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By means of a theory of representations of canonical transformations we establish 
a connection between the Feynman-Kac formula and the Hamilton-Jacobi 
equation. 6 1989 Academtc Press, Inc. 

I. INTRODUCTION 

In this work we present a derivation of the FeynmanKac formula based 
on a theory of nonunitary representations of canonical transformations. 
The basic idea is that the flow in R*” of a mechanical system with 
Hamiltonian 

ff(% P) = K(P) + V(q) (1.1) 

is mapped to a semigroup of operators, on functions on R”, having 
infinitesimal generator 

G=K(-V)+ V(q), (1.2) 

where assume K to be real analytic and V to be smooth. 
To construct the mapping that will do this we must recall how to 

desribed time evolution in classical mechanics by means of canonical trans- 
formations, and then we must introduce a class of non-unitary representa- 
tions of this group of canonical transformations. 

For the sake of completeness we will recall a few of the basics from 
classical mechanics. The reader can refer to [ 1 ] or [ 111 for more details. 

* Address correspondence to author at A.P. 52120, Caracas 1050-A, Venezuela. 
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The time evolution of the system is described by the (Hamiltonian) set of 
equations 

4i = aci/api, bi = -aH/aqi, i = 1, 2, . . . . n (1.3) 

plus initial conditions. We shall assume that a global solution to (1.3) exists 
through every point (q, p) in R*“. 

We shall say that a function F(q, p, t) generates the canonical transfor- 
mation (q, p) + (Q, P) whenever the transformation equations 

ei = aFlaP,, Pi = awh, i = 1, 2, . . . . n (1.4) 

can be globally solved for (Q, P) in terms of (q, p) and vice versa. 
Two basic examples, sufficient for our need, correspond to the cases 

I;(q, P, t) = P. d(q) + h(q, f) (ISa) 

F(q, P, t) = 4. $(P) + g(P, f), (ISb) 

where A . B stands for the euclidean scalar product in R”, and 4, $ denote 
two smootly invertible functions on R” (which may depend on t, in which 
case we assume joint smoothness in all variables and invertibility for 
each t). Also h and g are assumed smooth in all variables. Since canonical 
transformations are changes of variables, and as such can be composed, we 
expect such a composition to be reflected at the level of their generating 
functions. This is the content of the following lemma which can be rapidly 
verified for the cases (1.5). 

LEMMA 1.6. Let F,(q’, p’) and F2(q2, p2) be the generating functions of 
the canonical transformations (ql, p’) --* (q*, p’) and (q*, p”) -+ (q3, p3); 
then 

(F20F,)!q1, p3)=F;1(q1, p2)-q2.p2+F2(q2, p3kF(q1,p3) (1.7) 

generates the composition (ql, p’) + (q3, p3), In (1.7), q* and p* are to be 
eliminated with the aid of (1.4). 

Comments. (i) The generating functions we deal with are usually 
described as being of the “second type” and written with a 2 as the 
subindex. For us subindices denote different generating functions of the 
second type. 

(ii) It is easy to verify that each of the classes (1.5) is a group under 
the composition in Lemma (1.7). The open question is how big is the group 
they generate together? In what follows we shall see why they are basic. 
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LEMMA 1.8. The inverses under the composition introduced in 
Lemma (1.7) of each of the classes (1.5) are 

FtQ, P, t)=pV(+h(4 ‘(Qh t) 

I”cQ,p,t)=QW’(P)-g($ ‘(P),t). 

Proof: Verify it. 

(1.9a) 

(1.9b) 

PROPOSITION 1.10. For a system with Hamiltonian H(q, p) = K(p), 
S(q, P, t) = q. P - K(P) t generates the transformation that brings the 
system to rest, and satisfies 

~+H(q,V,S)=O, S(q, P, 0) = q . P. (1.11) 

ProoJ: Easy. 

Comments. (I.1 1) is called the Hamilton-Jacobi equation, and 
S(q, P, 0) = q . P generates the identity transformation. Note as well that it 
is of the type (1.5b). 

We shall proceed to obtain a solution of (I.1 1) when H(q, p) = 
K(p) + V(q). For that we need some preliminaries. 

Note to begin with that for H(q, p) = K(p) + V(q) the solution to (1.3) 
up to O(E*) with 1 tI < E is given by 

q(t) = Q + (V,K)(P) t 

p(t) = P- (V$NQ) t 

for 1 t) <E. These can be rewritten up to O(E*) as 

Q = q - (V,K)(f’) t 
P = P - (V, V(q) t, 

(1.12) 

which are the transformation equations determined by the generating 
function 

S,(q, P, t)-(FkoFJ(q, P, t)=q.P- (K(P)+ v(q)) t 
(1.13) 

F,(q, P, t)=q.P- Vq)t and F,(q, P, t) = q P - K(P) t. 

Let us now bring the system from time t to time 0 by a sequence of 
infinitesimal canonical transformations. For positive n define for 0 < k <n 

(1.14) 
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and for O<k<n 

Sk (qk,p*“,~)=qk.p*“-(K(p*il)+V(q*))~. (1.15) 

The relationship between (qk, p”) and (qk + ‘, pk + ’ ) is determined by 
(1.12) via (1.15). Consider now the composition 

= so 

n-1 -q .p”-’ +s,-, (q-1. PC) 

n-1 n-1 

= F pk.(qk-I-qk)- c H(q*,p*+‘);+q”-‘.p” (1.16) 
0 

and we are ready to state the novel, but expected, 

PROPOSITION 1.17. Assuming that the system (1.3) has global solutions 
passing through every point (Q, P) in phase space and that (q(t), p(t)) = 
(dQ> Pv th P(Q, P, t)) can be solved for (Q, p) in terms of (q, P) for 
0 < t 6 T, then the Riemann sums (1.16) converge to 

lim sn(q> ~“3 t) = Sots PI + j; (P(S) 4(s) - ff(q(s), p(s)) ds}, (1.18) n-cc 

where S,(q, p) = lim, _ m q”- ’ . p” = Q . P with Q = Q(q, p). Moreover, the 
solution to (1.9) can be represented by the right hand side of (1.18). 

Proof. From the comments prior to the statement and the hypothesis 
the existence of the limits is clear. The second contention of the proposition 
is known, but we present another proof for completeness. Let (q(t), p(t)) 
be the solution to (1.3) through (Q, P) and put, for t > 0, 0 < s < t, 

(B(s), B(s)) = (dt -Sk P(t - s)), S(s) = S(@(s), P, t-s). 

Therefore if we prove that V,S(q, P, t) = p(r), then 

d,!? 
,=v$+~= -fi(t-s)Q(t-s)+H(q(t-s),q(t-s)), 

409/142/l-6 
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and integrating from 0 to t we obtain 

S((j(t), P, 0) - S(#O), P, t = - 1’ (p .Q- H) dt. 
0 

Since Q(t) = Q and g(O) = q(t) 

S(q,P,r)=e-p+j’(~.8-H(q,p))dt, 
0 

and we can now express Q in terms of q, P and t. In conclusion note that 
if we put ti= &S/aqi, then differentiating (1.11) with respect to qi and 
making use of (1.3) we obtain 

or equivalently d(ti - p,)/dt = 0. Since ti(q, P, 0) = p,(O) = Pi we obtain 

ti=g (9, p? t)=P(t) 
I 

which concludes our proof. 

Comment. It is now clear why we called the generating functions of the 
types (ISa) and (ISb) basic. 

II. REPRESENTATION OF CANONICAL TRANSFORMATIONS 

Here we introduce a non-unitary representation of the class of canonical 
transformations introduced above which turns out to be an 
antihomomorphism with respect to the composition law introduced in 
(1.6). As usual we shall denote by CF the class of functions f: IV + R 
which are infinitely differentiable and have compact support. 

DEFINITION (II.1 ). Let F(q, P, t) be such that F(q, ik, t) makes sense for 
k in IR” and i = J-1. For f(Q) E Cp put 

(TdXq)= j e- F(y- ik, ‘fik) dk/(2n)“, (11.2) 

where f(k) = J eik.Qf(Q) dQ. 
We shall drop t for a while. 
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LEMMA 11.3. For F(q, P, t) = J/(q). P+h(q) with +: R” -+ IR” a dif- 
feomorphism and h(q) in C” we have T,: C 2 -+ C 2 and TF, T,, = T, y F, 
onC,“. 

Proof. It suffices to note that (TFf)(q) = ephcq’f($(q)). Since II/ maps 
compacts onto compacts, the first assertion follows. The second is even 
simpler. 

LEMMA 11.4. Let F(q, P, t) = q. P + g(P), with g(P) real analytic. Then 
T,-: C; -+ Cp and T,,T,= TFzOF, on Cr. 

Proof. From the fact that g is analytic we obtain 

e-g(“)f(ik) = [ (e- g(vQ)e*.Q)f(Q)dQ=[ eik.Q(e-nc~vQlf(Q))dQ, 

Since exp( - g(V,)) is a local operator, exp( - g(vQ) f))(Q) is of 
compact support whenever f (Q) is so. The rest is easy. 

From this and proposition (1.10) we obtain 

PROPOSITION 11.5. Let S(q, P, t) = q. P - H(P) t. Then for f e CT, 
n(q, t) = (T,,,,f)(q) satisfies 

au ~=H(-v& 4% 0) = g(q). (11.6) 

Proof: Easy. 

Observe that in (11.5) or (11.6) there is no restriction upon the sign of t. 
Such restrictions depend on the class of functions we deal with. 

The example shown in (11.5), in addition to illustrating the non-unitary 
representation of transformations of type (1.5b), is the basic example in 
which ideas of different fields came together. In [2,12] two approaches to 
the study of (11.6) appear; in [3] Feinsilver presents a relationship among 
integrable systems, special polynomials, and probability semigroups. 

Some of the probabilistic aspects of the “generalized processes” 
associated to semigroups like (11.6) are studied in [6-Ill. The problem 
with semigroups associated to solutions to (11.6) is that they cannot be 
used to provide honest measures on path spaces, but only finitely additive 
measures (measures on cylinder sets only!). 
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III. THE FEYNMAN-KAC FORMULA 

Let (X,) be a Markov process on R” with transition operator P, and 
(weak) infinitesimal generator G. The FeynmanKac Formula ([4,5], or 
[15]) provides us with a probabilistic representation of the solution to 

$=Gu+ Vu, 4% 0) =f(q) (111.1) 

in terms of integration on path space. The result is 

4q, t) = EY 
[ 
Ax,) exp j’ Vx,) ds 1 3 (111.2) 

where the class of potentials, or source terms, V(q) such that (111.2) makes 
sense depends on each particular process. (See also [3] for additional 
versions.) 

We now show how (111.2) is derived by using the representation theory 
and what the problems for its general validity are. 

To begin with consider a generalized process, X, with semigroup P, and 
generator G = K( -V). We noted such semigroups in Proposition 11.5. By 
generalized we mean that perhaps the cylindrical measures defined by 

= SC . f1(41)...fn(qn) p&h 4,) 4-&l, dq2)...P,~-,“~,(qn~,, dq,) 
(111.3) 

for O<t, 6 . . . 6 t, and bounded fi, . . . . f, cannot be extended to measures 
on the set of all paths on R”. Consider now a perturbation G of G given 
by 

c=G+ V(q)=&-V)+ V(q) (111.4) 

to which we can associate a mechanical system with Hamiltonian 
fJ(q, PI = m PI + Vq). 

We saw in Section I that the Hamilton-Jacobi function S(q, P, t) 
describing the evolution of such systems can be obtained as the limit 
of S(“‘(q, P, t) where S(“)(q, P, t) = (S,_, 0 Sn--2 0 . . . 0 S,)(q, P, t) with 
Sk(clk, pk + ‘, t)= (FKOFY) qk, pktl, r/n). From Section II we know that 
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and therefore, an application of the simple Markov property yields 

fh f)=Eq[fWt)eip$l $(($)I. (111.5) 

Nothing very stringent about the function V(q) or the sample paths is 
needed to ensure the identity lim, C; V(X(t(k/n))) = jb V(X(s)) ds. When 
the measures Eq(. ), defined on cylinder sets by 111.3, extend to measures on 
the set of all trajectories on KY’, our version of the product formula is 
contained in 

PROPOSITION 111.6. Assume that (X,) is u Markoo process on IL!” with 
t + X, being almost surely right continuous on [IO, co) and V(q) being con- 
tinuous and such that Eq[exp jh V(X(s)) ds] isfinitefor all q and t. Then 

lim f(K) exp jd WW) ds] (111.7) 
n-+m 

for allfECF. 

The stage is set so that the proof of (111.6) is obvious. To conclude we 
have 

PROPOSITION 111.8. Whenever T,(,, is defined and for u, t 2 0 Tscr +uj = 
Tqrj Ts(u, we have under the hypotheses of (111.6) 

V,,,,f)(q, f)=Eq [ fO',)exp 1: W3.M ds]. (111.9) 

Proof: Both sides are semigroups and since 

-siq*ik*olf(k)) dk/(2n)” 

= 
s 

[K(ik) + V(q)] e-ik.qf(k) dk/(2x)” = (i?f )(q), 

since as/at = -K(VS) + V(q) and S(q, P, 0) = q . P. 
Since both sides are semigroups with the same infinitesimal generator the 

proof is complete. 
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