
CHAPTER 1

Introduction

“In the years since 1940, only little cross-fertilization between physics and chemistry
has taken place. ...books on physical chemistry and kinetics do not discuss Kramers
results. Likewise, rarely does one find a book on kinetics or nonequilibrium statisti-
cal mechanics written by a physicist in which is discussed the important transition
state theory...”

Hanggi et al. Rev. Mod. Phys. (1990)

1.1 Motivation for this book

This book provides a broad introduction to the most powerful theories and computational meth-
ods for understanding the kinetics and mechanisms of activated processes in chemistry and
physics: chemical reactions, nucleation processes, non-adiabatic rate processes, protein folding,
solid-state diffusion, etc. These topics are usually discussed in separate courses, in separate de-
partments, to separate groups of students. Nearly three decades have passed since Hanggi et al.
[1] noted the gulf between chemical kinetics and non-equilibrium statistical physics research in
reaction rates and rare events, and still the gaps remain. However, a small but growing group of
chemists, physicists, engineers, and applied mathematicians has been working to bridge these
sub-branches of reaction rate theory and rare events. Their efforts have led to the discovery
of several powerful new theories and to the development of entirely new types of rare events
methods.

Figure 1.1.1 shows how this book bridges the gaps between chemistry [2], engineering [3],
and chemical physics [4] oriented books on kinetics. The featured topics were selected to pro-
vide a practical foundation for theoretical and computational analyses. Chapters on chemical
reaction equilibria, rate laws, and catalysis illustrate how rate constants and equilibrium con-
stants enter phenomenological kinetic models. Several chapters focus on practical theoretical
frameworks for predicting rate constants and kinetic trends, e.g. harmonic transition state the-
ory [5], diffusion control theories [6], nonadiabatic reaction rate theories [7], and theories for
overdamped barrier crossings [8]. Chapters on transmission coefficients address the effects of
tunneling [9], and dynamical recrossing including the Kramers [10] and Grote-Hynes [11] the-
ories and the reactive flux methods [12]. Several chapters focus on computational machinery
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2 Chapter 1

including methods for finding saddle points [13], methods for computing free energy surfaces
[14–16], stochastic simulation algorithms [17], transition path sampling methods [18,19], and
the recently developed reaction coordinate identification methods [19]. The book concludes
with a discussion of free energy relationships, powerful tools for discovering and explaining
trends across series of similar reactions [20,21].

Figure 1.1.1: The shaded areas show included topics which are covered by some previous books.
These include the Boudart (engineering) text “Kinetics of Chemical Processes,” the Steinfeld et al.
(chemistry) text “Chemical Kinetics and Dynamics,” and the Nitzan (physics) text “Chemical Dy-
namics in Condensed Phases.” This book spans longstanding gaps between these three branches
of the literature on reaction rate theory and rare events.

Some preliminary topics that are included in many traditional books were omitted and/or
abridged. For example, this book assumes a basic understanding of physical chemistry, equi-
librium statistical mechanics, and some familiarity with non-equilibrium statistical mechanics.
The book also assumes an understanding of basic computational chemistry ideas and basic
simulation methods like molecular dynamics [22,23] and Monte Carlo methods [24,25]. Addi-
tionally, the book assumes some familiarity with basic mathematical techniques like Laplace
transforms, eigenfunction expansions, and statistical regression procedures. All algorithms in
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Introduction 3

the book are presented in language-independent pseudo-code. There are no computer codes or
scripts in the book because prevalent programming styles and languages vary over time and
between communities.

Several important topics were omitted or abridged because they are extensively discussed in
other books. For example, there is no discussion of experimental methods for measuring rates of
reaction, nucleation, folding, and electron transfer [26–28]. This book does not address molec-
ular beam experiments [29], femtosecond spectroscopy [30], or quantum scattering theories
[26]. A single introductory chapter combines acid base catalysis [31], enzyme catalysis [32],
homogeneous catalysis [33,34], and heterogeneous catalysis [21,35,36]. Powerful tools for sys-
tematic reduction of complex reaction networks to simple rate laws are only briefly introduced
[33,37,38]. We do not discuss classical electrostatic solvation models [39–42] nor the contin-
uum solvation models for ab initio calculations [43–46]. Unfortunately, it was not possible to
cover these and many other important topics.

1.2 Why are rare events important?

A colleague once heard me say that nucleation is a rare event, to which he objected: “Nucleation
isn’t a rare event. It happens all the time.” Indeed, my colleague is correct. Many of the pro-
cesses that theorists call rare events do happen all the time. Measured rates of nucleation range
from 10−10events/cm3/s (slow and rare) to about 1020events/cm3/s (which seems quite fast).
Measurable chemical reaction rates can be even faster. For example, a gas phase reaction with
rate constant 1010/s at standard conditions occurs at a blistering rate of 1030events/cm3/s.
Similarly, rare events like electron transfer, protein folding, bimolecular reactions, etc. often
exhibit high frequencies and/or extremely fast rates.

Why do we refer to these processes as rare events even when they are fast? The reason lies
in their rates relative to other relaxation processes. 1010/s is a fast reaction, but typical bond
vibrations are much faster with frequencies on the order 1013/s. Thus before a molecule reacts,
its chemical bonds will oscillate thousands of times, exchanging energy with each other and
with the surroundings and entirely forgetting the initial conditions before a chance fluctuation
funnels the required activation energy into the reaction coordinate. The story is similar for
nucleation: thousands of nuclei will form and redissolve before a chance fluctuation creates
a nucleus that is large enough to grow. In fact, across all rare events in chemical physics the
mechanism is essentially the same: small and inconsequential excursions along the reaction
coordinate happen all the time, but larger and more infrequent excursions along the reaction
coordinate lead to new products and intermediates with qualitatively different structures and
properties from the reactants.
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4 Chapter 1

Most experiments cannot directly see the reaction coordinate or track its fluctuations. Likewise,
experiments cannot anticipate when or where a spontaneous reaction or nucleation event will
occur, and thus they cannot directly observe the barrier crossing event. Rare events that occur at
the molecular scale are only indirectly evident from macroscopic observations of new products,
conformations, and/or phases. Because reaction coordinates, transition states, and free energy
profiles elude direct observation, research in rare events and reaction rate theory has some un-
usual characteristics. In many other disciplines, simulation and computation are “third wheels”
of the scientific method, but in kinetics they are vital components. To understand mechanisms
of reactions and other rare events we rely heavily on a judicious combination of evidence from
rate theories, experimental kinetics, and simulations. Indeed, first principles computation and
simulations often provide the most direct evidence for or against molecular-level mechanistic
hypotheses.

Note, however, that studying rare events with simulation is far more difficult than running a
standard molecular dynamics simulation. Figure 1.2.1 shows the (approximate) time scales and
length scales which are accessible by different simulation methods. These diagrams are com-
mon in the multiscale simulation literature, but they only show methods along the diagonal (the
gray circles). Each method moving up the diagonal hierarchy sacrifices some detail and accu-
racy from the Hamiltonian to access longer time scales. However, the most prevalent methods
in the coarse graining [47,48] hierarchy do not preserve the spectrum of time scales [49], espe-
cially for chemical reactions, electron transfer reactions, and nucleation and growth where the
slowest time scales are associated with processes at very short length scales.

Figure 1.2.1: Multiscale simulation at-
tempts to reach long time and length
scales with a hierarchy of increasingly
coarse grained methods. Rare events
approaches obtain rates and rate laws
without altering the Hamiltonian or the
natural dynamics by taking advantage
of natural time and length scale sepa-
rations. The rate laws then become the
species generation terms in continuum
scale models.

Progress toward a molecular understanding of rare events began with simple rate theories and
models that helped to understand observed rates and kinetic trends. Prominent examples are
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harmonic transition state theory [5], classical nucleation theory [50], and Marcus theory [7,51].
These do not always predict accurate rates, but they are extremely useful for understanding and
correlating experimental data [52]. Computational rare events methods emerged later, enabled
by advances in computational quantum chemistry [53,54], molecular simulation [22,24], and
stochastic simulations [55–58]. As depicted in the upper left off-diagonal region of Figure 1.2.1,
rare events methods exploit natural time scale separations to compute rates without simulating
the waiting time between events. The rate constants and rate laws can then be used in species
balance equations or population balance models to predict kinetics and dynamics at extremely
long time scales. The rare events strategy thus bypasses the hierarchy of methods on the di-
agonal, and it does so with remarkable efficiency and without sacrificing any molecular-level
resolution. Amazingly, these “too-good-to-be” claims are true. Of course, there are challenging
aspects of these calculations. The predictions are only as good as the force fields and model
chemistries, and often the most efficient rare events methods require an accurate reaction co-
ordinate, i.e. an a priori mechanistic understanding. Fortunately, the past few decades of rare
events research have led to powerful methods for computing free energy surfaces, for finding
saddle points, for optimizing minimum free energy paths, for simulating reactive trajectories,
for identifying reaction coordinates, and for computing accurate rates even without a complete
mechanistic understanding.

Selecting the most appropriate rare events method or rate theory for a particular application can
be a major pitfall even for veteran practitioners. This book outlines the strengths and limitations
of the most practical theoretical frameworks and rare events methods – discussions which are
often muted in the literature. In some cases the advantages of one theory over another are
indisputable. For example, inertial rate theories like transition state theory are appropriate for
chemical reactions, while overdamped theories are more appropriate for nucleation and protein
folding. In other cases, the advantages of one method over another are more subtle issues of
computational efficiency or ease of implementation. In general, two considerations should be
weighed when choosing a computational method or theory:

1. Correct and definitive answers. The foremost merit criteria is a method’s capacity to cor-
rectly answer the most important and interesting questions, and to do so with minimal
uncertainty in the conclusions.

2. Ease of implementation and computational efficiency. These are also important (but sec-
ondary) criteria. Sometimes ease of implementation and efficiency considerations oppose
each other, and in these cases their balance depends on available computational power and
human expertise.

Computing power continues to grow and some supercomputers now boast petaflop/s perfor-
mance. Additionally, enormous effort has been invested to develop accurate ab initio model
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chemistries and molecular force fields. Several software packages now implement state-of-the-
art electronic structure methods and force fields so that users can bypass the difficult tasks of
developing and implementing model chemistries. These developments have dramatically in-
creased the system sizes, the time scales, and the breadth of different processes that can be
studied in simulations. But despite advances in hardware and software, the time scales that
are accessible to a straightforward simulation are still far too short for analysis of rare events.
Let us now consider the types of questions which can be posed and answered with theoretical
analyses, simulations, and rare events methods.

1.3 The role of computation and simulation

In the most literal sense, a simulation is a model that resembles a real process. Some computa-
tional studies of rare events basically report snapshots from long unbiased simulations and then
anecdotally relate the observations. There are a few situations where long unbiased simulations
are useful in studies of rare events. First, long unbiased trajectories are useful for characteriz-
ing the properties of reactant and product states. Second, a long unbiased trajectory sometimes
discovers unexpected intermediates or new pathways, and these discoveries (while impossible
to plan) can inspire important new areas of inquiry. Third, long time scale trajectories are use-
ful for constructing Markov state models [59] and diffusion maps, but only when barriers are
relatively small.

Rare events analyses more typically use simulations only as devices to compute averages, free
energy barriers, and dynamical prefactors. Some rare events methods modify the dynamics to
sample parts of phase space that would otherwise be rarely visited. Often we learn the most
from simple models that explain trends and/or from analyses of static equilibrium properties
like free energy landscapes. Those rare events methods which do require realistic dynamical
simulations will only require extremely short trajectories.

Quantitative rate predictions

A 2010 US National Academy report estimated that a heat of formation measurement is 100
times more expensive than a heat of formation calculation of similar accuracy [60]. Because
of these capabilities, computational thermochemistry is widely viewed as an inexpensive alter-
native to experimental measurements. However, the situation is different in kinetics. Rates are
more difficult to compute for several reasons:

1. Rate calculations exponentially magnify small errors in activation barriers. Ab initio calcu-
lations and force fields are typically calibrated to match equilibrium properties, but precise
transition state properties are rarely available for calibration.
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2. Tunneling, spin crossings, and electron transfer processes require a correct description of
quantum effects and excited states.

3. In systems where the dynamics deviate from those assumed by transition state theory, com-
puting the kinetic prefactor can be highly non-trivial task.

4. The most practical rate theories require selection of a reaction coordinate, and identifying
the reaction coordinate can be a major challenge.

5. Correctly predicting the observed kinetics often requires careful analysis of large reac-
tion networks or catalytic cycles, e.g. using pseudo-steady states or other approximations.
A computational error in just one elementary step may severely compromise the predicted
kinetics.

In certain cases, state-of-the-art ab initio calculations and force fields can predict absolute rates,
but for many systems accurate rate calculations are not yet possible. The fact that rates depend
on so many factors makes it difficult to pinpoint the most important sources of error. Thus
predicting rates continues to pose challenges, even for systems where predicting the thermody-
namics has become straightforward.

Two types of kinetic trends, two different applications

In many applications we cannot accurately predict absolute rates, but we can often predict
trends in the rate as a function of composition, temperature, or molecular characteristics. The
reason that we can accurately predict trends even when we cannot predict rates is a rather
unglamorous cancellation of errors. Fortunately, the trends are often more important than the
absolute rates anyway. First, engineering better catalysts, drugs, crystal growth modifiers, etc.
requires understanding kinetic trends as a function of composition, temperature, pressure, pH,
solvent dielectric, etc. Second, the trends implied by computational analysis of a hypothesized
mechanism can be used to refute or confirm the mechanism.

Note that there are actually two different types of trends and that they are used in different
types of analyses. First, there are trends in the rate of one reaction across a family of related
reactants and/or catalysts. In recent years, these trends have been widely pursued in computa-
tional studies of heterogeneous catalysts [21]. Many recent catalysis studies do not even attempt
to compute rates, instead focusing on descriptor correlations that relate activation energies to
adsorbate binding energies and other catalyst properties. Descriptor correlations are powerful
ways to discover cheap and active catalyst materials from the vast possibilities in the periodic
table. However, these trends describe the kinetics of one specific reaction, usually with a well-
understood mechanism, occurring on different metal surfaces.

To test a new mechanistic hypothesis for a poorly understood reaction, we must instead cross-
examine the observed and predicted activation parameters, rate laws, and reaction orders. Some
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would argue that trends are more important than quantitatively correct activation parameters
or rate laws, but this viewpoint misses the fact that reaction orders and activation parame-
ters are trends. Specifically, the activation parameters are trends in the rate vs. temperature,
and the reaction orders are trends in the rate vs. concentration, partial pressure, etc. Reaction
orders and activation parameters follow directly from the mechanism, and as such they are
important fingerprints for identifying the mechanism. Where possible, one can also test predic-
tions about abundant intermediates, spectra, molecular weights, etc. [61]. Ideally, one should
cross-examine a comprehensive suite of properties and kinetic trends to provide many points
of comparison to experiment. Each comparison is an opportunity to refute the hypothesized
mechanism [62], and the more tests a hypothesis passes, the more confidently we can assert
its veracity. Finally, note that the ideal starting point to identify a mechanism in computational
work is a single well-defined catalyst and/or specific reactant(s). We should not a priori as-
sume that the mechanism will be preserved across a family of catalysts, reactants, adsorbates,
etc. Accordingly, we cannot build reliable descriptor correlations without first developing an
understanding of the mechanism and establishing its validity for a family of catalysts and/or
reactants.

In silico experiments

Simulations are often viewed as a branch of theory, but in some ways simulations are more like
experiments. The role of simulations as idealized experiments was recognized at the dawn of
molecular dynamics simulations by Fermi, Pasta, and Ulam (FPU) who described their study as
an “experiment” to test a theory [60,63]. Theories are often oversimplified to facilitate analy-
sis, whereas a simulation can retain all of the essential physics and sometimes reveal surprises.
Experiments also retain all of the physics, but changing one variable in an experiment can in-
advertently change other variables. The often messy nature of real experiments calls to mind
the quote from Einstein: “A theory is something nobody believes, except the person who made
it. An experiment is something everybody believes, except the person who made it.” A sim-
ulation provides absolute and independent control over all parameters, even parameters that
could never be changed in a real experiment. For example, we can turn off quantum effects,
change the sizes of atoms, choose any masses we like, turn off dispersion interactions, add fric-
tion to the natural dynamics, etc. In this manner, simulations can be devised to perform proper
controlled experiments that test hypotheses about these factors.

Mechanistic hypothesis testing

For many decades the principal way of testing a mechanistic hypothesis was to fit data to a
phenomenological model. A sequence of elementary steps would be proposed along with as-
sumptions about pseudo-steady-state behavior, quasi-equilibrium steps, rate determining steps,
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irreversible steps, etc. All rate constants in the resulting rate law would then be used as ad-
justable parameters in fitting the model to the experimental data. The rate law would then be
accepted or refuted according to analysis of residual variance from the best fit. Classic hypothe-
sis testing approaches are still valuable, but computational chemistry and molecular simulation
have dramatically expanded the arsenal of hypothesis tests.

• In addition to checking for quality of a fit to experimental data, we can now ask whether the
fitted rate constants are approximately consistent with independent estimates from ab initio
computational chemistry. First principles calculations can also cross-examine the predicted
and observed abundances of hypothesized intermediates.

• Classic phenomenological analyses like those of Hinshelwood, Hougen and Watson in-
voked abstract symbolic entities like “*” for an active site. Computational chemistry
techniques now allow us to propose and test specific molecular models of the active site
structure.

Hypothesis testing procedures based on first principles calculations are primarily useful for
understanding chemical reactions and catalysis. In these applications, questions about mecha-
nisms primarily concern the sequence of elementary steps and models of the active sites. Once
transition states have been found for all elementary steps, the individual rates are easily com-
puted, e.g. using harmonic transition state theory.

For processes like nucleation, self-assembly, and protein folding, simulations face many ad-
ditional challenges. Are mechanistic conclusions robust to changes in the force field? Are the
designated bath variables sufficiently fast relative to designated slow variables? Do dynamical
trajectories really lose memory between the adopted milestones? Is the transmission coefficient
small because of intrinsic friction in the dynamics or because of a poorly chosen dividing sur-
face? The answers to these questions depend upon which reaction coordinate was selected for
computing barriers and rates. There are now several methods for discovering reaction coordi-
nates, for testing their accuracy, for using them to compute rates, and for constructing simple
rate theories [19,52]. These new tools are conclusively answering mechanistic questions and
pointing the way to simple theories for new types of reactions and rare events.

1.4 Polemics

This section addresses some of the occasional abuses, misuses, and misconceptions that appear
in the rare events literature. It is not intended as a targeted critique of any specific work, but
rather as a list of precepts and best-practices.
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Units

Units are extremely important in scientific research, and yet we (engineers in particular) always
try to eliminate them. Consistency of units is the foremost hurdle that must be passed by any
successful theory or quantitatively meaningful statement. Nonsensical comparisons between
quantities with incompatible units are all too common in the literature. Statements like “...the
growth rate surpasses the nucleation rate...” or “...the reaction is faster than diffusion...” do not
have a proper meaning. To compare quantities with different units, they must first be multi-
plied/divided by additional time scales, length scales, areas, volumes, concentrations, etc. to
obtain an equivalent units. Proper comparisons and dimensional analyses often reveal impor-
tant lengthscales and time scales apart from the intrinsic kinetics. As such, units are invaluable
guides in the early stages of model formulation.

On the other hand, the units are a nuisance in mathematical manipulations and data anal-
ysis. Furthermore, dimensionless groups reduce the number of independent parameters that
are needed to make quantitative predictions. Systems with different barriers, temperatures,
frictions, concentrations, etc. might follow an equation with just one or two dimensionless
parameters. In many cases, dimensional analyses identify certain factors in a model that can
be entirely omitted. Finally, dimensionless equations and parameters suggest compact ways to
correlate data across a diverse set of conditions.

Non-dimensionalization is ubiquitous in engineering, but less so in chemistry and physics. Sci-
entists instead use different unit conventions in different areas, e.g. there are atomic units, cgs
units, natural units, SI units, etc. [64]. Cussler quips [65] “Dimensionless numbers are weapons
that engineers use to confuse scientists.” but perhaps scientists have the more confusing system.
For example, polymer scientists, quantum chemists, and non-equilibrium statistical mechani-
cians all solve similar Schrodinger equations, but their equations look different except for those
cases where they are non-dimensionalized. This book discusses both formulation and analysis
stages of kinetic modeling. Accordingly, some discussions involve quantities with units, and
others are non-dimensionalized.

On the value of results that disagree with experiment

The reaction pathways and mechanisms that we investigate are often based on some precon-
ceived ideas about the mechanism. Anyone can fail to anticipate the correct mechanism, but
among those mechanisms that are investigated, computational results should be used and in-
terpreted in an unbiased manner. Unfortunately, some investigators view ab initio calculations
as a tool “to validate” their mechanistic hypotheses. Note the subtle bias in that phrase – we
should embark on a calculation with the goal of performing an unbiased test, not to achieve
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a validation. The problem goes beyond semantics. A bias toward results that validate the hy-
potheses has led some investigators to excuse results that clearly and conclusively refute their
mechanistic hypothesis as “expected errors from DFT”.

If we believe that ab initio computational evidence can support a mechanistic hypothesis, then
we must also believe that ab initio evidence can refute a mechanism [62]. Computational
chemistry cannot accurately predict experimental results, but most computational methods are
associated with some typical range of errors. When disagreements with experiment exceed the
plausible range of computational errors, the theorist should revise his mechanistic ideas, re-
interpret experimental results, consider new active site models, etc. Revisiting the mechanistic
assumptions and hypotheses because of some discrepancy often leads to the most important
discoveries: revised mechanisms, new interpretations for experiments, new insights about the
active site, etc. In this sense, computational results that disagree with experiment are often more
exciting than results which agree.

On the other hand, if implausibly large discrepancies are just brushed aside, then there really is
no value in performing calculations at all. Unfortunately, studies that promote a mechanism de-
spite strong computational counter-evidence are easy to find. In some cases, the computational
counter-evidence is even presented as supporting evidence for a mechanism [61]. One scathing
critique [66] concluded that ab initio calculations cannot predict anything and even described
computational chemistry as a “dartboard”. It should be noted that the most egregious errors
cited in their critique resulted from (i) calculations that were done incorrectly (e.g. by ignoring
entropy in association steps), or (ii) investigating the wrong mechanisms or active sites. It seems
likely that many of the most egregious errors are not actually due to computational chemistry
itself, but rather to human errors; i.e. to flawed analysis, applications, and interpretations of
computational chemistry results.

Quests of questionable value

As computers and software for massively parallel simulations become more powerful, it is
increasingly common to see fully atomistic simulations of processes that involve highly dis-
parate length and time scales.1 In some cases, large scale atomistic simulations have been used
to model phenomena where there are very good continuum models. Some examples include
atomistic simulations of solidification (where there are exquisite and accurate continuum scale
models) [67,68], atomistic simulations of boundary layer transport and catalysis (despite rig-
orous continuum equations for coupling boundary layer resistances to surface kinetics) [69,70]

1 These efforts are not to be confused with multiscale simulation methods, where phenomena at different scales are
studied with different methods.
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and sophisticated rare events analyses of water evaporation (which is accurately described by
coupled heat and mass transfer equations) [65,71].

Each of the above examples involves gradients in temperature, composition, or fluid velocity
coupled to molecular scale interfacial processes. Perhaps these seem like complicated situa-
tions which require multiscale simulation or (even less desirably) atomistic simulations with
billions of atoms to span multiple scales. But before embarking on a massive simulation effort,
one should ask whether the problem might be broken into separately soluble but coupled parts.
We should also ask which molecular level details (if any) are needed to advance technology
or fundamental understanding. When there is no need for molecular level detail, then an accu-
rate continuum theory is superior to an atomistic simulation. This statement is not a matter of
opinion or personal preference. Simple theories, by construction, omit thousands of molecular
details, and when the details are irrelevant they should be omitted.

Consider, for example, the overall rate of a heterogeneous surface reaction. The intrinsic ki-
netics at the surface depend only on the concentrations of reactants immediately above the
surface. Mass transfer from the bulk depends on concentrations in the bulk and concentrations
at the surface. The problem can be rigorously broken into two parts: (1) determine the rate law
as a function of concentration near the surface, and (2) self-consistently match the continuum
mass transfer rate to the rate law. Matching reveals the concentrations at the surface and there-
fore the overall rate. The problem can be rigorously solved without simulating any part of the
mass transfer process at atomistic resolution. The model that we obtain from the coupled an-
alytic analysis is simpler than the results from a massive simulation. Importantly, the analytic
model is also more useful. It immediately predicts the overall rates at many different bulk con-
centrations, whereas the massive simulation just gives the overall rate for the one concentration
that was simulated.

On the proliferation and testing of new methods

There are hundreds of methods for optimizing transition states, hundreds of methods for com-
puting free energy surfaces, and scores of methods for computing dynamically accurate rate
constants. Some of these methods dramatically advanced rare events research through power-
ful theoretical principles and innovative computational strategies. Others (perhaps most) are
minor variations on the major themes with little or no practical benefit.

In the long run, the merits of a method are easily judged by its impact in actual applications.
But how can merit be assessed for new methods? Ideally, new methods should resolve some
deficiency in the capabilities of existing methods, or else they should provide a great leap (e.g.
>2×) in efficiency. In principle, publications on methodology should include difficult example
problems that demonstrate truly new capabilities, but modern funding structures require that
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we frequently document our progress. Thus, in practice, to require a challenging demonstration
would stifle many creative, important, and ambitious new directions.

How do we balance the principled ideals against the practical realities? Ultimately, a method
development effort should not be regarded as complete until its capabilities are established for
rigorous and demanding test cases. There are subltle differences in the ways that new methods
are tested and used in science, engineering, and mathematics. To a mathematician, assumptions
have logical consequences (theorems) which can be studied apart from the properties of any
real system. To the scientist, assumptions (hypotheses) have consequences that must be tested
against observations of real systems. To an engineer, assumptions and models are measured by
their broader impacts (technology).

The different priorities of scientists, engineers, and mathematicians are often evident in our
respective contributions to the field.2 Engineers tend to pursue important and ambitious ap-
plications, sometimes with insufficient rigor and before the available simulation methods are
actually ready. Scientists tend to dwell on model systems like hard spheres and model peptides,
sometimes with too little concern for discoveries with potentially practical impacts. Mathe-
maticians tend to create test systems for which the requisite assumptions of a theorem are true
by construction, and as such these tests are more properly regarded as illustrations. For ex-
ample, overdamped dynamics on a low dimensional potential energy landscape is Markovian
by construction, so all theorems and methods derived from that property must work perfectly
well – on the system used in the illustration. After methods have been so illustrated, scientists
and engineers sometimes use them on complex molecular systems with no further tests of the
underlying assumptions. As Churchill has said “However beautiful the strategy, you should oc-
casionally test the results.” Clearly, scientists, engineers, and mathematicians can each learn
valuable lessons from each other.

On corrections to transition state theory

Several chapters of this book focus on methods for obtaining accurate rate constants. Many
readers will already be familiar with transition state theory (TST) and perhaps also with non-
TST effects like tunneling and recrossing that require more elaborate calculations. There are
two schools of thought on the importance of corrections for non-TST effects. One viewpoint
maintains that errors in ab initio calculations are unavoidable and dominant sources of error,
regardless of how carefully the non-TST corrections are estimated. Some proponents of this
viewpoint omit non-TST corrections and focus on trends rather than absolute rates. Indeed,

2 As an engineering professor, with a partial appointment in chemistry, and an undergraduate degree in mathemat-
ics, I feel less-underqualified-than-most to over-generalize.
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there are many applications where non-TST effects can be ignored. There is no need to in-
clude non-TST effects in studies that examine one reaction across a series of catalysts with
different adsorbate binding energies or d-band centers. Non-TST effects can also be ignored
for examining trends in homogeneous reaction kinetics, e.g. trends in the rate vs. electron with-
drawing characteristics of various substituent functional groups [72]. Non-TST effects can also
be ignored for steps that do not control the overall rate.

On the other hand, corrections to TST can be extremely important when computational results
are compared to experiment to test a hypothesized mechanism. For example, tunneling can
alter the slope of Arrhenius and Eyring plots for many hydrogen and proton transfer reactions.
Dynamical recrossing can lower the intercept on Arrhenius and Eyring plots. These effects
cannot be “switched off” in the experiments, and accordingly they should not be switched off
in computational rate predictions. The PES may well be the dominant source of error, but to
omit a correction that influences the quantity being computed adds bias to an already imprecise
calculation. In general, the potential impact of non-TST effects and the need for accurate rates
should be assessed carefully on a case-by-case basis when justifying computational shortcuts.

Of course, one should not decide whether to add or omit terms solely to improve the agree-
ment with experiment. Adding corrections because theoretical considerations predict they are
significant is good practice. It is also good practice to add corrections when a discrepancy with
experiment alerts us to unanticipated factors. But omitting a theoretically important correction
because the data fits better without it is shameful. The model chemistry and the effects to be in-
cluded are, in some sense, a part of the hypothesized theoretical model. In principle, the model
chemistry, the approximations to be used, and the corrections which will be applied should be
selected before the results are compared to experiment. When all potentially important correc-
tions are included and the results agree with experiment, the agreement is significant. When all
potentially important corrections are included and the results still disagree with experiment, the
results are still useful. As elaborated above, carefully performed calculations that disagree with
experiment indicate flaws in our mechanistic understanding and often lead us to new discover-
ies.

On science priority and impact metrics

Scientists (theorists in particular) are notoriously sensitive about credit and recognition (see
Figure 1.4.1). Some investigators have even written articles which are chiefly about who used
their ideas and methods without appropriate credit. Concerns over science priority can be un-
derstood from the many historical examples of misappropriated credit.3 Journal editors cannot

3 Stigler’s law of mistaken eponymy says “No scientific theory is named after the person who actually discovered
it.” Amusingly, Stigler’s law was first stated by R. Merton. There are many examples among the topics in this
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check whether our citations are accurate and complete, and typical papers are read by only a
few of our peers before publication. Therefore citations are largely an honor system. Most in-
vestigators feel naturally compelled to credit others, but even the most renowned scientists are
occasionally slighted [73]. Proper citations are an important component of scholarly work for
several reasons: they point readers to other important papers, they dispell the myth of a single
genius working in isolation, and they set an example that scientific progress requires careful
attention to the work of others.

Figure 1.4.1: Despite the stigma associated
with self-promotion, all scientists, living and de-
ceased, deserve credit for their original contri-
butions. I have tried to give appropriate credit
throughout, but I will undoubtedly forget and
misdirect credit for certain important contribu-
tions. Please suggest references and topics for
future editions.

Are issues of science priority important for the advancement of science itself? Yes, because
professional survival for a scientist requires some degree of recognition. The perceived impact
of our prior achievements influences our ability to secure funding, to attract talented students,
and to stay employed. Young investigators in particular depend on the short term impact of their
achievements – a fledgling research program can flounder if its most innovative contributions
take a decade to discover.

To some degree, all research programs depend on short term impact, and unfortunately short
term metrics like journal impact factors are imperfect. Of course, any conceivable metric for
judging scientific contributions would have flaws, cf. Campbell’s law: “The more any quanti-
tative social indicator (or even some qualitative indicator) is used for social decision-making,
the more subject it will be to corruption pressures and the more apt it will be to distort and
corrupt the social processes it is intended to monitor.” The widespread pressure to publish in
high impact journals does have several undesireable side effects on the quality of our literature.
First, the most prestigious journals tend to attract manuscripts with hyperbolic (and sometimes
fraudulent) claims [74]. Second, it is increasingly common for editorial boards – rather than
true experts – to judge the importance of submitted manuscripts. These preliminary editorial
reviews typically prioritize work that is new and trendy over careful, comprehensive, and conse-
quential work on longstanding challenges. Finally, the importance of short term impact forces

book: the Arrhenius law was put forth by van’t Hoff, Fermi’s Golden Rule was discovered by Dirac, Voronoi cells
were first used by Descartes, the Bodenstein approximation was first used by Chapman, etc.
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young investigators to pursue the hottest trends en masse – a feedback loop that exacerbates
fads in scientific research and funding.
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