
CHAPTER 15

Continuous stochastic variables

“...now suppose that the masses are initially at rest, and examine the manner in
which they acquire velocity under the impact of the projectiles. ...the general equa-
tion, applicable not merely to the initial and final, but to all stages of the acquirement
of motion. ...df/dt = d2f/du2 + 2hd(uf )/du.”

Rayleigh, Philos. Mag. (1891)

Periodic boundary conditions, however elegant, are an artificial construct. Every real system is
part of a larger extended system, and at the boundary of every subsystem there are inevitable
interactions with the surroundings. It can be shown [1] that even the slightest random interac-
tions with the bath suffice to create a Boltzmann distribution from a subsystem with otherwise
Hamiltonian dynamics. Therefore, real systems are intrinsically stochastic even if we ignore
quantum mechanics.

This chapter begins with the historically and practically important Langevin equation, the first
and simplest stochastic equation of molecular motion [2]. We will examine its properties and
show how it can be equivalently studied using the parallel language of Fokker-Planck equa-
tions [2,3]. We will further show how the Langevin equation behaves in the “overdamped”
limit of large friction [3]. We outline how discrete stochastic models from Chapter 14 can be
converted into Fokker-Planck equations when all transitions are between closely neighboring
states [4]. Finally, we revisit the discussion of spectral theory, now starting from a Fokker-
Planck equation.

15.1 Inertial Langevin dynamics

Langevin’s stochastic equation of motion began as an effort to model Brownian diffusion [5].
His original equation looked somewhat different from the one that bears his name today. There
was no potential of mean force (PMF), but the central new elements were already present:
friction and random forces. In modern applications, the Langevin equation is used to model a
diverse range of phenomena in physics, biology, chemistry, and even economics. To model the
dynamics of a small system coupled to its environment the Langevin equation needs a PMF,
friction, and random forces. If the small system is the scalar reaction coordinate q , then [2]
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mq̈ = −∂F

∂q
− mγ q̇ + R(t) (15.1.1)

where F(q) is the PMF, γ is a drag (friction) coefficient, and R(t) is a randomly fluctuating
force due to interactions of q with its environment. For now, assume that the random force R(t)

is perfectly Markovian, i.e. that the random force has no memory of its own history nor of the
history of q(t). The random forces on average are zero,

〈R(t)〉 = 0. (15.1.2)

The fluctuation-dissipation theorem requires an additional relationship between the random
kicks, the friction, and the temperature. Intuitively there are several reasons to suspect such a
relationship. First, the random kicks and dissipative forces are both associated with coupling
to the bath, and the bath properties depend on the temperature. Second, friction in the absence
of random kicks would eventually drain the system of all energy until it reached an energy
minimum corresponding to T = 0 K. To reach a thermal equilibrium, the random kicks must
somehow compensate for the tendency of friction to dissipate thermal energy. To balance the
friction, the strength of the kicks must increase in proportion to the friction and the temper-
ature. The random forces must also depend on the mass of the particle because equipartition
requires

〈
m(dq/dt)2

〉 = kBT . The specific relationship required to balance fluctuations and
dissipation is

〈R(0)R(t)〉 = 2mγkBT δ[t] (15.1.3)

Note that equation (15.1.1) uses −∂F/∂q instead of the more typical notation −∂V/∂q . As-
suming that the bath response is fast and independent of q is tantamount to assuming that the
force is averaged over the rapid fluctuations in the bath. Therefore the PMF, especially for
condensed phase processes, is more appropriate for the internal forces term. Accordingly, a
Langevin model based on simulation data should be constructed from the free energy profile or
PMF along the coordinate q and not from raw instantaneous forces.1

Equation (15.1.3) describes an infinitely fast noise, but in a simulation, the random force can-
not decorrelate any faster than the integration time step. The usual practice is to generate the
random force as a Gaussian random variable with mean zero and variance 2mγkBT/�t [6].
Upon integration over one time step, the effect is the same as an instantaneous impulse of size
2mγkBT . The Langevin equation is then numerically solved as a pair of coupled first order
equations. A crude algorithm is

1 Differences between the PMF and the Landau free energy can be important, especially when the variable q is
not slow compared to other variables. For example, the PMF as a function of distance r between two molecules
approaches zero as r → ∞, while the free energy diverges to −∞ as r → ∞. Because diffusion along r is no
slower than diffusion on the sphere of constant r , a thermodynamically and dynamically correct model should
use the PMF and also include the “angle” variables in the spherical coordinate system.
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v(t + �t) = v(t) − γ�t D
∂βF

∂q
− γ�t v(t) +

√
2m−1kBT γ�t · ξ

q(t + �t) = q(t) + v(t)�t

where D = kBT /mγ and ξ is a Gaussian random number with zero mean and unit variance. In
general, Langevin dynamics algorithms, like deterministic molecular dynamics algorithms, use
forces at the current position to extrapolate the new positions and new velocities after a finite
time step. The dimensionless time step γ�t should be small enough that the deterministic part
of the force changes only slightly between time steps [7]. Langevin dynamics may be applied
for a single degree of freedom (as described above), or for an assembly of particles (as described
below). The Langevin dynamics algorithm below is from Allen and Tildesley [8].

Algorithm: Langevin dynamics

First define parameters that depend on the timestep �t , friction γ , mass m, and temper-
ature T :

D = kBT /mγ

c0 = exp[−γ�t]
c1 = (1.0 − c0)/(γ�t)

c2 = (1.0 − c1)/(γ�t)

σ 2
r = �t D [2 − (3 − 4c0 + c2

0)/(γ�t)]
σ 2

v = γD(1 − c2
0)

crv = D(1 − c0)
2/(σrσv)

Then, for each timestep,

and for each coordinate,
r1 = ran(0,1)

r2 = ran(0,1)

g1 = (−2lnr1)
1/2cos(2πr2)

g2 = (−2lnr1)
1/2sin(2πr2)

gr = σrg1

gv = σv(crvg1 + (1 − c2
rv)

1/2g2)

fj = −∂V/∂qj

�qj = c1�t vj + c2�t2fj/m + gr

�vj = (c0 − 1.0)vj + c1�t fj/m + gv

update positions and velocities
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qj = qj + �qj

vj = vj + �vj

Langevin dynamics can be used in atomistic simulations to generate trajectories that sample
the canonical distribution. Shirts [10] and Leimkuhler [7] examined the extent to which various
Langevin dynamics algorithms and other thermostats sample the correct states when used with
finite timesteps. Leimkuhler and coworkers have also developed metrics to gauge the degree
to which thermostatted dynamics deviate from undisturbed energy conserving microcanoni-
cal trajectories [7]. Their analyses have identified more accurate (and still relatively simple)
Langevin dynamics algorithms. Note that hydrodynamic coupling between particles is not in-
cluded in simple Langevin dynamics algorithms, so the Langevin friction cannot accurately
replace that from a real solvent. See Ermak and McCammon for an algorithm that includes
hydrodynamic interactions [9].

We have seen that the fluctuation-dissipation theorem requires a special balance between fric-
tion and random forces. However, it does not prescribe an appropriate value of the friction
constant. As the example below shows, the value chosen for the friction has a strong influence
on the nature of dynamical trajectories.

Example: Langevin dynamics on a model surface

The four panels show Langevin dynamics trajectories initiated from the saddle point of the
Muller-Brown model potential energy surface at four values of the friction coefficient γ .
Paths were propagated forward and backward in time until they reached a critical dis-
tance from the minimum energy locations. All other parameters are unchanged between
the four cases.
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As γ increases the dynamics gradually lose their inertial characteristics and begin to re-
semble a random walk (diffusion) on the free energy landscape.

So what is the most appropriate Langevin friction? The Langevin thermostat provides a mech-
anism for heat transfer to/from the simulation box. However, dissipation by the Langevin
thermostat does not occur via heat conduction or convection through the boundaries as in a nat-
ural system. Instead, dissipation occurs via a drag on every atom throughout the bulk simulation
volume. Therefore the Langevin thermostat cannot precisely mimic real constant temperature
processes with any choice of the friction constant. To model the real dynamics as closely as
possible, some advocate using no friction at all. Deterministic dynamics are indeed necessary
for testing certain dynamical properties [11,12], but recall from the opening remarks of this
chapter that perfectly deterministic trajectories are also unrealistic. Most commercial and open
source molecular dynamics codes recommend a Langevin friction that is independent of the
simulation box size. However, the most natural choice for the dissipation rate depends on the
thermal conductivity, heat capacity, and dimensions of the simulation box. For example, the
friction should ideally be tuned so that the kinetic temperature fluctuations decay on time scale
�t ∼ 
2Cρ/k where k is the thermal conductivity, ρ is the density, C is the heat capacity, and

 is the box side length. This prescription ensures that dissipation of spontaneous fluctuations
occurs at a rate that matches the natural rate of heat dissipation by conduction. According to
this prescription, the ideal friction constant should scale as γ ∼ 
−2, consistent with intuition
that thermostats are unnecessary for extremely large systems.

The Langevin equation (15.1.1) assumes that the bath decorrelation is instantaneous, an as-
sumption that limits the types of processes that it can model. In the gas phase, the frequency
of kicks from the bath is the collision frequency. One might model gas phase dynamics by
setting the Langevin friction so that velocity correlations decay on the collision frequency
time scale. However, the relaxation towards thermal equilibrium would then occur slowly and
gradually, whereas the real system would evolve microcanonically between occasional abrupt
collisions [13]. Clearly, Langevin dynamics is not realistic as a kinetic theory of gases even
though it would generate the proper canonical ensemble [14].

More typically, the Langevin equation is used to model condensed phase dynamics. The fastest
bath time scales are set by the intermolecular distance [∼Å] and the thermal root mean square
velocity [(2kBT /m)1/2 ∼ 100 m/s for small molecules at room temperature]. The typical col-
lision time in the condensed phase is therefore ∼10−12 s. Whether the ps time scale can be
considered fast depends on the process being modeled. 1.0 ps is extremely fast relative to the
conformational transition time of a large biomolecule, so a Langevin model would be justi-
fied. However, 1.0 ps exceeds molecular vibrational periods and relaxation times. Therefore a
simple Langevin model will not accurately describe the dynamics of bond breaking and bond
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formation in solution. On the other hand, chemical reaction dynamics can be modeled using a
generalized Langevin equation in which the bath forces persist over a non-zero memory time.
Generalized Langevin equations and the Grote-Hynes theory of reactions in solution are dis-
cussed in Chapter 17.

The solution to equation (15.1.1) for the special case of a constant force ∂F/∂q is particularly
illuminating. Let us anticipate the emergence of a drift velocity2

vD = −D
∂βF

∂q
(15.1.4)

where the diffusion constant is that given by Einstein [15]

D = kBT

mγ
(15.1.5)

Note that for constant ∂F/∂q , there is no q-dependence in the Langevin equation. Therefore,
in this special case, it can be written as a first order equation for the velocity

v̇ = −γ (v − vD) + R(t)/m

where v = q̇ . The equation can be solved using the usual techniques for first order linear dif-
ferential equations. The solution is

v(t) = v0e
−γ t + vD(1 − e−γ t ) +

∫ t

0
dt ′e−γ (t−t ′)R(t ′)/m (15.1.6)

Averaging over realizations of the random noise gives

〈v(t)〉R = vD + (v0 − vD)e−γ t

where the subscript R indicates an average over realizations of the random force, but not over
the initial velocity. The velocity never actually settles to a constant average, but in the long time
limit it fluctuates around vD .

What is the mean squared displacement as a function of time? Recall that we must account for
the non-zero limiting drift velocity. Starting from δq(t) = ∫ t

0 v(t ′)dt ′, using equation (15.1.6),
gives

δq(t) = vDt + (v0 − vD)γ −1(1 − e−γ t ) +
∫ t

0
dt ′

∫ t ′

0
dt ′′e−γ (t ′−t ′′)R(t ′′)/m

2 When D depends on q , the drift velocity will become vD = −Dq∂βF/∂q + ∂Dq/∂q .
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Now to obtain the mean squared displacement as a function of time, δq(t) must be squared
and averaged over both the noise R(t) and over the initial conditions v0. The 〈·〉R average can
be evaluated using the random force properties: 〈R(t)〉 = 0 and 〈R(0)R(t)〉 = 2mγkBT δ[t].
Several terms vanish because they linear in R(t) and/or in v0. However, a quadruple integral
involving R(t ′′)R(τ ′′) must be completed. Fortunately, the same integral was done by Uhlen-
beck and Ornstein in their analysis of the special vD = 0 case [16]. Their noise averaged result,
generalized to the case of a constant but non-zero force, is

〈
(δq(t))2

〉
R

=
{
vDt + (v0 − vD)γ −1(1 − e−γ t )

}2

+ kBT

mγ 2

{
2γ t − 3 + 4e−γ t − 2e−2γ t

}
which has not yet been averaged over initial velocities. The first term arises from initial ve-
locities and deterministic forces, while the second term arises from random forces. Regardless
of the initial velocity, the drift velocity will dominate the mean squared displacement at long
times. For the special case where the drift velocity is zero, the average over v0 gives [16]

〈
(δq)2

〉
= 2kBT

mγ 2

(
γ t − 1 + e−γ t

)
(15.1.7)

Thus in the absence of a potential energy gradient, the Langevin equation predicts ballistic
(inertial) motion for times t < γ −1 and diffusion with D = kBT /mγ for longer times. (See
Figure 15.1.1.)

Figure 15.1.1: The Langevin equation gives ballis-
tic motion for γ t < 1 and the linear relationship
between mean squared displacement and time is
recovered for γ t > 1.

15.2 Overdamped Langevin dynamics

For a flat potential energy surface, the Langevin equation with any non-zero friction gives tra-
jectories that resemble Brownian motion when observed over times t � γ −1. The magnitude
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of the friction only changes the effective size of the steps in the random walk, i.e. friction con-
trols the time scale and the ballistic distance traveled during velocity-velocity decorrelation.3

The typical distance that is traveled in a ballistic fashion before the system ‘forgets’ its initial
velocity is

(δq)bal. = γ −1
√

kBT /m. (15.2.1)

As friction increases, the ballistic distance shrinks.

For a PMF with hills and valleys, what happens when the ballistic distance becomes too short
to appreciably change the force? This question is particularly important in reaction rate the-
ory. According to transition state theory, ballistic motion along the reaction coordinate should
persist from the moment of barrier crossing to a point far enough down from the barrier top to
make the recrossing probability negligible. At the other extreme are systems in which typical
reactive trajectories cross the dividing surface many times as they diffuse over the barrier top.
These limiting dynamical regimes are both addressed by the Kramers theory (see Chapter 16).
The important point for our present discussion is that the relative sizes of (δq)bal. and length
scales like the width of the barrier top determine whether we should think of the dynamics as
inertial or diffusive.

Now let us develop quantitative guidelines for omitting the inertial term in the Langevin dy-
namics. Displacement by a distance (δq)bal. changes the (deterministic) forces by an amount
|(δq)bal.∂

2F/∂q2|. Meanwhile the same displacement sees the friction forces change by an ap-
proximate amount mγ

√
kBT /m. The deterministic acceleration term in the Langevin equation

can be omitted when, for all locations q , the friction forces change much more than the sys-
tematic PMF forces do, i.e. when mγ

√
kBT /m � |(δq)bal.∂

2F/∂q2|. After simplification, the
criterion becomes

if
mγ 2

|∂2F/∂q2| � 1, the dynamics are overdamped.

For example, in a harmonic vibrational well with free energy F(q) = 1
2mω2q2, the inertial

Langevin equation can be replaced with an overdamped Langevin equation if γ 2 � ω2. The
overdamped oscillator will not exhibit any oscillatory behavior, whereas trajectories in the in-
ertial regime will exhibit oscillations that gradually dephase.

As friction increases, the typical magnitude of the acceleration term mq̈ becomes quite large
(not small as sometimes argued). However, the sign of the acceleration is rapidly changing
because of the strong random forces and friction so that all inertial character is damped out.
To model this overdamped motion, we simply omit the acceleration term from the Langevin

3 From equation (15.1.6), a flat PMF gives 〈v(t)v(0)〉 =
〈
v(0)2

〉
e−γ t .
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equation. We cannot eliminate the random forces because all trajectories from the equation
dq/dt = −D∂βF/∂q would deterministically evolve toward minima. In the high friction limit,
the overdamped Langevin equation takes the form

dq

dt
= −D

∂βF

∂q
+ R̃(t) (15.2.2)

where
〈
R̃

〉 = 0 and 〈
R̃(0)R̃(t)

〉 = 2Dδ[t] (15.2.3)

Note that the random forces have been renormalized to R̃(t) = R(t)/γm and that the sepa-
rate m, γ , and kBT parameters are now collapsed into the one parameter D = kBT /mγ . The
mass/inertia now appears only in the diffusivity.

Up to this point, our discussion has focused entirely on cases with coordinate independent
friction and diffusion. These textbook situations are rarely encountered in practice. What is a
coordinate dependent diffusivity? Consider for example, models of nucleation where the nu-
cleus size n is the stochastic variable of interest. The diffusivity along coordinate n, i.e. Dn, is
the frequency of monomer attachment and detachment events. It often scales with nucleus sur-
face area, so that Dn ∼ n2/3. Coordinate dependent diffusion is also common in biomolecular
conformational transitions [17,18]. Coordinate dependent diffusivities and random forces lead
to versions of equations (15.2.2) and (15.2.3) where D and R̃(t) are replaced by Dq and R̃q(t).
The Euler-Maruyama algorithm (below) for simulating overdamped dynamics is applicable to
coordinate dependent diffusion.

Algorithm: Euler-Maruyama integration

Overdamped trajectories are generated by the extremely simple algorithm [19]

q(t + �t) = q(t) − Dq

∂βF

∂q
�t + √

2Dq�t · ξ (15.2.4)

where at each time step ξ is a Gaussian random number with zero mean and unit variance.
The timesteps must be small, otherwise the force will change between steps and then the
assumptions of our overdamped equation will be violated. In some cases, the forces and
friction explicitly depend on time as well as position. These can also be integrated with an
Euler-Maruyama algorithm: q(t +�t) = q(t)+ vD(q(t), t)�t +√

2D(q(t), t)�t · ξ where
D(q, t) is the effective diffusivity and vD(q(τ ), τ ) is the systematic drift velocity. An appro-
priate time step [20] should satisfy �t · |∂vD/∂q | < ε and �t1/2 · |∂√

2D(q, t)/∂q | < ε

where ε is an error tolerance. For accurate results the trajectories need not appear
continuous when plotted, but visually continuous trajectories also require that �t ≤
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2ε2D(q, t)/v2
D [20]. See Leimkuhler and Matthews for a similarly simple algorithm that

has superior accuracy vs. time step properties [21].

15.3 Fokker-Planck equations

The Langevin equation describes a single trajectory q(t) under the influence of random forces
and friction. Each Langevin dynamics trajectory is different, so time averages and correlation
functions must be computed from a long Langevin dynamics trajectory or from an ensemble of
Langevin dynamics trajectories. Today, stochastic trajectories can be generated and numerically
analyzed with little difficulty, but early pioneers of stochastic processes did not have this luxury.
Instead of simulating trajectories, they [22–25] developed Fokker-Planck equations to directly
model the time evolution of a probability density.

The Fokker-Planck equation is an approximation, but it is highly accurate for Markov processes
that have small individual jumps [20,26–28]. In the overdamped Langevin equation jumps are
infinitesimally small (−vD(q)dt + √

2Dqdt · ξ ), and accordingly the Fokker-Planck equation
for overdamped Langevin dynamics is exact [31]. Master equations for nucleation assume that
nucleus size evolves by attachment and detachment of single molecules (jumps of size one),
and accordingly these master equations can be approximately reformulated as Fokker-Planck
equations [29,30].

The Fokker-Planck equation for a single variable q is

∂ρ(q, t)

∂t
= − ∂

∂q

[
vD(q)ρ(q, t) − ∂

∂q

(
Dqρ(q, t)

)]
(15.3.1)

It describes the evolution of the probability density ρ(q, t) from an ensemble of stochastic
trajectories initiated with density ρ(q,0). The Fokker-Planck equation does not explicitly in-
voke random forces, but their effects are evident in the diffusion term which drives sharp initial
conditions to decay toward a stationary distribution at long times. In writing a Fokker-Planck
equation (or a Langevin equation) for the variable q we have implicitly assumed that

(i) q(t) evolves continuously or by small jumps in the state space for q ,
(ii) q(t) is dynamically separable from all other variables in the system, and

(iii) the dynamics of q(t) are not only separable, but also Markovian.

Most arbitrarily selected variables will not satisfy (i), (ii), and (iii), so the Fokker-Planck equa-
tion will not describe their dynamics correctly. Variables that do fulfill requirements (i), (ii),
and (iii) are very special. If an appropriate variable q can be identified (see Chapter 20),
then its dynamics within a complex multibody dynamical system are conveniently reduced
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to equation (15.3.1). Coarse graining the dynamics down to a single variable provides a concise
description of the stationary distribution and the relaxation dynamics from any initial distribu-
tion.

As we already saw for the (overdamped) Langevin equation, the coefficients in the Fokker-
Planck equation can be interpreted as a drift velocity

lim
�t→0

〈�q〉q
�t

= vD(q) (15.3.2)

and a diffusivity

lim
�t→0

〈
(�q)2〉

q

2�t
= Dq (15.3.3)

Because it accounts for coordinate dependent diffusion, definition 15.3.2 is more general than
(15.1.4). Also note that equations (15.3.2) and (15.3.3) are quite useful simplifications. The
complete transition matrix may be terribly complicated, but the drift velocity and diffusivity
are all that remains of the dynamics after conversion from a master equation to a Fokker-Planck
equation.

Fokker-Planck equation from the master equation

The Fokker-Planck equation can be derived via the master equation and via the Langevin equa-
tion. Both are useful transformations in practice, so we briefly outline them here. Start from the
master equation (in integral form) [25]

∂ρ

∂t
=

∫
wq←q+�qρ(q + �q, t)d�q −

∫
wq+�q←qρ(q, t)d�q

where wq←q+�q and wq+�q←q are continuous counterparts of the Wi←j rate matrix elements.
The two integrals in this master equation represent flow into and flow out of state q . The transi-
tion rates are written in terms of q and �q (as opposed to wq ′←q ) to exploit property (i): if only
small jumps in q are allowed, then wq←q+�q and wq+�q←q should have compact support near
�q = 0. By comparison, wq←q+�q , wq+�q←q , and ρ(q, t) must vary more gradually with
changes in q . Let us Taylor expand the q-dependence in the “flow into q” integral of the master
equation: ∫

wq←q+�qρ(q + �q, t)d�q

=
∫

wq−�q←qρ(q, t)d�q −
∫

�q
∂

∂q
[wq−�q←qρ(q, t)]d�q

+ 1

2

∫
(�q)2 ∂2

∂q2
[wq−�q←qρ(q, t)]d�q + · · ·
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The zeroth order integral in the Taylor expansion is exactly the same as the “flow out of q”
integral. Therefore the master equation simplifies to

∂ρ

∂t
= − ∂

∂q

(
ρ(q, t)

∫
�q wq−�q←qd�q

)

+ 1

2

∂2

∂q2

(
ρ(q, t)

∫
(�q)2 wq−�q←qd�q

)
(15.3.4)

where ρ(q, t) and ∂/∂q have been pulled outside of the integrals over �q . Terms of order
(�q)3 and higher have been neglected.

The integrals that remain in equation (15.3.4) are surely complicated, but let us consider what
they mean. One is the average displacement per time from location q , i.e. the drift velocity

vD(q) ≡
∫

�q wq+�q←qd�q

The other is the average squared displacement per time from location q , i.e. twice the diffusivity

2Dq ≡
∫

(�q)2 wq+�q←qd�q

Inserting these identities4 for the drift velocity and diffusivity into equation (15.3.4) gives the
nonlinear Fokker-Planck equation (15.3.1). If we had retained the higher order terms we would
have obtained the (exact) Kramers-Moyal expansion instead of the (approximate) Fokker-
Planck equation.

Detailed balance and the Smoluchowski equation

In many applications to chemistry and physics, the dynamics obey a detailed balance relation.
Detailed balance relates transition rates to equilibrium probability distributions, so a pedagog-
ical discussion on detailed balance in non-equilibrium rate processes is warranted. Detailed
balance does not imply equilibrium, nor stationarity, nor an absence of sinks, sources, and
probability current. It is a relationship between transition rates and hypothetical equilibria. In
some cases, the hypothetical equilibria are impossible to attain, e.g. the supersaturated con-
ditions that drive nucleation are incompatible with a normalized equilibrium distribution of
nuclei. Additionally, many rate calculations involve probability sources and sinks at boundaries
that create non-equilibrium currents. Nevertheless, we can invoke detailed balance between hy-
pothetical equilibrated microstates for all states except those whose microscopic transition rates
are directly perturbed at the boundaries.

4 Both identities require additional changes of sign before we can use them.
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We have already seen that the Fokker-Planck equation no longer includes the detailed state-
to-state interconversion rates. They are instead coarse grained to a simpler description of drift
velocities and diffusivities at each point on the q-axis. So how can we still incorporate detailed
balance? The Fokker-Planck equation is a continuity equation for probability,

∂ρ/∂t = −∂j/∂q,

where j ≡ vD(q)ρ(q, t) − ∂[Dqρ(q, t)]/∂q . At equilibrium, all probability currents should
vanish. Therefore detailed balance is imposed by requiring that vD(q), Dq , and the equilibrium
distribution satisfy [28]

vD(q)ρeq(q) − d

dq

(
Dqρeq(q)

) = 0 (15.3.5)

Inserting the detailed balance relationship into the nonlinear Fokker-Planck equation (15.3.1)
yields the Smoluchowski equation [3,32],

∂ρ(q, t)

∂t
= ∂

∂q

[
ρeq(q)Dq

∂

∂q

(
ρ(q, t)

ρeq(q)

)]
.

As noted in the discussion above, the hypothetical equilibrium distribution invoked in ρeq need
not be attainable or normalizable. Thus in some cases it is more than a convenience to write the
Smoluchowski equation as

∂ρ(q, t)

∂t
= ∂

∂q

[
e−βF(q)Dq

∂

∂q

(
eβF(q)ρ(q, t)

)]
(15.3.6)

where we have used ρeq(q) ∝ exp[−βF(q)]. In contrast to equation (15.3.1), note that equation
(15.3.6) has D between the derivatives as a consequence of detailed balance. The Smolu-
chowski equation is a natural starting point for analyses of overdamped barrier crossings (see
Chapter 18).

A useful generalization of equation (15.3.6) begins with a system of overdamped Langevin
equations and results in a multidimensional Smoluchowski equation with a vector force and a
diffusion tensor:

∂ρ

∂t
= ∂

∂q
·
[
e−βF(q)D(q)

∂

∂q

(
eβF(q)ρ(q, t)

)]
(15.3.7)

Many interesting phenomena can arise depending on the nature of the diffusion tensor D. For
example, a highly anisotropic D indicates that some coordinates have very high mobilities
relative to others. In other cases, diffusion tensors with non-zero off-diagonal coupling elements
indicate motions of coordinates that are correlated to each other. Chapter 18 will explore the
structure of D and its effects on barrier crossings.
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Fokker-Planck equations from simulation data

Analyses in the physics and chemistry literature often begin with a Fokker-Planck equation
based on a simple phenomenological model for the free energy surface and the diffusivity.
These studies are powerful sources of insight and they often yield testable predictions. On the
other hand, Fokker-Planck equations that are constructed in this way ultimately contain the
physics that is built into them.

An alternative strategy is to start from a complex many-body dynamical system (an MD simu-
lation), identify an appropriately Markovian and separable variable q , and then use simulation
data to construct its Fokker-Planck equation. Assuming that an appropriate variable q can be
identified, the basic idea is to extract the local drift velocity and diffusivity from swarms of
short trajectories initiated at each position q0 along the q-axis. Several computational frame-
works have implemented this strategy [33–35]. Estimators for the drift velocity and diffusivity
are loosely based on equations (15.3.2) and (15.3.3), but some modifications are necessary.
Simulation trajectories have a finite duration, so we cannot simply square the displacement and
take the �t → 0 limit to estimate Dq0 (as equation (15.3.3) might seem to suggest). We must
account for the drifting mean position in the swarm of trajectories at each q0. Define the drift
corrected displacement:

δq(t) ≡ q(t) − 〈q(t)〉q0

where the average is over a swarm of trajectories initiated at location q(0). The drift velocity is
that of the moving average [33,36]

vD(q0) = d

dt
〈q(t)〉q0

(15.3.8)

and the diffusivity is computed from the same swarm of trajectories as

2Dq0 = d

dt

〈
(δq(t))2

〉
q0

(15.3.9)

The quantities on the left in equations (15.3.8) and (15.3.9) are the numerically averaged rates
at which a swarm of trajectories drifts and spreads when started at q0. To construct the Fokker-
Planck equation, initiate swarms of trajectories at a series of q0-values. For each q0, compute
d 〈q(t)〉q0

/dt and d
〈
(δq(t))2

〉
q0

/dt from the trajectory swarm data. Then solve (15.3.8) and
(15.3.9) for vD(q) and Dq at each of the q0-values. In some cases, the data can be used to
identify unknown parameters in simple models for F(q) and Dq . For example, the appropriate
variable for studies of nucleation is nucleus size n and physically motivated models of the free
energy and the diffusivity (attachment frequency) have the form F(n) = −n�μ + φγ n2/3 and
Dn = D1n

2/3. The seeding approach to nucleation uses short trajectory swarms to identify the
unknown parameters φγ and D1, and thereby parameterizes the Zeldovich-Frenkel (Fokker-
Planck) equation [34,35,37,38].
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There are some important technical issues to consider in choosing an appropriate swarm du-
ration. First, equations for the overdamped regime are being used, so the duration should be
significantly longer than the velocity decorrelation time. Second, the duration should be short
so that the force ∂βF/∂q does not change during the swarm evolution. In practice, it can be
difficult to straddle these two opposing requirements, and one must often adopt a swarm du-
ration that is too long to ignore changes in ∂βF/∂q . Therefore, Hummer and Kevrekidis [33]
recommend alternative versions of equations (15.3.8) and (15.3.9). Specifically, they estimate
D(q) and ∂βF/∂q|q instead of D(q0) and ∂βF/∂q|q0 where q is the time-averaged position
of q over the duration of the swarm.

15.4 From discrete models to Fokker-Planck equations

We have been considering stochastic processes with continuous state spaces, but some pro-
cesses with intrinsically discrete states are more easily modeled using continuous variables.
Here we show, by way of example, how models with discrete states can be transformed to
models with continuous variables while retaining nearly all behaviors of the discrete model.
The tools which are illustrated in this section are applicable when transitions occur only be-
tween closely neighboring states with similar properties. The following shows a familiar biased
random walk example.

Example: A biased and unbounded random walk

A random walker takes steps to the right on a one-dimensional lattice with rate constant
k+ and steps to the left with rate constant k−. The master equation for this process is

dpn

dt
= k+pn−1 + k−pn+1 − (k+ + k−)pn

The matrix W in this case is of infinite dimension. W would be tridiagonal, and thus easy
enough to write down, but still difficult to analyze. Quite often we can instead regard n

as a continuous variable and introduce raising and lowering operators for functions of n

as

em∂/∂nf (n) = f (n) + m
∂f

∂n
+ 1

2
m2 ∂2f

∂n2
+ · · · = f (n + m)

Now writing pn−1 and pn+1 as expansions around pn gives

∂pn

∂t
= −k+(pn − pn−1) + k−(pn+1 − pn)

= −k+(1 − e−∂/∂n)pn + k−(e∂/∂n − 1)pn
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If changes in pn are sufficiently gradual, then the expansion of e∂/∂n can be truncated
at the second order. Discussions on the limitations and validity of these truncated expan-
sions can be found elsewhere [2,28,39]. In this case, m is one and δp between neighboring
states is clearly much smaller than one. Thus using

1 − e±∂/∂n ≈ ∓ ∂

∂n
− 1

2

∂2

∂n2

gives

∂pn

∂t
= (k− − k+)

∂pn

∂n
+ 1

2
(k− + k+)

∂2pn

∂n2

The right side of this partial differential equation describes drift and diffusion, respec-
tively, on the discrete lattice. Note that the differential equation which has emerged has
the form of a Fokker-Planck equation.

To eliminate the lattice entirely, we can reintroduce the physical lattice spacing �q by
the relation q = n�q. Then dq = �q dn and ρ(q)dq = pn is the continuous probabil-
ity density as a function of q. By correspondence with the more familiar drift-diffusion
equation,

∂ρ

∂t
= −vD

∂ρ

∂q
+ D

∂2ρ

∂q2
, (15.4.1)

we see that

vD = −�q · (k− − k+) and D = (�q)2

2
(k− + k+) (15.4.2)

which gives a clear interpretation for drift and diffusion in terms of discrete step sizes,
directions, and frequencies.

The above example shows how transition rates in a lattice simulation can be chosen to match
diffusion coefficients and drift velocities for an off-lattice model. The discrete random walk
model also illustrates that Fokker-Planck equations are special types of continuum master equa-
tions that result from processes that only involve local transitions. In other words Fokker-Planck
equations correspond to master equations with nearly diagonal transition matrices.

Let us briefly take stock of the different methods we have already seen for studying reaction net-
works. In Chapter 3 we learned to formulate, simplify, and solve the deterministic rate equations
for a complex reaction network. In Chapter 14 we learned about chemical master equations and
kinetic Monte Carlo simulations that capture fluctuations around the deterministic solutions and
spontaneous switches between stable states. We saw that fluctuations and spontaneous transi-

www.elsevierdirect.com



Continuous stochastic variables 419

tions between stable states are often important for reactions in small systems. Because each
reaction event changes the species populations by only one or two molecules, all transitions in
a chemical master equation are between closely neighboring states. Thus it should (usually) be
possible to convert a chemical master equation to a Fokker-Planck description. The next two
examples return to the chemical master equation of Schlogl to illustrate how Fokker-Planck
equations can be constructed and used to understand fluctuations and multiple steady states in
chemical reaction networks.

Example: Chemical Fokker-Planck equation for the Schlogl system

The Schlogl system is a biochemical network model with kinetics

∅ → A r1

A → ∅ r−1 = k−1n

3A → 2A + B r2 = k2n(n − 1)(n − 2)

2A + B → 3A r−2 = k−2n(n − 1)

where n is the number of A molecules in the system. Details about the birth, death, and
A, B interconversion kinetics in this model are given in section 14.4. The master equation
governing n is

dpn

dt
= r1pn−1 − r1pn

+ k−1(n + 1)pn+1 − k−1npn

+ k2(n + 1)n(n − 1)pn+1 − k2n(n − 1)(n − 2)pn

+ k−2(n − 1)(n − 2)pn−1 − k−2n(n − 1)pn

It is convenient to abbreviate the master equation using the definitions

h1(n) = (r1 + k−2n(n − 1))pn(t)

h2(n) = (k−1n + k2n(n − 1)(n − 2))pn(t)

Then the master equation takes the compact form

dpn

dt
= h2(n + 1) − h2(n) + h1(n − 1) − h1(n)

Next, expand the off-diagonal terms in the master equation to second order in the vari-
able n.

h1(n − 1) = h1(n) − ∂h1

∂n
+ 1

2

∂2h1

∂n2
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h2(n + 1) = h2(n) + ∂h2

∂n
+ 1

2

∂2h2

∂n2

Insert these expressions into the master equation to obtain

∂pn

∂t
= − ∂

∂n
[h1(n) − h2(n)] + ∂2

∂n2

[
h1(n) + h2(n)

2

]

Technically, the transformation to a continuum stochastic partial differential equation is
done. However, it is useful to write the Fokker-Planck equation in terms of the drift and
diffusion rates. The drift rate is

vD(n) = [h1(n) − h2(n)]/pn(t)

= −n(n − 1)(n − 2)k2 + n(n − 1)k−2 − nk−1 + r1

and the coordinate-dependent diffusion rate is

D(n) = [h1(n) + h2(n)]/(2pn(t))

= 1

2
{n(n − 1)(n − 2)k2 + n(n − 1)k−2 + nk−1 + r1}

Now the Fokker-Planck equation takes the usual form

∂pn

∂t
= − ∂

∂n

[
vD(n)pn

] + ∂2

∂n2

[
D(n)pn

]
(15.4.3)

The operator approach in this section can be used to create Fokker-Plank equations for many
discrete systems where the transitions are local and where the stationary probabilities vary
slowly between states. Stochastic integral equations can be obtained from discrete systems with
highly non-local transitions, but these require techniques beyond the scope of this book [28].
Armed with some ways of deriving Fokker-Planck equations (where they are applicable), we
are ready to examine the properties of their solutions.

15.5 Stationary solutions of Fokker-Planck equations

Chapter 14 included a few examples of discrete master equations with steady-state distribu-
tions. Fokker-Planck equations with time-independent drift and diffusion coefficients also yield
stationary distributions in many familiar contexts. Chapters 16–18 will make extensive use of
non-equilibrium steady-state solutions to Fokker-Planck equations. Diffusion on a bounded free
energy landscape (equation (15.3.6)) gives the equilibrium distribution at long times. Here we
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show more generally that when the drift and diffusion rates are time independent, and when
there are no sources or sinks, then the stationary distribution resembles an equilibrium dis-
tribution for some effective potential and density of states. We begin with the Fokker-Planck
equation

∂ρ

∂t
= − ∂

∂q

{
vD(q)ρ − ∂

∂q
(D(q)ρ)

}
(15.5.1)

where D(q) is a coordinate-dependent diffusivity and vD(q) is a force-induced drift rate. Recall
that the Fokker-Planck equation is a probability continuity equation, i.e. ∂ρ/∂τ = −∂j/∂q

where the flux j is the part of equation (15.5.1) within curly brackets. Steady-state distributions
ρSS(q) must satisfy

jSS = vD(q)ρSS(q) − d

dq
(D(q)ρSS(q)) (15.5.2)

where jSS is a constant. In later chapters, several rate theories will be developed by making jSS

a nonzero constant.

If there are no sources or sinks (even at ±∞) then jSS must be zero. Let y(q) = D(q)ρSS(q) to
obtain the separable equation y vD/D = y′. Then integrate to obtain ln y = ∫

(vD/D)dq + C.
Finally, solve for ρSS and choose the integration constant so that the distribution is normalized.
The result is

ρSS(q) = Q−1 1

D(q)
exp

∫ q

−∞
[
vD(q ′)/D(q ′)

]
dq ′ (15.5.3)

with

Q =
∫ ∞

−∞
dq

1

D(q)
exp

∫ q

−∞
dq ′ [vD(q ′)/D(q ′)

]
(15.5.4)

Note how the distribution ρSS(q) resembles an equilibrium distribution even if the underlying
dynamics is a driven non-equilibrium system. Specifically, equation (15.5.3) can be interpreted
as an effective equilibrium distribution for a system with potential ϕ(q) = − ∫

(vD/D)dq and
density of states �(q) = 1/D(q). If vD(q) = −D∂βF/∂q with constant D, then equation
(15.5.3) yields a proper equilibrium distribution, ρSS(q) = Q−1exp[−βF(q)].

Example: Chemical Fokker-Planck equation for Schlogl system

Again consider the Schlogl system as an example with the random variable of interest
being n, the number of A molecules. Section 14.4 presented stochastic simulation (ki-
netic Monte Carlo) results from Erban et al. [40] with values r1 = 2250, k−1 = 37.5,
k2 = 0.18, and k−2 = 2.5 10−4. These parameters gave rise to two steady deterministic
states: n = 100 or n = 400. From a long simulation run, Erban et al. computed the sta-
tionary probability of finding n molecules of type A in the system.
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It should also be possible to predict the probability to find n molecules of type A from
a Fokker-Planck equation without performing the kinetic Monte Carlo simulation. The
Fokker-Planck equation for p(n, t) was given in equation (15.4.3). The figure below,
adapted from Erban et al., compares a portion of the stochastic simulation results (right)
to the stationary distribution obtained from the Fokker-Planck equation.

The stationary distribution predicted from the Fokker-Planck equation perfectly matches
the histogram of kinetic Monte Carlo results (gray) from a long stochastic simulation.
Figures from Erban et al. SIAM J. Appl. Math. 70, 984–1016 (2009).

The Schlogl system has bimodal stationary distribution with infrequent transitions between
two metastable states. We have seen how spectral analyses of the master equation can predict
the time scale associated with these transitions. Similar spectral analyses can be performed by
starting from the Fokker-Planck equation.

15.6 Spectral theory revisited

For ergodic systems with a bounded partition function, the Fokker-Planck equation gives rise
to a discrete spectrum of eigenvalues and eigenfunctions.5 The spectral representation is useful
for developing several formal expressions. This section outlines the spectral representation for

5 The results of this section are not limited to Fokker-Planck equations. They more generally apply to any continu-
ous master equation

∂p(q, t)

∂t
=

∫ {
ω(q|q ′)p(q ′, t) − ω(q ′|q)p(q, t)

}
dq ′

with transition probabilities that obey detailed balance. The Fokker-Planck is a special limiting case that arises
when the ω(q|q ′) only have support over |q − q ′| distances that are small compared to the widths of peaks and
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overdamped dynamics in a continuous configuration space. The discussion is terse because the
derivations closely parallel the spectral rate theory for discrete master equations (Chapter 14).

Let L be the operator in the Smoluchowski (forward overdamped Fokker-Planck) equation so
that equation (15.3.7) becomes

∂ρ/∂t = Lρ

Additionally, let the operator L have “right” eigenfunctions (ψR
m ) and eigenvalues (−1/τm):

LψR
m(q) = −τ−1

m ψR
m(q). The first eigenfunction is the equilibrium distribution ψR

1 (q) ∼
exp[−βF(q)] with eigenvalue 1/τ1 = 0. The right eigenfunctions are orthogonal with weight
function 1/ψR

1 (q), i.e. ∫
dqψR

m(q)ψR

 (q)/ψR

1 (q) = δm


which assumes an appropriate normalization of each ψR
m(q). All higher eigenvalues are nega-

tive, so their contributions to the time-dependent solution will gradually decay. As we did for
the discrete master equation, we can adopt bra-ket notation for the right and left eigenfunctions.
Let the right eigenfunction be the ket

|ψm〉 = ψR
m(q)

and let the left eigenfunction of L be the bra

〈ψm| = ψR
m(q)/ψR

1 (q)

In bra-ket notation, nearly all formulas from section 14.6 directly extend to the case of
a continuous master equation. For example, the orthogonality relation is 〈ψm|ψ
〉 = δm
.
Time-dependent solutions can again be expanded as |ρ(q, t)〉 = ∑

m e−t/τm |ψm(q)〉 〈ψm(q0) ×
|ρ(q0,0)〉 where the sum now runs over an infinite series of eigenfunctions. For the sharp initial
condition ρ(q,0) = δ[q − q0], the time dependent solution becomes the Greens function

ρ(q, t |q0,0) =
∞∑

m=1

ame−t/τm |ψm(q)〉 (15.6.1)

with expansion coefficients

am = 〈ψm(q)|δ[q − q0]〉 = ψR
m(q0)/ψ

R
1 (q0)

minima in the equilibrium distribution [41]. We have focused on Fokker-Planck equations and Langevin equations
because they are more important for the other topics in this book.
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The completeness relation for the eigenfunctions of a continuous Fokker-Planck equation is∑
m

|ψm(q)〉 〈
ψm(q′)

∣∣ = δ[q − q′]

Exact solutions of the Fokker-Planck equation for a high dimensional system are impossibly
difficult, but new computational methods can approximate the slowest eigenfunctions directly
from simulation data. The first (right) eigenfunction is the stationary equilibrium distribution.
The rest of the eigenfunctions correspond to non-equilibrium relaxation processes with ever
faster relaxation times. In many applications, there are one or more spectral gaps corresponding
to a clear separation of time scales:

· · · τk−1 > τk � τk+1 > τk+2 · · ·
Spectral gaps allow an accurate low dimensional model to be constructed by simply discarding
everything beyond the first k eigenfunctions. The result is a simple model that accurately de-
scribes the k slowest modes and their dynamics. The slowest (left) eigenfunction is particularly
important because it provides a numerically exact reaction coordinate that increases monotoni-
cally as one moves through the high dimensional space from reactants to products [42–46]. The
algorithm below shows how the eigenfunctions can be constructed using molecular simulation
data.

Algorithm: Diffusion map

Let S = {xi}i=1,...,n be a large collection of configurations sampled from a long molecular
dynamics trajectory. The trajectory should be sufficiently long to see several examples of
the slowest transition. Diffusion map results depend critically on a distance threshold
parameter ε. It should be just small enough that no configurations within a distance ε are
separated by a slow transition. See Singer for additional recommendations on the choice
of ε [43,47].

1. For each xi ∈ S compute

ρε(xi ) =
∑
j

K(xi ,xj )

where [42]

K(x,y) = exp[−||x − y||2/2ε2]
ρε(xi ) quantifies the local density of the sample S at location xi .
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2. Construct the symmetric matrix [42]

K̃ij = K(xi ,xj )√
ρε(xi )ρε(xj )

To the extent that nearby configurations have similarly fast interconversion rates, the
matrix K̃ij is analogous to the symmetrically renormalized transition matrix from the
discrete spectral theory.

3. For each xi ∈ S, compute the diagonal matrix with elements Dii = ∑
j K̃ij . Dii indi-

cates the total (renormalized) mobility in and out of state i. Use the Dii to compute
the symmetrized Markov matrix [42]

M = D−1/2K̃D−1/2

4. Compute the first few eigenvalues and eigenvectors of M, ideally up to a natural
spectral gap. The actual “diffusion maps” are eigenvectors of D−1/2MD1/2, but the
eigenvectors of the symmetric matrix M are easier to obtain with numerical methods.
The mth diffusion map eigenvector is obtained from ψL

m ≈ D−1/2ψS
m where ψS

m is the
mth eigenvector of the symmetric matrix M [42].

The right eigenvectors are obtained by multiplying the left eigenvectors with the equilib-
rium distribution. The accuracy of the eigenvectors depends on the initial amount of data
in S and an appropriate choice of parameter ε.

If the diffusion map procedure has worked correctly, then the following interpretations can be

ascribed to the diffusion map eigenvectors.

• The first eigenvector corresponds to equilibrium: 1/τ1 = 0 and ψL
1 (x) ≈ const .

• The reaction coordinate is ψL
2 . Reactant configurations are at ψL

2 (x) < 0 and products are

at ψL
2 (x) > 0. Transition states are configurations with ψL

2 (x) = 0 and the rate of reactant-

product interconversion is 1/τ2. For barriers that are much larger than kBT , the value of

ψL
2 changes rapidly as one moves across the transition state. Plateau regions where ψL

2 (x)

is approximately constant correspond to reactants, products, or perhaps to metastable inter-

mediate basins.

• ψL
3 (x) is the reaction coordinate for the next process in the time scale hierarchy. Often the

ψL
3 (x) process is a relaxation within the reactant basin or within the product basin.

The free energy as a function of ψL
2 or as a function of ψL

2 and ψL
3 provides a visual map of

the free energy landscape as a function of the slowest dynamical modes. Figure 15.6.1 shows
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the diffusion map coordinates from analysis of conformational transitions of a Beta3s pep-
tide [48].

Figure 15.6.1: The (locally scaled) dif-
fusion map approach was applied to
conformational transitions in the Beta3s
peptide. Key structures are shown along
with the free energy (−lnψR

1 ) as a func-
tion of the first and second diffusion
map coordinates. [Modified with per-
mission from Zheng et al. J. Phys. Chem.
B. (2011).]

Diffusion maps and MSM eigenvectors are closely related, but there are differences in their
computational details and conceptual starting points. Diffusion maps emerged from Fokker-
Planck equations for diffusion on a high dimensional continuous manifold. The ψL

m coordinates
that emerge from MSMs began from a discrete picture. Operationally, both approaches ulti-
mately use discretized states. The MSM approach is probably more robust because it directly
counts transition frequencies rather relying on a geometric proximity criterion. If ε is not chosen
correctly, then diffusion map may assume facile interconversion between structures which are
dynamically far apart. MSM will correctly describe all interconversions on time scales longer
than the time-lag parameter. Of course most MSM implementations also employ a prelimi-
nary clustering procedure based on geometric distance, and therefore a poorly chosen distance
metric can also corrupt MSM results.

Eigenfunction-based reaction coordinates have many of the properties of an ideal reaction coor-
dinate (see Chapter 20). Furthermore, the eigenfunctions can be systematically generated with-
out a priori defined reactant and product basins in configuration space. An eigenfunction-based
reaction coordinate accurately summarizes the time scales and transitions observed during long
molecular dynamics trajectories. However, eigenfunctions also have some practical disadvan-
tages as reaction coordinates.

• In most implementations, eigenfunctions are constructed from long unbiased trajectories
that must spontaneously cross over all significant barriers. Thus, applications to processes
with barriers much larger than kBT are still a major challenge. Methods are being de-
veloped that use importance sampling methods in the construction of diffusion maps and
MSMs [49–51].
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• Eigenfunction-based reaction coordinates only exist for systems that have a well-defined
reactant-product equilibrium. They do not exist for processes like nucleation in which the
product free energy diverges [52].

• There is (as yet) no reliable way to relate the eigenfunctions to physical variables that
have a clear mechanistic interpretation [53]. However, there are ongoing efforts to build the
eigenfunctions from bases of physically meaningful collective variables [54,55].

Because of these limitations, spectral analyses based on MD trajectory data at one condition
(temperature, ionic strength, etc.) cannot yet predict results across different conditions or across
a family of related reactions. Reaction coordinates with a clear physical interpretation are essen-
tial ingredients of models that predict such trends [53]. It seems likely that some combination
of dimensionality reduction techniques [42,43,45,46], high throughput hypothesis testing tech-
niques [53,56,57], and spectral analyses [58–60] will yield practical reaction coordinates for
the most complex transitions in the near future.

Exercises

1. Compute the correlation function 〈q(t)q(0)〉R as a function of the initial velocity v(0)

and position q(0) for a damped harmonic oscillator with (inertial) Langevin equation
mq̈ = −mω2q − mγ q̇ + R(t).

2. Compute 〈q(t)q(0)〉R as a function of the initial position q(0) for a harmonic oscillator
with overdamped Langevin equation q̇ = −Dβmω2q + R̃(t).

3. A particle diffuses freely from the origin in one dimension. The probability density to
find the particle at location x at time t , satisfies

∂P

∂t
= D

∂2P

∂x2

with P(x,0) = δ[x]. For any x �= 0 and t > 0, P(x, t) also satisfies the integral equation

P(x, t) =
∫ t

0
F(x, t ′)P (0, t − t ′)dt ′

where F(x, t) is the probability that the particle first visits x at time t ′ with t ′ < t [61].

What is F̂ (x, s), i.e. the Laplace transform of F(x, t). Find, (contour) plot, and interpret
F(x, t).
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4. Show that the Fokker-Planck equation for free inertial Brownian motion is

∂ρ

∂t
= γ

∂

∂v

{
vρ + kBT

m

∂ρ

∂v

}
and that

ρ(v, t) =
(

2πkBT (1 − e−2γ t )/m
)−1/2

exp[−mv2(1 − (v/v0)e
−γ t )2

2kBT (1 − e−2γ t )
]

is a valid solution.
5. Use the method of characteristics to obtain the solution in problem (4). Hint: first Fourier

transform the equation to obtain a first order PDE.
6. This exercise is a guided derivation of the Smoluchowski equation from the overdamped

Langevin equation.
(a) Starting from ∂ρ/∂t + ∂j/∂q = 0, show that ∂ρ/∂t + Âqρ = B̂q(t)ρ where Âqρ =

∂
∂q

(vD(q)ρ) and B̂q(t)ρ = − ∂
∂q

R̃q(t)ρ.

(b) Obtain an implicit solution to ∂ρ/∂t + Âqρ = B̂q(t)ρ in the form of an integral
equation:

ρ(q, t) = e−Âq tρ(q,0) +
∫ t

0
dt ′e−Âq (t−t ′)B̂q(t

′)ρ(q, t ′)

Hint: y′(t) + ay(t) = b(t) has solution y = e−aty0 + ∫ t

0 dt ′e−a(t−t ′)b(t ′).
(c) Use the implicit solution to show that

∂ρ(q, t)

∂t
+ Âqρ(q, t) = B̂q(t)e

−Âq tρ(q,0) + B̂q(t)

∫ t

0
dt ′e−Âq (t−t ′)B̂q(t

′)ρ(q, t ′)

(d) Now average over the random forces to obtain

∂ρ(q, t)

∂t
= − ∂

∂q

[
vD(q)ρ

] + ∂

∂q

[
Dq

∂ρ

∂q

]
Comment on some of the subtle aspects of the noise averaging steps. What happens

to B̂q(t)e−Âq tρ(q,0)? Why does
∫ t

0 dt ′R̃q(t)R̃q(t
′) = 1 × Dq? Why does noise that

influenced ρ(q, t ′) at times before t ′ not overlap with the noise at R̃q(t)? Finally, why
doesn’t the derivative in

∫ t

0 dt ′R̃(t)∂q[R̃q(t
′)ρ(q, t ′)] lead to an additional term?

7. Solve the Smoluchowski equation

∂ρ

∂t
= D

∂

∂q

{
∂ρ

∂q
+ ρ

∂βF

∂q

}

for a harmonic oscillator potential of mean force F(q) = mω2q2/2. First, solve for the
initial condition ρ(q,0) = δ[0], then try the initial condition ρ(q,0) = δ[q − q0]. Hint:
use the equilibrium solution to transform this into an eigenvalue problem.
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8. Solve the Smoluchowski equation of problem (7) for a parabolic barrier potential of mean
force βF = −mω2q2/2 where ω2 > 0. First, solve for the initial condition ρ(q,0) = δ[0],
then try the initial condition ρ(q,0) = δ[q − q0].

9. Multiply the Smoluchowski equations of problems (7) and (8) by qn and integrate to
obtain a series of ordinary differential equations for the moments, i.e. construct a series
of ODEs to obtain 〈q〉t = ∫

ρ(q, t)qdq ,
〈
(q − 〈q〉t )2

〉
t
= ∫

ρ(q, t)(q − 〈q〉t )2dq , etc.
10. A Fokker-Planck equation is always linear in the mathematical sense. However, we refer

to them as linear when vD(q) is linear in q and D(q) is a constant in q , and nonlinear oth-
erwise. Extend exercise 9 to show that in the general nonlinear case d 〈q〉t /dt = 〈vD(q)〉t .
Then show that for a linear Fokker-Planck equation the first moment evolves according
to d 〈q〉t /dt = vD(〈q〉t ). Note that the same result emerged for the discrete birth-death
process in section 14.2.

11. An example in Chapter 14 analyzed a master equation for the discrete random variable n

in a birth-death process. n became a Poisson distributed random variable in the stationary
limit. Convert the discrete master equation to a Fokker-Planck equation, solve for the
stationary distribution, and compare to the exact Poisson result. What parameter controls
the accuracy of the results from the transformation to a Fokker-Planck equation?

12. Polymer translocation through a narrow pore involves intermediate low-entropy polymer
configurations as shown in the figure below [adapted from Muthukumar, J. Chem. Phys.
111, 10371 (1999)].

The free energy is βF(m) = 2−1ln[m(N − m)] where N is the number of segments on
the polymer chain and m is the number of segments on the right side of the orifice. Read
and reproduce the analysis by Muthukumar [62] to obtain the Fokker-Planck equation for
ρ(m, t):

∂ρ

∂t
= k0

∂

∂m

{
∂βF

∂m
ρ + ∂

∂m
ρ

}
where k0 is the m-independent frequency at which segments jump rightward across the
orifice.
(a) Consider the alternative “linear free energy relationship” model for the transition

frequencies from state m to m + 1,

ωm→m+1 = k0exp[−β�Fm→m+1/2]
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where �Fm→m+1 = F(m+1)−F(m). Compute the transition frequency from m+1
to m to show that detailed balance is “built in” to this construction.

(b) Show that

k−1
0

∂pm

∂t
= (e−∂/∂m − 1)pme−β�Fm→m+1/2

+ (e∂/∂m − 1)pme−β�Fm→m−1/2

Group the first derivative terms and second derivative terms to identify the drift ve-
locity and diffusivity as functions of m.

(c) Show that

lim
δ→0

(e−β�Fm→m−δ/2 − e−β�Fm→m+δ/2)/δ = dβF

dm

and that for small δ the diffusivity term can be simplified using (e−β�Fm→m−δ/2 +
e−β�Fm→m+δ/2)/2 ≈ 1.

(d) Use the results from parts (a)–(c) to obtain the Fokker-Plank equation for a continu-
ous m and large N . Is your Fokker-Planck equation the same or different from that
of Muthukumar? Explain.

(e) Repeat the analysis in steps (a)–(d) for the general case: ωm→m+1 = k0exp[−αβ�

Fm→m+1] where 0 ≤ α ≤ 1. Do the results depend on α?
13. Analyze the Schlogl reaction system as follows.

(a) For the parameters given in the example of section 15.5, write down the macro-
scopic deterministic rate equations for a constant volume batch reactor. Find the two
nullclines, i.e. along one curve in [A], [B] space d[A]/dt = 0, and along the other
d[B]/dt = 0. Characterize the stationary points, i.e. the points where nullcline curves
intersect. Use linear stability analysis (or sketch flowlines if preferred) to character-
ize the stability of each stationary point.

(b) Use the change of variables y(n, t) = D(n)p(n, t) to convert the Fokker-Planck
equation (15.4.3) into a Smoluchowski equation. Then make a second change of
variables to ϕ(n, t) = y(n, t)/

√
ySS(n). Show that the operator which results is a

self-adjoint Schrodinger-type equation (with imaginary time). You may find some
hints in exercise 15.

(c) Explain how these results could be used to estimate the time to relax from any initial
condition to the steady state pSS(n). Also explain how you might determine whether
it was okay to develop and use a Fokker-Planck equation that ignores the number of
[B] molecules.

14. Consider a property A(q) and denote its time-evolving average started from initial condi-
tion q0 as Ā(q0, t), i.e.

Ā(q0, t) = 〈A(q(t))〉q(0)=q0
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where the average is over all realizations of the stochastic noise. Let the probability dis-
tribution ρ(q, t) evolve according to a Fokker-Planck equation ∂ρ/∂t = Lρ. Show that
Ā(q0, t) can be obtained (i) from 〈A(q)ψ1(q)|ρ(q, t)〉 where |ρ(q, t)〉 is given by equa-

tion (15.6.1) or (ii) from
〈
ψ1(q)|Â(t)|δ[q − q0]

〉
where Â(t) = Â

∑
m |ψm〉 〈ψm| e−t/τm .

Compare routes (i) and (ii) to the Schrodinger and Heisenberg approaches in quantum
mechanics, respectively.

15. Consider the Smoluchowski equation ∂ρ/∂t = Lρ(q, t) where

L̂ρ ≡ D
∂

∂q

{
e−βF(q) ∂

∂q

(
eβF(q)ρ

)}

(a) Let ρ(q, t) = e−βF(q)/2φ(q, t). Show that L̂ρ = −De−βF(q)/2L̂Sφ where L̂S is the
self-adjoint Schrodinger-like operator [63]

L̂Sφ ≡ −∂2φ

∂q2
+ V (q)φ

where the effective potential V (q) is related to the original F(q) by

V (q) = −1

2

∂2βF

∂q2
+ 1

4

(
∂βF

∂q

)2

. (15.6.2)

(b) Show that eigenfunctions of L̂ are the functions ψi(q) = e−βF(q)/2φi(q) where the
φi(q) are eigenfunctions of the self-adjoint operator L̂S . Verify that the first eigen-
function of L̂S is φ1(q) = e−βF(q)/2. Is this consistent with the result in part (a)?
[74]

(c) The two free energy surfaces below are both symmetric with cusp-like barriers of the
same height and minima at the same location. Also assume the same diffusivity D.

Before working out the two solutions, which one do you think will have the faster re-
laxation rate? Why? Find the equilibrium eigenfunction and the most slowly relaxing
eigenfunction for each of these two state systems.
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