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1. Introduction

In recent decades, molecular processes, like conformational 
changes or binding processes, have been modeled and studied 
trough molecular dynamics (MD) simulations. In MD simula-
tions, one numerically solves the equation of motion of a mol-
ecule, in order to obtain a discretized trajectory, containing 
the position of each atom at each timestep. From a suffi-
ciently large ammount of MD trajectories, one can recover the 
Boltzmann distribution and estimate phase-space ensemble 
averages.

Under certain conditions, the dynamics of a molec-
ular system can be studied as time evolution of prob-
ability densities ρt(x) governed by the forward propagator, 
P(τ)ρt(x) = ρt+τ (x), where τ is called lag time. The prop-
agator has a unique stationary distribution π(x), as long as 

the underlying diffusion process is Markovian, ergodic and 
aperiodic.

Numerically easier to handle than the propagator is the 
closely related forward transfer operator [1–3] T (τ), which 
propagates weighted probability densities ut(x) = ρt(x)/π(x) 
forward in time

ut+τ (x) = T (τ)ut(x) . (1)

Both the propagator and the transfer operator can be 
projected to finite dimensional matrices by a Galerkin 
discretization with respect to a set of ansatz functions 
(χ1(x),χ2(x)...χn(x)). If the ansatz functions are ortho-
normal, the Galerkin discretization of the transfer operator 
yields the matrix

T(τ) : Tij(τ) =
〈χi|T (τ)χj〉π

〈χi|χi〉π
, (2)
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where 〈 f |g〉π =
∫
Γ

f (x) · g(x)π(x)dx. The denominator 
and the numerator can be interpreted as (time-lagged cor-
relation) functions, 〈χi|T (τ)χj〉π = cor(χj,χi; τ) and 
〈χi|χi〉π = cor(χi,χi; τ = 0), and can thus be estimated from 
a realization of the underlying diffusion process, i.e. from a 
trajectory produced by MD simulations.

A wide collection of methods have been developed to 
estimate the discretized version of the transfer operator from 
numerical simulations. The discretization can be carried out 
with respect to disjoint subsets of the conformational space 
(Markov state models [1–9]) or with respect to continuous 
functions of the state space (core-set Markov models [10], 
variational Markov models [11]). The dominant eigenvectors 
and associated eigenvalues of a Markov model contain infor-
mation on long-lived molecular conformations, the kinetic 
exchange process between them and the associated equilibra-
tion times. This information can in turn be used to derive the 
hierarchy of barriers and minima of the underlying molecular 
free-energy surface. Markov models have been largely used 
in the last years and are now a fundamental tool to study and 
analyze the dynamics of molecular systems [12–17].

Associated to the transfer operator, there exists another 
operator called infinitesimal generator [2, 18]

Q = lim
τ↓0

T (τ)− T (0)
τ

, (3)

that defines the differential equation

∂

∂t
ut(x) = Qut(x) , (4)

with solution

ut+τ (x) = exp(Qτ)ut(x)
= T (τ)ut(x) .

 (5)

Q and T (τ) have the same eigenfunctions, while the eigen-
values of λi(τ) of T (τ) are related to the eigenvalues θi of 
Q, by

λi(τ) = exp(τθi) . (6)

It follows that one can recover the same information about 
the dynamics of the system, both from the transfer operator 
and the generator.

The corresponding Galerkin discretization of the infini-
tesimal generator is called rate matrix, it provides a transition 
pattern in terms of rates between adjacent disjoint subsets of 
the conformational space. On the other hand, although sev-
eral methods for the discretization of transfer operators are 
available, the discretized infinitesimal generator is more dif-
ficult to be estimated numerically, because it is not possible 
to derive the matrix elements of Q from correlation func-
tions. Furthermore, we will show in section 3 that there is no 
analogous relation of equation (5) for the discretized operators 
and then T(τ) �= exp(Qτ) (see figure 1). This means that we 
cannot estimate Q from τ−1 log(T(τ)).

We propose a method to discretize the infinitesimal gener-
ator based on a Voronoi partition of the conformational space. 
We start from the Galerkin discretization of the generator

Q : Qij =
〈χi|Qχj〉π
〈χi|χi〉π

,
 (7)
where the ansatz functions are the characteristic functions of 
the Voronoi cells χi = Ωi , i.e. a set of orthonormal functions. 
Then we derive a numerical scheme to estimate Q that does 
not rely on correlation functions. Using the Gauss theorem, we 
write the rate between two neighboring cells in terms of the 
flux Φ̂ of configurations and of the Boltzmann weight of the 
intersecting surface between adjacent cells. Assuming that the 
flux is constant, we approximate the Boltzmann weight of the 
intersecting surface as the geometric average of the Boltzmann 
weight of the cells (square root approximation, SQRA), finding 
a direct algebraic relation between the potential energy function 
and the matrix elements Qij (equation (7)).

In principle, different types of averages (e.g. harmonic or 
arithmetic average) could be used, but a recently published 
proof [19] showed that the discretization of the generator 
converges, in the limit of infinitely small Voronoi cells, to the 
continuous infinitesimal generator Q, if the Boltzmann weight 
of the intersecting surface is approximated by the geometric 
average. This SQRA has been used in literature before [20–22].  
Interestingly, it cannot only be derived from the transition flux 

Figure 1. Scheme summarizing the theory of the transfer operator, 
the generator and the associated transition matrices.

J. Phys.: Condens. Matter 30 (2018) 425201
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density, but the same result has recently been obtained from 
the maximum path entropy principle [23].

The SQRA discretization closes an important gap in the 
discretization methods for dynamical operators. It is funda-
mentally different from the discretization methods for the 
transfer operator. The matrix elements Qij are not estimated 
from correlation functions, but are calculated from the 
Boltzmann weights of the cells Ωi  and Ωj  and a constant flux 
factor Φ̂.

Estimating Boltzmann weights tends to be much easier than 
estimating correlation functions. While for low-dimensional 
systems the Boltzmann weights can be estimated directly 
from the potential energy function, for high-dimensional 
systems, it is more convenient use the free energy profile on 
few relevant coordinates, which can be obtained from a wide 
range of enhanced sampling protocols. However, a method to 
estimate efficiently the constant flux Φ̂ has so far been lacking.

We are now able to apply the SQRA to realistic systems. 
Using a two dimensional diffusion process and alanine dipep-
tide as example of a high-dimensional system, we numerically 
test the initial assumptions of the method: Does the SQRA 
approximation yield the correct eigenspace of the system? 
Does the discretization error decrease in the limit of small 
Voronoi cells? Is the flux indeed constant and is it independent 
of the potential? Note that alanine dipeptide is a single amino 
acid, alanine, capped by two end groups. The end groups are 
chosen such that the central backbone torsion angles φ and ψ 
in alanine are subject to the same steric hindrances as an ala-
nine residue within a longer peptide chain. This molecule thus 
serves as a standard test system for biomolecular dynamics 
simulations [6, 11, 24, 25].

In this paper, we give a detailed derivation of the SQRA, a 
summary of the proof that it converges to an infinitesimal gen-
erator in the limit of small Voronoi cells and we discuss the rela-
tions between operators described in figure 1. Next, we provide 
an approach to estimate the flux Φ̂ based on the robust Perron 
cluster analysis in conformation dynamics (PCCA+) [26].

2. Theory

We consider ergodic and reversible Markovian processes, 
whose dynamics can be represented by the forward transfer 
operator [1–3] T (τ) : L1

π(Γ) → L1
π(Γ), defined for a certain 

finite lag-time τ, that acts on relative probability densities 
ut(x) = ρt(x)/π(x), where ρt(x) is the probability density 
at time t and π(x) is the stationary probability density. The 
transfer operator propagates the functions ut(x) forward in 
time according to

ut+τ (y) = T (τ)ut(y) =
1

π(y)

∫

Γ

p(x, y; τ) ut(x)π(x) dx ,

 (8)
where p(x, y; τ) is the conditional probability to find the 
system in state y, at time t + τ , given that it was in the state 
x at time t. The basis of our considerations is a discretiza-
tion of the state space Γ into disjoint subsets Ωi . The Galerkin 
discretization T (τ) (equation (2)) with respect to these sub-
sets, turns into a row-stochastic transition matrix T(τ). Its 

dominant eigenvectors, approximations of the eigenfunctions 
of T (τ), contain information about the dynamics of the domi-
nant processes of the system [1–7, 9], associated with a tim-
escale defined as:

ti(τ) = − τ

ln(λi(τ))
, ∀ τ > 0 , (9)

where λi(τ) is the ith eigenvalue of the matrix T(τ). If ti(τ) 
does not depend on the lag time τ, then the matrix T(τ) sat-
isfies the Markovian property [3, 5] and the discretization is 
considered valid, i.e. the underlying discretized molecular 
process can be approximated as a Markov chain with time step 
τ in this discretized space. In this case ti is the implied times-
cale at which the ith dominant process occurs.

Besides the transition matrix T(τ), we can also define a 
rate matrix Q, which is in the same sense a discretization of 
the infinitesimal generator Q of the transfer operator. The 
infinitesimal generator and the transfer operator are related by

Q f (x) =
∂T (τ)

∂τ

∣∣∣∣
τ=0

f (x)

= lim
τ↓0

T (τ)− T (0)
τ

f (x) ,
 

(10)

whose solution is

T (τ) = exp(Qτ) . (11)

Because the eigenvalues of Q and T (τ) are related by 
equation (6), the implied timescales of the kinetic processes 
can be derived also from the eigenvalues θi of the rate matrix:

ti = − 1
θi

. (12)

Note that the implied timescales derived from the eigenvalues 
of the rate matrix (equation (12)) do not depend on the lag 
time. In the next section, we will show how to discretize the 
infinitesimal generator Q, into a rate matrix Q, following Lie 
et al [21].

2.1. Square root approximation

Consider a Voronoi tessellation of the state space Γ = ∪n
i=1Ωi, 

then define the transition probability matrix T(τ), via equa-
tion  (2), the entries Tij(τ) describe the probability to jump 
from the cell Ωi  to the cell Ωj  in a time span τ. The associ-
ated infinitesimal generator can be discretized on the basis 
of the same tessellation (equation (7)). Formally, the trans-
ition probability matrix and the rate matrix are related by 

Q := ∂T(τ)
∂τ

∣∣∣
τ=0

. Using the Gauss theorem one can show that 

the non-diagonal entries of the matrix satisfy

Qij =
1
πi

∮

∂Ωi∂Ωj

Φ(z)π(z)dS(z) , (13)

where ∂Ωi∂Ωj is the common surface between the cell Ωi  and 
Ωj , πi is the Boltzmann probability of the cell Ωi  and Φ(z) 
denotes the flux of the configurations z through the infinites-
imal surface ∂Ωi∂Ωj. The complete derivation is provided in 
appendix A.

J. Phys.: Condens. Matter 30 (2018) 425201



L Donati et al

4

Multiplying and dividing the matrix entries Qij (equation 
(13)) by the Boltzmann density of the intersecting surface 
∂Ωi∂Ωj

sij =

∮

∂Ωi∂Ωj

π(z) dS(z) , (14)

one obtains

Qij =
sij

πi

∮

∂Ωi∂Ωj

Φ(z)
π(z)
sij

dS(z)

=
sij

πi
〈Φ〉ij ,

 
(15)

where 〈Φ〉ij represents the mean value of the flux through the 
surface ∂Ωi∂Ωj.

In what follows, we make the following assumptions.

 1.  The flux Φ̂ is constant and does not depend on the poten-
tial energy function, it holds Φ̂ = 〈Φ〉ij.

 2.  The cells are so small such that π(x) is almost constant on 
every cell Ωi  and on every interface ∂Ωi∂Ωj, i.e. π|Ωi ≈ πi 
and π|∂Ωi∂Ωj ≈ πij.

Due to assumption 1, the matrix elements of Q can be 
rewritten as

Qij =
sij

πi
Φ̂ . (16)

The quantity sij (equation (17)), i.e. the Boltzmann density 
of the intersecting surface between two neighboring cells Ωi  
and Ωj , is a surface integral that can be approximated by the 
Boltzmann density πij due to assumption 2:

sij =

∮

∂Ωi∂Ωj

π(z)dS(z)

≈πij .
 

(17)

Thus equation (16) reads

Qij =
πij

πi
Φ̂ . (18)

A second approximation is necessary to estimate the 
Boltzmann weight of the intersecting surface πij. We have 
chosen to use the geometric mean of the Boltzmann weights 
of the centers of the cells Ωi  and Ωj , which corresponds to an 
arithmetic mean of the corresponding potential energy func-
tion of the cells:

πij =
√
πi πj

= exp

(
−β

V(Ωi) + V(Ωj)

2

)
. 

(19)

In principle, other mean-value calculations could be used, but 
as we will show in the next section, only by the geometric 
mean the discretized operator converges to the continuous 
infinitesimal generator. Finally, the entries of the rate matrix 
are written as

Qij =

√
πi πj

πi
Φ̂ =

√
πj

πi
Φ̂ . (20)

Note that it is not necessary to know the partition function 
of the system, because it would cancel in the ratio πj/πi in 

equation (20). Thus the unnormalized Boltzmann weights πi 
and πj can be used.

The matrix Q, as formulated in equation  (20), is a valid 
approximation of the infinitesimal generator Q (equation 
(10)), that satisfies the properties of a rate matrix:

 1.  The diagonal entries satisfy Qii = −
∑

j �=i Qij .
 2.  The sum of the rows is zero 

∑
j Qij = 0.

Moreover, the matrix Q defines the master equation for a jump 
process

∂ρi

∂τ

∣∣∣∣
τ=0

= C
∑
i∼j

(ρjQji − ρiQij) , (21)

where ρ is the probability density, C is a normalization con-
stant and the notation i ∼ j denotes neighboring cells.

2.2. Convergence of the rate matrix

The square root approximation of the infinitesimal generator 
Q is based on a Voronoi tessellation of the state space. In prin-
ciple, it is not clear if this kind of approximation has a physi-
cally meaningful limit, whenever the number of Voronoi cells 
tends to infinity. If this limit exists, it is furthermore not clear 
whether the limit operator is physically reasonable. An arbi-
trary refinement strategy of increasing the number of Voronoi 
cells will probably not converge. However, a recent mathe-
matical study [19] which will be published separately, shows 
that under suitable assumptions on the Voronoi tessellation, 
the square root approximation converges towards the gener-
ator of the Smoluchowski equation, i.e. towards the Langevin 
dynamics for the limit of high friction.

In what follows, let ε denote the maximal diameter of the 
cells and for given ε > 0 let (Pε

i )i be the set of points that 
generate the Voronoi tessellation and let Ωε

i  be the Voronoi 
cell that corresponds to Pε

i . For any continuous func-
tion ρ, we write ρεi := ρ(Pε

i ). In particular, for the function 
π(x) := exp (−βV(x)) we write vεi :=

√
πε

i  and using equa-
tion (20) we denote the right hand side of equation (21) as

(Lερ)
ε
i := Cε

∑
i∼j

(
ρεj

vεi
vεj

− ρεi
vεj
vεi

)
, (22)

where 
∑

i∼j relates to the sum over all neighboring cells Ωε
j  

of the cell Ωε
i  and where we interpret (Lερ)

ε
i  as a function 

which is constant on every Ωε
i . Written in a formal way, for the 

scaling factor Cε = ε−2 and a suitable positive definite sym-
metric matrix Ahom ∈ Rn×n, it holds for twice continuously 
differentiable functions u that [19]

Cε

∑
i∼j

(
ρεj

vεi
vεj

− ρεi
vεj
vεi

)
→ ∇ · (Ahom∇ρ(x))

+ β∇ · (ρ(x)Ahom∇V(x)) as ε → 0 ,
 (23)

provided that Pε
i → x as ε → 0. In case that the Voronoi tes-

sellations are isotropic, we find Ahom = aI, where a  >  0 is a 
constant and I is the identity. However, if for some reason the 
tessellations are systematically anisotropic, the right hand side 

J. Phys.: Condens. Matter 30 (2018) 425201
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of equation (23) can be brought into the form of a classical 
Fokker–Planck operator via a coordinate transform. Hence, 
we also call the right hand side of equation  (23) a Fokker–
Planck operator. In what follows, we will roughly explain how 
the convergence 23 can be obtained.

There exists a simpler version of equation (22) known as 
the discrete Laplace operator Fε having the form

(Fερ)
ε
i := Cε

∑
i∼j

(
ρεj − ρεi

)
. (24)

Note that the use of L and F  is opposite in [19]. It turns 
out that the understanding of the asymptotic behavior of 
Fε is essential for the study of the asymptotic behavior 
of Lε.

In case the point process is a rectangular grid (figure 2), the 
operator Fε has been studied intensively and in broad gener-
ality from physicists (as generator of a Markovian process that 
models Brownian motion, see the review [27]) and mathema-
ticians (for rigorous results, see the review [28]). The notion 
of discrete Laplace operator can be understood as follows: On 
the lattice εZn (that consists of all points x ∈ Rn such that (
ε−1x

)
∈ Zn, see figure 2), the discrete derivative in the jth 

direction is given by dj,ερ(x) := 1
ε (ρ(x + εej)− ρ(x)), where 

ej is the jth unit vector. The second order discrete derivative 
is given by

d2
j ρ(x) : =

1
ε
(djρ(x)− djρ(x − εej))

=
1
ε2 [(ρ(x + εej)− ρ(x)) + (ρ(x − εej)− ρ(x))] .

 (25)

Hence, we obtain for xεi ∈ εZn that
n∑

j=1

d2
j ρ(x

ε
i ) = ε−2

∑
j∼i

(
ρ(xεj )− ρ(xεi )

)
= (Fερ)i , (26)

where now i ∼ j relates to all neighbors xεj ∈ εZn of xεi  s.t. ∣∣xεj − xεi
∣∣ = ε. We now show that for twice continuously dif-

ferentiable functions u, it holds

(Fερ)
ε
i → ∆ρ as ε → 0 if xεi → x. (27)

In order to show this, we use Taylor’s formula, i.e.

ρ(x + εei)− ρ(x) = ∂iρ(x)ε+
1
2
∂2

i ρ(x)ε
2 +

∞∑
k=3

1
k!
∂k

i ρ(x)ε
k

 (28)

and hence

d2
j ρ(x

ε
i ) =

1
ε2

(
∂jρ(xεi )ε+

1
2
∂2

j ρ(x
ε
i )ε

2 +

∞∑
k=3

1
k!
∂k

j ρ(x
ε
i )ε

k

)

+
1
ε2

(
−∂jρ(xεi )ε+

1
2
∂2

j ρ(x
ε
i )ε

2 +
∞∑

k=3

1
k!
∂k

j ρ(x
ε
i ) (−ε)

k

)

= ∂2
j ρ(x

ε
i ) +O(ε).

 (29)
From this, we obtain that equation (27) holds.

We will now use the above insights to formally understand 
the asymptotic behavior of the operator

(Lερ)i : = ε−2
∑
i∼j

(
ρεj

vεi
vεj

− ρεi
vεj
vεi

)
,

where vεi = exp

(
−1

2
βV(xεi )

)
,

 (30)
on the lattice εZn. Writing Vε

i := V(xεi ) and using the Taylor’s 
formula, we obtain

vεi
vεj

= 1 − 1
2
β
(
Vε

i − Vε
j

)
+

1
8
β2 (Vε

i − Vε
j

)2 −O
((

Vε
i − Vε

j

)3
)

 (31)
and inserting this expansion into equation (30), we obtain

(Lερ)i = ε−2
∑
i∼j

((
ρεj − ρεi

)
+

β

2
(
ρεj + ρεi

) (
Vε

j − Vε
i

))

+ ε−2
∑
i∼j

(
1
8
β2 (Vε

i − Vε
j

)2
+O

((
Vε

i − Vε
j

)4
))(

ρεj − ρεi
)

+ ε−2
∑
i∼j

(
ρεj + ρεi

)
O
((

Vε
i − Vε

j

)3
)

.

 

(32)

We know that for small ε ≈ 0, it holds 
(
Vε

i − Vε
j

)
≈  

ε∇V(xεi ) +O(ε2) and equivalently 
(
ρεi − ρεj

)
≈ ε∇ρ(xεi )+  

O(ε2). Therefore, we obtain

(Lερ)
ε
i = ε−2

∑
i∼j

((
ρεj − ρεi

)
+

β

2
(
ρεj + ρεi

) (
Vε

j − Vε
i

))
+O(ε)

 (33)
and using once more the Taylor expansion for u and V  in equa-
tion (33), we further obtain

(Lερ)
ε
i = ε−2

∑
i∼j

(
ρεj − ρεi

)
+ ε−2ρεi

∑
i∼j

β
(
Vε

j − Vε
i

)

+ ε−2
∑
i∼j

β

2
(
ρεj − ρεi

) (
Vε

j − Vε
i

)
+O(ε)

= ε−2
∑
i∼j

(
ρεj − ρεi

)
+ ε−2ρεi

∑
i∼j

β
(
Vε

j − Vε
i

)

+
∑
i∼j

β

2
∂jρ(xεi ) · ∂jV(xεi ) +O(ε).

 

(34)

Figure 2. The role of the parameter in the case εZ2. As ε → 0, the grid becomes finer and finer and approximates the whole of R2.
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Thus, as ε → 0 we observe that

(Lερ)
ε
i → ∆ρ(x) + βρ(x)∆V(x) + β∇ρ(x) · ∇V(x) xεi → x

= ∆ρ(x) + β∇ · (ρ(x)∇V(x))

on the grid εZn. Hence, we recover equation  (23) with 
Ahom = 1 for the cubic Voronoi tessellation.

On arbitrary Voronoi tessellations, things become more 
involved. In particular, the convergence (equation (27)) or 
calcul ations like in equations (29) and (34) do not hold any-
more, as they rely on the rectangular structure of Zn. However, 
the key ideas of the proof remain the same with the differ-
ence that some terms which explicitly cancel out in the above 
calcul ation only vanish in a ‘statistically averaged’ sense, 
using G-convergence.

G-convergence is a concept from early stage in the devel-
opment of Homogenization theory and is rarely used (refer to 
[29]), since other concepts are usually much better suited. In 
the discrete setting, G-convergence can be formulated in the 
following sense: The operator Fε is called G-convergent if 
there exists a symmetric positive definite matrix Ahom such 
that for every continuous f : Ω → R the sequence ρε of solu-
tions to

− (Fερε)i := −
∑
j∼i

(
ρεj − ρεi

)
= f (Pε

i ) , (35)

converges in L2(Ω) to the solutions ρ of −∇ · (Ahom∇ρ) = f , 
where we interpret ρε as a function that is constant on every 
cell Ωε

i . Hence, G-convergence and convergence of the SQRA-
operator are more or less equivalent conditions on the tessel-
lation. In recent years, G-convergence (or equation (27)) has 
been proved for random operators

(Fε
ωρ) (xi) :=

1
ε2

∑
j∼i

ωij (ρ(xj)− ρ(xi)) (36)

on the grid εZn for a broad range of random coefficients ωij  
(see the overview in [28]). However, for stationary and ergodic 
tessellations, the recent results in [19, 30] seem to be the only 
ones.

In conclusion, we showed that the convergence in equa-
tion (23) holds on the rectangular grid for sufficiently smooth 
functions ρ. The calculations suggest that the result also holds 
on more general grids. However, on such more general grids, 
the mathematics behind the convergence (equation (23)) 
becomes much more involved and is thus shifted to the article 
[19]. The results there, are though more general as they state 
that solutions of Lερε = f ε converge to solutions of Lρ = f  
provided f ε → f  in L2(Q).

3. Discretization error

3.1. Relation between transition probability and rate matrices

The Markovian property of the transition probability matrix 
T(τ), i.e. the discretized version of the transfer operator 
T (τ), is guaranteed only by a proper discretization of the space  
[3, 31, 32]. For example, assume a discretization of the space 
into three disjoint sets A, B, and C. If the system is in the state 

x ∈ A, it will jump to a set B or C with different probabili-
ties, depending on the position inside the set A. Because the 
position inside the set A depends on the previous position, the 
Markovian property is lost, on the level of the set A.

Note that a fine enough discretization of the space prevents 
the loss of the Markovian property. Alternatively, it can be 
proven that for a large enough value of the lag time τ, the 
Chapman–Kolmogorov condition T(n · τ) = T(τ)n holds [3], 
guarantying the Markovianity of the process.

With regard to the matrix Q, two problems arise.

 •  If τ is too small, the matrix T(τ) could not describe a 
Markovian process and the matrix Q cannot be consid-
ered a proper generator of T(τ).

 •  If τ is large enough to guarantee the Markovianity of 
T(τ), then the generator Q is the correct generator, but 
it is not physically meaningful. A proper generator is 
defined for τ → 0, in other words for instantaneous 
trans itions that occur between neighboring sets. If τ is 
too big, then Q would describe instantaneous transition 
rates between non-neighboring sets, that are not physical 
if we are considering a time-continuous dynamics.

In conclusion, the matrix Q, obtained by square root approx-
imation (equation (20)) is the Galerkin discretization of the 
infinitesimal generator Q, but it is not the correct generator of 
the transition probability matrix T(τ).

3.2. Flux estimation

The entries of the matrix Q (equation (20)) are written as the 

product of the term Q̃ij =
√

πj

πi
 and the flux Φ̂ that is assumed 

to be constant:

Qij =

√
πj

πi
· Φ̂ = Q̃ij · Φ̂ .

While the first term can be estimated analytically from 
the potential energy function of the system, the factor Φ̂ is 
unknown. Thus, we can estimate only the matrix Q̃, that repre-
sents the correct rates up to the scaling factor Φ̂. Nonetheless, 
the eigenvectors of the matrix Q̃ are a correct approximation 
of the eigenfunctions of the continuous operator Q, while the 
eigenvalues θ̃i, are scaled by the factor Φ̂ as well, such that 
θi ≈ θ̃i · Φ̂, where θi are the correct eigenvalues of Q.

Because the eigenvalues of the transfer operator λi(τ) are 
associated to the eigenvalues of the infinitesimal generator θi 
by the relation

exp(τ θi) = λi(τ) ∀i > 1 , (37)

one could estimate the value of the flux, by comparing the eigen-
values of the rate matrix Q̃, with the eigenvalues of the matrix 
T(τ) obtained by MSM. Unfortunately, because the matrix Q 
is not the correct infinitesimal generator of T(τ), following this 
route would lead to a wrong result.

Molecular systems are characterized by nc  conformations 
in the space, i.e. metastable subsets of the state space where 
the system stays for a time significantly longer then some 
macroscopic time span. The matrices Q and T(τ) can be 
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reduced to the nc × nc matrices of the conformations Qc and 
Tc(τ) that satisfy

exp(τ Qc) = Tc(τ) . (38)

Thus, the flux can be obtained from the eigenvalues of the 
matrices of the conformations. The derivation and the math-
ematical proof of equation (38) is given in the appendix B.

Here, we propose a simple scheme to estimate Φ̂ based on 
equation (38). Firstly, one constructs the matrix Q̃ by SQRA 
and the matrix T(τ) by MSM. Afterward, the two matrices are 
reduced respectively to Q̃

c
 and Tc(τ) by PCCA+  and the flux 

is estimated from the respective eigenvalues as

Φ̂i =
log λc

i (τ)

τ θ̃c
i

∀i ∈ (1, nc] . (39)

In equation (39) the subscript i denotes that the flux Φ̂i  has 

been estimated from the ith pair of eigenvalues {λc
i (τ), θ̃

c
i }. 

Actually, Φ̂ should not depend on the choice of the eigenvalues, 
but, in our numerical experiments, different values of Φ̂i  have 
been found for different pairs of eigenvalues. The result 
improves, i.e. the difference reduces, if the Voronoi cells are 
more homogeneously distributed. Thus, estimating the flux 
from different eigenvalues (equation (39)), and the respective 
standard deviation can be used as a test to evaluate the quality 
of the SQRA.

4. Methods

4.1. Two dimensional system

We consider the two-dimensional diffusion process governed 
by the stochastic differential equation:

{
dxt = −∇xV (xt, yt) + σdBx

t

dyt = −∇yV (xt, yt) + σdBy
t

, (40)

where Bi
t  denotes a standard Brownian motion in the direction 

i = x, y, σ is the volatility and V (xt, yt) is a two-dimensional 
potential energy surface given by the function:

V(x, y) = 4
(

x3 − 3
2

x
)2

− x3 + x + 2 + 2y2 . (41)

In principle, we could estimate the rate matrix of the 
system by SQRA, with no need to integrate the equation of 
motion. We could generate a set of random points uniformly 
distributed on R2, then discretize the space by a Voronoi tes-
sellation and apply the SQRA formula (equation (20)). On the 
other hand, only a subset of R2 is relevant for the dynamics of 
the system, thus we solve numerically the equation of motion 
in order to sample the conformational space. A discretized tra-
jectory is also useful to build a MSM and to estimate a correct 
value of the flux.

We have numerically integrated equation  (40) with the 
Euler–Maruyama scheme, producing trajectories of 4 × 107 
time-steps with a time step ∆t = 0.001, for several values of 
the volatility σ.

Afterward, we have partitioned the sampled space with 
a Voronoi tessellation, picking random points from the 

trajectories, such that the minimum distance between two 
points, is the distance r, an input parameter that represents the 
minimum diameter of the cells. Both the parameter r and the 
volatility σ affect the quality of the Voronoi tessellation and 
the number of cells. A simulation at high volatility, samples a 
larger subset of the state space, thus the Voronoi cells are more 
homogeneously distributed and approximately of the same 
size. We have produced trajectories with σ = 1.0, 1.5, 2.0, 2.5 
and built Voronoi tessellation with r = 0.1, 0.15, 0.2.

We point out that it is not necessary to know the complete 
Voronoi tessellation to build the SQRA, but only the adja-
cency matrix that identifies the neighboring cells. Thinking 
of the Voronoi diagram in terms of convex polyhedra  
[21, 33] permits to write a linear program to estimate the 
adjacency matrix, improving the efficiency compared to usual 
algorithms.

To estimate the flux of the system, we have constructed 
MSMs with enforced detailed balance [34] for each trajectory. 
The MSMs have been constructed on the same tessellation 
used for the SQRA, choosing a lag time range from 100 to 
1000 time steps.

The PCCA+  analysis has been realized using three confor-
mations as input parameter.

To study the dependence of the flux on the potential energy, 
we have perturbed the potential energy function (equation 
(41)) with the function

U(κ, x) = κx (42)

where κ is a parameter that tunes the strength of the 
perturbation.

4.2. Alanine dipeptide

We studied alanine dipeptide in explicit water, built as acetyl-
alanine-methylamide (Ac-A-NHMe) capped with an acetyl 
group on the N-terminus and n-methylamide on the C-terminus 
(Ac-Ala-NHMe), in order to simulate the dynamics of the tor-
sion angles within a peptide chain.

The rate matrix has been constructed on the two relevant 
coordinates, the backbone torsion angles φ and ψ. Thus, the 
potential energy function V(x) has been replaced by the free 
energy profile F(φ,ψ) on torsion angles in the SQRA formula. 
Because an analytical function for F(φ,ψ) is unknown, a MD 
simulation was necessary to estimate the free energy profile 
from the histogram of the trajectory projected on φ and ψ.

We carried out simulations with the GROMACS 5.0.2 sim-
ulation package [35], with the force field AMBER ff-99SB-
ildn [36] and the TIP3P water model [37]. A velocity rescale 
thermostat [38] has been applied to control the temperature 
and a leap-frog integrator [39] has been used to integrate the 
equation of the motion with a timestep of 2 fs. We have per-
formed simulations in a NVT ensemble, at temperature of 300 
and 900 K. The length of each simulation was 600 ns and 
we printed out the positions every nstxout = 500 time steps, 
corre sponding to 1 ps.

The space on relevant coordinates {φ, ψ} = [−p, p] ×  
[−p, p] has been discretized with a 2π × 2π-periodic 
Voronoi tessellation. To study the quality of the SQRA as a 
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function of the size of the cells, we used as minimum diameter 
r = 0.1, 0.14, 0.17 rad.

The trajectories used to sample the free energy profile has 
been used also to build the MSMs and to estimate the flux. 
The MSMs have been built with enforced detailed balance on 
the same Voronoi tessellation of the rate matrix, with a lag-
time range of [0:300] ps.

5. Results and discussion

5.1. Two-dimensional system

As first application, we illustrate the method for a two- 
dimensional diffusion process. The potential energy function 
(equation (41), figure 3(A)) has three minima respectively at 
(−1.12, 0), (0.05, 0) and (1.29, 0), separated by two barriers, 
whose highest points are approximatively at (−0.83, 0) and 
(0.61, 0).

Because the potential energy function is known and the 
system is two-dimensional, one could build the discretized 
generator by SQRA, without producing any trajectory, but 
using random points uniformly distributed on the space R2. 
This approach is not possible for high-dimensional systems, 
in which the accessible state space, at a given temperature 
T, makes up only a small fraction of the total state space. In 
high-dimensional systems, the accessible state space has to 
be identified by a molecular simulation. Therefore we have 
numerically solved the equation of motion to produce a dis-
cretized trajectory of the two dimensional system and sample 
the most characteristic states of the space. Moreover, we used 

the trajectory to select random states as centers of the Voronoi 
cells Ωi , whose Boltzmann weight πi have been estimated as 
arithmetic mean of the unnormalized Boltzmann densities of 
all the points of the trajectory falling in the cell Ωi:

πi =

(nsteps∑
k=1

1Ωi(xk, yk)

)−1

·
nsteps∑

k=1

1Ωi(xk, yk) exp (−βV(xk, yk)) ∀ cellΩi ,

 (43)
where {xk, yk} are the coordinates of the kth point of the tra-
jectory, 1Ωi(xn, yn) is the indicator function of the Voronoi 
cell Ωi  and nsteps is the length of the trajectory. The quantity ∑nsteps

k=1 1Ωi(xk, yk) represents the number of times that the tra-
jectory has visited the cell Ωi .

We first discuss the results obtained from a simulation with 
volatility σ = 2.0 and a partition of the space in 1725 Voronoi 
cells, realized with r  =  0.1 as minimum diameter of the cells 
(figure 3(D)).

Figure 3(E) shows the first three left eigenvectors of the 
matrix Q̃, i.e. of the matrix Q scaled by the factor Φ̂. The first 
left SQRA eigenvector, associated to the eigenvalue θ1 = 0 
has only positive entries and represents the Boltzmann dis-
tribution. The dominant eigenvectors, associated to eigen-
values θi < 0, have positive and negative values and represent 
kinetic exchanges between regions with different sign. In par-
ticular, the second eigenvector describes the slowest kinetic 
process between the region that includes the first and second 
minimum (blue area in figure 3(E)) and the third minimum 
(red area in figure  3(E)), through the highest barrier of the 
potential energy function. The third eigenvector represents 
the second slowest transition, between the middle mininum 

Figure 3. Two-dimensional system. (A) Potential energy function. (B) Trajectory generated with σ = 1.0. (C) Trajectory generated with 
σ = 1.5. (D) Trajectory generated with σ = 2.0. (E) First three left eigenvectors of the rate matrix.
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and the two on the sides. All the other eigenvectors (data not 
shown) describe faster dynamic exchanges inside the meta-
stable regions. The left SQRA eigenvectors are in great agree-
ment with the left MSM eigenvectors (data not shown) and 
are an excellent approximation of the eigenfunctions of the 
infinitesimal generator.

The respective eigenvalues θi of the generator are associ-
ated to the eigenvalues of the transfer operator (equation (6)) 
and contain information about the implied timescales associ-
ated to the kinetic processes of the system. Thus, from the 
eigenvalues of the rate matrix, we can obtain a valid approx-
imation of the implied timescales of the system according 
to equation  (12). The advantage of estimating the implied 
timescales from the eigenvalues of the rate matrix (equation 
(12)), respect to the eigenvalues of the transition probability 
matrix (equation (9)), is that it is not necessary to verify the 
conv ergence of the implied timescales as in MSMs [3]. On the 
other hand, if we do not know the value of Φ̂, then we can only 
know the eigenvalues θ̃i of the matrix Q̃, that are correct up to 
the scaling factor Φ̂. The eigenvalues θ̃i are useful anyway to 
evaluate how much a dominant process is faster than another 
one. For example, if the second eigenvector is associated 
to a timescale of t2 = 70.53 Φ̂−1 time steps, while the third 
eigenvector is associated to a timescale of t3 = 19.14Φ̂−1 time 
steps, then the process associated to the third eigenvector is 
3.68 times faster than the process associated to the second 
eigenvector (tables 1 and 2).

5.2. Estimation of the flux

To estimate the value of the flux Φ̂, we have built MSMs and 
the matrices of the conformations Q̃

c
 and Tc(τ) by PCCA+. 

Because the system has three metastable states, the matrices 

Q̃
c
 and Tc(τ) are 3 × 3 and the flux Φ̂ has been estimated 

comparing the second and third eigenvalues of the matrices, 
i.e. {θ̃c

i , λc
i (τ); i = 2, 3}. In each table that we present (tables 

3–6), Φ̂2 denotes the flux estimated comparing the second 
eigenvalues, Φ̂3 denotes the flux estimated comparing the third 
eigenvalues, Φ̄ is the average flux between Φ̂2 and Φ̂3, ‘std’ is 
the standard deviation and ‘rel. err.’ is the relative error.

We have first studied how the flux depends on the vola-
tility of the system, then we have produced four trajectories 
respectively with σ = 1.0, 1.5, 2.0 and 2.5 and built four rate 
matrices by SQRA and four transition probability matrices by 
MSM. The Voronoi tessellation of the space has been real-
ized with r  =  0.15. The trajectories for σ = 1.0, σ = 1.5 and 
σ = 2.0 and the respective partitions of the space are pre-
sented in figures 3(B)–(D).

Increasing the volatility, that is linked to the temperature 
of the environment, the trajectory samples a larger subset of 
the state space. Because the Voronoi tessellation is realized by 
picking random points from the trajectories, at high volatility, 
the tessellation consists of a large number of cells, homoge-
neously distributed and approximately of the same size. The 
average flux increases linearly with the volatility (table 3, col. 
Φ̂), because high volatility corresponds to a faster dynamics: a 
given cell is visited for a short amount of time, consequently, 
the number of times that a cell border is crossed rises. We also 
observe that the error on the flux, i.e. the difference between 
Φ̂2 and Φ̂3 reduces significantly increasing the volatility (table 
3, column ‘rel. err.’). Thus, we deduce that the quality of the 
SQRA is intrinsically linked to the quality of the Voronoi tes-
sellation and the error on the measure reduces when the cells 
are homogeneously distributed.

Afterward, we have studied how the flux depends on the 
size of the cells (parameter r, table  4). Keeping the vola-
tility constant (σ = 2.0), but reducing the minimum distance 
between centers (r  =  0.2, 0.15 and 0.1), a single cell is vis-
ited for a shorter time and the number of transitions through 
the intersecting surface, i.e. the flux, grows. We also note a 

Table 1. Two-dimensional system. First five eigenvalues and 
implied timescales as function of the flux. The volatility was set 
equal to 1.5 and the minimum distance between the centers of 
neighbor cells was set equal to r  =  0.1.

i θi ITS (time steps)

1 0 —
2 −0.0142 70.5319Φ̂−1

3 −0.0522 19.1482Φ̂−1

4 −0.0738 13.5452Φ̂−1

5 −0.0871 11.4772Φ̂−1

6 −0.1252 7.9900Φ̂−1

Table 2. Two-dimensional system. Ratio ITSi/ITSj between the first 
five implied timescales of table 1. The volatility was set equal to 
1.5 and the minimum distance between the centers of neighbor cells 
was set equal to r  =  0.1.

i 
j 2 3 4 5 6

2 1.00 3.68 5.20 6.14 8.82
3 0.27 1.00 1.41 1.66 2.39
4 0.19 0.70 1.00 1.18 1.69
5 0.16 0.59 0.84 1.00 1.43
6 0.11 0.41 0.58 0.69 1.00

Table 3. Two-dimensional system. Variation of the flux as function 
of the volatility σ. The minimum distance between the centers of 
neighbor cells was set equal to r  =  0.1.

σ ncells Φ̂2 Φ̂3 Φ̄ std
rel. err. 
(%)

1.0 740 0.0080 0.0161 0.0121 0.0057 47.11
1.5 1258 0.0461 0.0523 0.0492 0.0044 8.94
2.0 1725 0.0913 0.0931 0.0922 0.0013 1.41
2.5 2205 0.1427 0.1372 0.1400 0.0039 2.79

Table 4. Two-dimensional system. Variation of the flux as function 
of the minimum distance between the centers of neighbor cells. The 
volatility was set equal to 2.0.

r ncells Φ̂2 Φ̂3 Φ̄ std
rel. err. 
(%)

0.20 456 0.0207 0.0248 0.0227 0.0029 12.87
0.15 784 0.0396 0.0425 0.0410 0.0021 5.12
0.10 1725 0.0913 0.0931 0.0922 0.0013 1.41
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significant reduction of the relative error, that confirms the 
convergence of the rate matrix to the continuous generator for 
small Voronoi cells.

Finally, we have studied how a perturbation (equation (42) 
with κ = 0, 0.5, 1) of the potential energy function affects 
the flux. The effect of such perturbation is to tilt the potential 
energy function along the axis x and to modify respectively 
the Boltzmann weights. The experiment has been repeated 
with σ = 1.5 and σ = 2.0 and the results are collected respec-
tively in tables 5 and 6. In both the cases the perturbation does 
not affect the average flux, confirming the initial assumption 
that the flux does not depend on the potential energy function.

5.3. Alanine dipeptide

As high dimensional system, we have studied alanine dipep-
tide (Ac-A-NHMe) in explicit water. In principle, one could 
estimate the rate matrix using the full potential energy func-
tion, that is parametrized by the forcefield [36], but the 
resulting high-dimensional rate matrix would be computa-
tionally intractable. We have constructed the rate matrix and 
the MSM on two relevant coordinates, the backbone dihedral 
angles φ and ψ, that capture the main dynamical properties of 
the system. Running a MD simulation was necessary only to 
sample the free energy landscape, which can be recovered by 
a normalized histogram of a long trajectory projected on the 
dihedral angles φ and ψ. If the two-dimensional space {φ, ψ} 
is discretized by a Voronoi tessellation, then the Boltzmann 
weight of each cell is proportional to the number of times that 
the system has visited the cell Ωi  divided by the length of the 
trajectory:

πi(φ, ψ) = lim
nsteps→+∞

∑nsteps
k=1 1Ωi(φk,ψk)

nsteps
∀ cellΩi (44)

where {φk,ψk} are the coordinates of the system at time step 
k and nsteps is the length of the trajectory. Consequently, the 
free energy profile of the cell Ωi  reads

Fi(φ, ψ) = − 1
kBT

log πi(φ, ψ) + C , (45)

where C is a negligible constant.
We have first studied the rate matrix built on free energy 

profile obtained from a simulation at 300 K. In this case, 
the MD simulation does not sample the full state space and 
large regions of the space {φ,ψ}, are never visited (figures 
4(A) and (B)). In particular, few trajectory points are found 
in the barrier regions at φ ∼ 0, resulting large Voronoi cells 
in these regions. We have built the Voronoi tessellation, on 

the same trajectory, with r  =  0.1 (figure 4(A)) and r  =  0.17 
(figure 4(B)). In both the cases the cells have significant dif-
ferent sizes in the minima and barrier regions. The only way 
to improve the discretization, i.e. to have small cells homoge-
neously distributed, is to increase the temperature to permit a 
better sampling of the state space. Figure 4(C) shows a trajec-
tory at temperature 900 K, that covers a larger subspace of 
the state space, with a much more homogeneous Voronoi tes-
sellation. From the two-dimensional system and from alanine 
dipeptide, we have learnt that simulations at high temper atures 
(high volatilities), yield a homogeneous Voronoi discretiza-
tion. Furthermore, at high temperatures the flux can be esti-
mated with much higher confidence, than at low temperatures. 
This suggests that the Voronoi discretization for the SQRA 
should be based on a high temperature simulation, even if 
the goal is to model the dynamics at room temperature. The 
realistic magnitude of the implied timescales can be estimated 
from the high temperature simulation in a second step. Indeed, 
the Boltzmann weights can be obtained from the high temper-
ature simulation by first calculating the free energy profile 
via equation (45) and then converting Fi into the Boltzmann 
weights at room temperature via equation (46). In summary, 
we propose a strategy in which a model of the dynamics at 
room temper ature is obtained entirely from a simulation at 
high temperature.

Figure 4(D) shows the dominant left eigenvectors of the 
rate matrix built on the trajectory sampled at 900 K. The first 
eigenvector represents the Boltzmann distribution with the 
typical conformational states (β region, Lα region, and Rα 
region). The second eigenvector represents a kinetic exchange 
between the Lα-minimum (φ > 0) and the α-helix and β-
sheet minima (φ < 0). The associated implied timescale is  
146Φ̂−1 ps. The third eigenvector represents a transition β-
sheet ←→ α-helical conformation, i.e. a torsion around ψ, 
and is associated to a timescale of 40Φ̂−1 ps. The eigenvectors 
are the same obtained from a MSM [25].

Even though the free energy profile was built on a trajec-
tory produced at temperature T  =  900 K, the eigenvectors are 
a valid approximation of the eigenvectors of the system at 
T  =  300 K. Indeed, the simulation at T  =  900 K was used only 
to build the free energy profile according to equation (45), but 
the Boltzmann weights for the SQRA have been estimated by 
the approximation

πi ≈ exp (−βFi(φ, ψ)) (46)

where β = 1
KBT has been set after the simulation with T  =  300 K.  

Instead of this simple approximation to get the free energy 

Table 5. Two-dimensional system. Variation of the flux as function 
of an external perturbation. The volatility was set equal to 1.5 and 
r  =  0.1.

κ ncells Φ̂2 Φ̂3 Φ̄ std
rel. err. 
(%)

0.0 1258 0.0461 0.0523 0.0492 0.0044 8.94
0.5 1235 0.0459 0.0502 0.0480 0.0030 6.25
1.0 1225 0.0449 0.0526 0.0487 0.0055 11.29

Table 6. Two-dimensional system. Variation of the flux as function 
of an external perturbation. The volatility was set equal to 2.0 and 
r  =  0.1.

κ ncells Φ̂2 Φ̂3 Φ̄ std
rel. err. 
(%)

0.0 1725 0.0913 0.0931 0.0922 0.0013 1.41
0.5 1722 0.0927 0.0922 0.0924 0.0003 0.36
1.0 1720 0.0904 0.0926 0.0915 0.0015 1.64
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profile, higher-order reweighting schemes can be applied as 
well [40].

To estimate the value of the flux, we have constructed a 
MSM and the conformation matrices assuming the existence of 
three metastable states (β-sheet, Lα-helix and Rα-helix). Using 
a free energy profile obtained from a simulation at T  =  900 K, 
the gap between Φ̂2 and Φ̂3 is statistically acceptable. If the 
Voronoi tessellation is built with r  =  0.2, the error was 8.58% 
(table 7, first row). Reducing the size of the cells (r  =  0.17), the 
error reduces to 2%, confirming the results obtained also for the 
two dimensional system (table 7, second row).

By contrast, if the free energy was obtained from a simu-
lation at temperature T  =  300 K, the difference between Φ̂2 
and Φ̂3 is not negligible. The relative error is greater than 
100%, and reducing the size of the cells (r  =  0.17, 0.14 and 
0.1) does not improve significantly the result (table 7, third, 
fourth and fifth rows). The reason for these results is that an 
insufficient sampling leads to an inhomogeneous Voronoi 
tessellation.

6. Conclusion

The paper contributes to the classical molecular simula-
tion community in three ways. It provides an easy way to 
estimate the rates between metastable molecular conforma-
tions. It shows that this type of discretization converges to a 
Fokker–Planck operator. Finally, it shows that there is an easy 
mathematical relation between the discretized generator of the 
molecular process and the potential energy landscape.

For many years the concept of transfer operator, well 
known in thermodynamics and quantum mechanics, has been 
established inside the classical molecular simulation com-
munity [1–3] and new methods, such as Markov state models 
[1–9] have been developed to provide a discretized version 
of the transfer operator, in order to reduce the complexity 
and study conformational transition networks of molecular 
systems. The concept of transfer operator is connected to 
the concept of generator, which is simply the  time-derivative 
of the transfer operator. While the spatial discretization of 

Figure 4. Alanine dipeptide. (A) Trajectory (φn,ψn) generated at temperature 300 K, Voronoi tessellation with r  =  0.17. (B) Trajectory 
(φn,ψn) generated at temperature 300 K, Voronoi tessellation with r  =  0.1. (C) Trajectory (φn,ψn) generated at temperature 900 K, Voronoi 
tessellation with r  =  0.17. (D) First three left eigenvector of the rate matrix.

Table 7. Alanine dipeptide. Variation of the flux as function of the temperature (T) and the parameter r.

T (K) r ncells Φ̂2 Φ̂3 Φ̄ std rel. err. (%)

900 0.20 740 11.4390 12.9166 12.1778 1.0448 8.58
900 0.17 1005 17.0914 16.5862 16.8388 0.3572 2.12
300 0.17 566 0.1238 2.5672 1.3455 1.7277 128.41
300 0.14 792 0.1645 3.0356 1.6000 2.0301 126.88
300 0.10 1423 0.3090 6.4278 3.3684 4.3266 128.45
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the transfer operator is a transition probability matrix of a 
Markov chain, the spatial discretization of the generator is a 
rate matrix, which is, in general, hard to extract from time-
discretized simulation data.

Our method simply uses the Boltzmann distribution 
of states for discretize the generator. The first underlying 
assumption is that we can define a continuity equation for the 
time-derivative of the transfer operator. Then, exploiting the 
Gauss theorem, we write the rate between two neighbor states 
as a surface integral of the flux, weighted by the Boltzmann 
density of the intersecting surface. The second assumption is 
a constant flux, i.e. the flux does not depend on the potential 
energy but on the discretization of the space. Instead of com-
puting the Boltzmann weight of the intersecting surface of 
two adjacent Voronoi cells, here, it is estimated as geometric 
average of the Boltzmann weight of the cells. This we denoted 
as square root approximation (SQRA).

After having described in detail how to derive the SQRA, 
we have provided a mathematical proof that the rate matrix 
converges to the generator of the Smoluchowski equation [19] 
for infinitely small subsets of the conformational space. The 
validity of the theoretical assumptions has been confirmed 
also by numerical experiments. We have seen that the error 
on the measure of the flux decreases, reducing the size of the 
Voronoi cells, i.e. that the quality of the SQRA depends on 
the discretization of the state space. Moreover, we have dem-
onstrated that an external perturbation to the potential energy 
function does not affect the value the flux, according to the 
second assumption about the independence of the flux on the 
potential energy function.

While for low dimensional systems, the SQRA can be 
linked directly to the potential energy function of the system; 
for high dimensional systems it is convenient to reduce the 
dimensionality to relevant coordinates and to replace the 
potential energy function with a free energy profile in few 
dimensions. In this paper, for alanine dipeptide, we have per-
formed MD simulations at different temperatures in order to 
produce a discretized trajectories of the system. Afterward, 
we have recovered the free energy profile from the histogram 
of the trajectories projected on the backbone dihedral angles. 
The results have shown that the quality of the SQRA improves 
using the free energy profile built from the simulation realized 
at high temperature, which provides a better sampling of the 
state space.

The SQRA can be improved implementing enhanced sam-
pling techniques like metadynamics [41, 42] or umbrella sam-
pling [43], which offer a double advantage. Firstly, the MD 
simulation time is notably reduced; secondly, they provide an 
analytical function for the free energy profile.

An important further application of the square root approx-
imation, is the possibility to study the effect of Hamiltonian 
perturbation on the dynamics of molecular systems. Like other 
reweighting methods [44], SQRA can be useful to improve the 
parametrization of force fields [25] or to test the influence of 
restraining potentials [45, 46] on the dynamics of the system. 
Furthermore, the method can be used to study the sensitivity 

of the dominant eigenspace on the degrees of freedom of the 
system [47, 48].

In conclusion, we believe that the square root approx-
imation can become a fundamental tool for the study of the 
dynamics of molecular systems and can expands its borders 
of applicability in different ways that will be treated in future 
works.
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Appendix A. Gauss theorem

The Gauss theorem can be used to rewrite the non-diagonal 
entries of the matrix Q as a function of the flux and the sta-
tionary distribution.

A.1. Gauss theorem

Given a Voronoi tessellation of the state space Γ = ∪n
i=1Ωi 

and the discretized transfer operator T(τ), the matrix 

Q := ∂T(τ)
∂τ

∣∣∣
τ=0

 satisfies

Qij =
1
πi

∮

∂Ωi∂Ωj

Φ(z)π(z)dS(z) (A.1)

where ∂Ωi∂Ωj is the common surface between the cell Ωi  and 
Ωj , πi is the Boltzmann density of the cell i and Φ(z) denotes 
the flux of the configurations z ∈ ∂Ωi∂Ωj , through the infini-
tesimal surface ∂Ωi∂Ωj.

A.2. Proof

The conditional probability density p(x, y; τ) denotes the 
probability of observing the system in the state y, after a time 
τ, given that it has been in x. Because the system will always 
assume a thermodynamic state, it yields 

∫
Γ

p(x, y; τ)dy = 1. 
Thus, the conservation of the conditional probability density, 
can be associated to the mass conservation of a fluid, that 
moves in the state space Γ, transporting the properties of the 
system and we can introduce the continuity equation:

∂p(x, y; τ)
∂τ

∣∣∣∣
τ=0

= −∇y · j (A.2)

where j = p(x, y; τ)v(x) is the density flux and v(x) is the 
flow velocity. We interpret the flux of the probability density 
as the probability per unit area per unit time, that a trajec-
tory passes through a surface. While the flow velocity vector 
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represents the velocity with which the system moves from the 
state x to y.

We now use the continuity equation, to rewrite Q:

Qij :=
∂Tij(τ)

∂τ

∣∣∣∣
τ=0

(a) =
∂

∂τ

[
1
πi

∫

Ωj

∫

Ωi

p(x, y; τ)π(x)dxdy

]∣∣∣∣∣
τ=0

=
1
πi

∫

Ωj

∫

Ωi

∂p(x, y; τ)
∂τ

∣∣∣∣
τ=0

π(x)dxdy

(b) =
1
πi

∫

Ωj

∫

Ωi

−∇y · j|τ=0 π(x)dxdy

(c) =
1
πi

∫

Ωj

∮

∂Ωi

−j|τ=0 · ni π(x)dS(x)dy

(d) =
1
πi

∫

Ωj

∮

∂Ωi

−δx=yv(x) · ni π(x)dS(x)dy

(e) =
1
πi

∮

∂Ωi∂Ωj

Φ(z) π(z)dS(z)

 

(A.3)

where we have used:

 (a)  The discretized version of the transfer operator in equa-
tion (8).

 (b)  The continuity equation.
 (c)  The divergence theorem. The vector ni is the unit vector 

orthogonal to the surface ∂Ωi.
 (d)  Because τ = 0, we have

p(x, y; τ) = δx=y. (A.4)

  Then the density flux is j|τ=0 = δx=yv(x).
 (e)  If τ = 0, only instantaneous transitions between neighbor 

cells have to be taken into account. Thus, the only points 
that satisfy x = y, are the points on the intersecting 
surface ∂Ωi∂Ωj. The quantity Φ(z) denotes the flux of 
the configurations z trough the infinitesimal surface ∂Ωi. 
Note that Φ(z) = −δx=yv(x) · ni = δx=yv(x) · nj  where 
nj is the unit vector normal to the surface ∂Ωj .

�

Appendix B. Transition matrices in the space of 
conformations

In the following section, we explain why the relation 
exp(τ Qc) = Tc(τ) (equation (38)) is true.

We consider a partition of the state-space Γ into nc over-
lapping metastable conformations. We now introduce a set 
of nc membership functions χ = {χ1, ...,χnc} such that the 
function χi(x) : Γ → [0, 1] provides the probability that 
a state x ∈ Γ belongs to the conformation Ci: The mem-
bership functions meet the partition of unity property, i.e. 
∀x ∈ Γ,

∑nc
i χi(x) = 1 ∀i. Thus the membership functions 

determine a standard nc-simplex.
Because of metastability of the conformations, a state 

x tends to not leave its starting conformation Ci. Thus, the 

product between the generator Q and the membership func-
tion χi  is almost zero for each conformation i:

Qχi ≈ 0 ∀i = 1, ..., nc. (B.1)

For the identification of the conformations, it can be assumed, 
that the function χi  spans the same linear space as the leading 
first nc right eigenfunctions Fi  of the generator Q, associ-
ated to eigenvalues θi near zero [31]. Thus, we can define an 
invertible transformation matrix A of size nc × nc, such that 
χ = FA, then

Q(F A)i = θi(F A)i ≈ 0. (B.2)

The transformation matrix A is finally used to prove that if 
Q is the infinitesimal generator of T (τ), then Qc is the gen-
erator of Tc(τ).

B.1. Lemma [49, 50]

If the nc eigenfunctions F = {F1, ...,Fnc} of Q, associated 
to eigenvalues θi ≈ 0, are p-orthonormal and χ = FA is a 
regular basis transformation of these eigenfunctions, then

if exp(τ Q) = T (τ) ⇒ exp(τ Qc) = Tc(τ).

Proof. The eigenfunctions Fi  of Q are eigenfunctions also 
of T (τ) with eigenvalues λi(τ) = exp(τ θi) (semigroup prop-
erty). Thus it yields

T (t)Fi = λi(τ)Fi = exp(τ θi)Fi

QFi = θi Fi.
 (B.3)

The matrix Tc(τ) of the conformations is the Galerkin discre-
tization of the operator T (τ) on the basis of the membership 
functions χi . Since the membership functions are not orthogo-
nal, the matrix Tc(τ) is the product of two matrices generated 
by the corresponding inner products:

Tc(τ) = (〈χ,χ〉π)−1 〈χ, T (τ)χ〉π . (B.4)

Replacing χ = FA in equation (B.4), then

Tc(τ) = (〈χ,χ〉π)−1 〈χ, T (τ)χ〉π

=
(
A� 〈F�, F〉π A

)−1
A�〈F�, T (τ)F〉π A

=
(
A� A

)−1
A�〈F�, Λ(τ)F〉π A

=A� 〈F�, F〉π Λ(τ)A
=A� Λ(τ)A .

 

(B.5)

It follows that

Tc(τ) =A� Λ(τ)A

=A� exp(τ Θ)A
=exp(τ Q)

 
(B.6)

where the matrices Θ and Λ(τ) denote respectively the diago-
nal matrices nc × nc of the eigenvalues θi and λ(τ)i. Then Qc 
is an infinitesimal generator of Tc(τ). □ 
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In practice, one can exploit the partition of unity property 
to determine the transformation matrix A using the Robust 
Perron cluster analysis (PCCA+) [26]. The eigenfunctions F  
are unknown, thus one can use the eigenvectors of the matrix 
Q estimated by square root approximation.
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