bounded set D. Let v0 ∈ D and μ0 > 0 be given such that F (v0;μ0) = 0.
Then there is a constant σ < 1 such that the sequence vk of iterates generated by
Algorithm 4.1 converges linearly to the limit point v(0) of the central path.

Proof. To begin with, we verify the assumptions of Theorem 4.2. By Theo-
rems 3.2 and 3.8 there are constants γ1 and γ2 independent of μ ≤ μ0, such that
‖∂vF (v;μ) − ∂vF (v(μ);μ)‖V→Z ≤ γ1μ

−1/2 and ‖∂vF (v(μ);μ)−1‖Z→V ≤ γ2. Omit-
ting the argument μ from F , we use the Banach perturbation lemma to derive

‖∂vF (v)−1‖Z→V

≤ ‖∂vF (v(μ))−1‖Z→V ‖(I − (∂vF (v(μ)) − ∂vF (v))∂vF (v(μ))−1)−1‖Z→Z

≤ γ2

1 − γ1μ−1/2‖v − v(μ)‖V γ2
≤ 2γ2

for v ∈ D = S
(
v(μ),

√
μ/(2γ2γ1)

)
. For v1, v2 ∈ D we thus obtain

‖∂vF (v1)
−1(∂vF (v2) − ∂vF (v2))‖V→V

≤ ‖∂vF (v1)
−1‖Z→V ‖(∂vF (v2) − ∂vF (v1))‖V→Z

≤ 2γ2γ1μ
−1/2‖v2 − v1‖V ,

which establishes the Lipschitz condition (4.1) with

ω(μ) ≤ 2γ2γ1√
μ

.

As in (3.32) in the proof of Theorem 3.10, we obtain a bound on the derivative of the
central path in the form of

‖v′(μ)‖V ≤ β
√
μ

with β < ∞ independent of μ. Define

δ = (2γ2γ1)
−1 and σ ≥

(
1 − δ

2(δ + β)

)2

.(4.2)

Let us assume by induction that ‖vk − v(μk)‖V ≤ δ
√
μk/2. Then we have

‖vk − v(σμk)‖V ≤ ‖vk − v(μk)‖V + (1 − σ)μk sup
μ∈[σμk,μk]

‖v′(μ)‖V

≤
δ
√
μk

2
+ (1 − σ)μkβ(σμk)

−1/2

=
√
μk

(
δ

2
+

β√
σ

+ β
√
σ

)
.
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With σ given by (4.2), some tedious calculation verifies

δ

2
+

β√
σ

+ β
√
σ ≤ δ

√
σ

and hence

‖vk − v(σμk)‖V ≤ δ
√
μkσ.

Now the corrector step, which is a Newton step for the problem F (v;σμk) = 0, leads
to

‖vk+1 − v(μk+1)‖V ≤ ω(μ)

2
‖vk − v(μk+1)‖2

V ≤ ω(μ)

2
δ2μk+1

≤ δ

2

√
μk+1,

which completes the induction. As for the convergence of the iterates, we observe
that by Theorem 3.10

‖vk − v(0)‖V ≤ ‖vk − v(μk)‖V + ‖v(μk) − v(0)‖V

≤ δ

2

√
μk + const

√
μk

≤ constσk/2√μ0,

which proves linear convergence of vk → v(0).

Acknowledgment. The author gratefully acknowledges careful reading of the
manuscript by A. Schiela.

REFERENCES

[1] W. Alt and K. Malanowski, The Lagrange–Newton method for state constrained optimal
control problems, Comput. Optim. Appl., 4 (1995), pp. 217–239.

[2] U. Ascher, J. Christiansen, and R. Russell, Collocation software for boundary-value ODEs,
ACM Trans. Math. Software, 7 (1981), pp. 209–222.

[3] U. Ascher, R. Mattheij, and R. Russell, Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[4] G. Bader and U. Ascher, A new basis implementation for a mixed order boundary value
ODE solver, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 483–500.

[5] M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch, A comparison of a
Moreau–Yosida-based active set strategy and interior point methods for constrained optimal
control problems, SIAM J. Optim., 11 (2000), pp. 495–521.

[6] H. Bock, Numerische Behandlung von zustandsbeschränkten und Chebychef-Steuerungs-
Problemen, Technical report, Carl-Cranz-Gesellschaft, Oberpfaffenhofen, 1981.

[7] H. Bock and K.-J. Plitt, A multiple shooting algorithm for direct solution of optimal control
problems, in Proceedings of the 9th IFAC World Congress, Budapest, Pergamon Press,
Elmsford, NY, 1984.

[8] D. Braess, Finite Elements, 2nd ed., Cambridge University Press, Cambridge, UK, 2001.
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[22] M. Heinkenschloss and M. Tröltzsch, Analysis of the Lagrange–SQP–Newton method for
the control of a phase field equation, Control Cybernet., 28 (1999), pp. 177–211.

[23] M. Hintermüller and M. Hinze, A SQP-Semi-Smooth Newton-Type Algorithm Applied to
Control of the Instationary Navier–Stokes System Subject to Control Constraints, Tech-
nical report TR 03-11, Department of Computational and Applied Mathematics, Rice
University, Houston, TX, 2003.

[24] S. Ito, C. Kelley, and E. Sachs, Inexact primal-dual interior point iteration for linear
programs in function spaces, Comput. Optim. Appl., 4 (1995), pp. 189–201.

[25] C. Kanzow, Some noninterior continuation methods for linear complementarity problems,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 851–868.

[26] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces, J.
Optim. Theory Appl., 20 (1976), pp. 81–110.

[27] K. Machielsen, Numerical Solution of Optimal Control Problems with State Constraints
by Sequential Quadratic Programming in Function Space, CWI Tract 53, Centrum voor
Wiskunde en Informatica, Amsterdam, 1988.

[28] H. Maurer, First and second order sufficient optimality conditions in mathematical program-
ming and optimal control, Math. Program. Study, 14 (1981), pp. 163–177.

[29] S. Robinson, Generalized equations, in Mathematical Programming. The State of the Art,
A. Bachem, M. Grötschel, and B. Korte, eds., Springer, Berlin, 1983, pp. 346–367.

[30] V. Schulz, Solving discretized optimization problems by partially reduced SQP methods, Com-
put. Vis. Sci., 1 (1998), pp. 83–96.

[31] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, Berlin, 1993.
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