
Chapter 7

Exit Problems for Diffusion Processes
and Applications

In this chapter, we develop techniques for calculating the statistics of the time that

it takes for a diffusion process in a bounded domain to reach the boundary of the

domain. We then use this formalism to study the problem of Brownian motion in

a bistable potential. Applications such as stochastic resonance and the modeling

of Brownian motors are also presented. In Sect. 7.1, we motivate the techniques

that we will develop in this chapter by looking at the problem of Brownian motion

in bistable potentials. In Sect. 7.2, we obtain a boundary value problem for the

mean exit time of a diffusion process from a domain. We then use this formal-

ism in Sect. 7.3 to calculate the escape rate of a Brownian particle from a potential

well. The phenomenon of stochastic resonance is investigated in Sect. 7.4. Brownian

motors are studied in Sect. 7.5. Bibliographical remarks and exercises can be found

in Sects. 7.6 and 7.7, respectively.

7.1 Brownian Motion in a Double-Well Potential

In this section, we study a simple dynamical stochastic system that can exist at two

different (meta)stable states. Our goal is to understand how noise enables such a

system to jump from one metastable state to another and to calculate how long it

will take on average for this transition to occur.

We look at a Brownian particle moving in a double-well potential under the inf-

luence of thermal noise in one dimension, the problem that we studied briefly in

Sect. 5.2:

dXt =−V ′(Xt)dt +
√

2β−1 dWt , (7.1)

with the bistable potential

V (x) =
1

4
x4 −

1

2
x2 +

1

4
. (7.2)
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Fig. 7.1 Bistable potential (7.2) and invariant distribution (7.4)

This potential has three extrema: a local maximum at x = 0 and two local minima at

x = ±1. The values of the potential at these three points are V (±1) = 0, V (0) = 1
4
.

We will say that the height of the potential barrier is ∆V = 1
4
. We are interested in

understanding the dynamics (7.1) in the asymptotic regime where the thermal fluc-

tuations, whose strength is measured by the temperature β−1, are weak compared

to the potential barrier ∆V :

1

β ∆V
≪ 1. (7.3)

As we have already seen, the dynamics (7.1) is ergodic with respect to the distribu-

tion

ρs(x) =
1

Z
e−βV(x). (7.4)

At low temperatures, β ≫ 1, most of mass of the invariant distribution is concen-

trated around the minima of the potential; see Fig. 7.1. It is expected that stationery

trajectories of Xt will spend most time oscillating around the two local minima of the

potential, while occasionally hopping between the two local minima of the poten-

tial. This intuition is confirmed by performing numerical simulations; see Fig. 7.2.

This is a noise-assisted event: in the absence of noise, the process Xt ends up at one

of the two minima of the potential, depending on its initial condition. Indeed, it is

easy to check that the potential itself is a Lyapunov function for the deterministic

dynamics. For the noise dynamics, we will refer to the two local minima of the

potential as metastable states.

The time that it takes for the “particle” Xt to acquire a sufficient amount of energy

from the noise so that it can surmount the potential barrier ∆V and escape from

one of the metastable states depends on the strength of the noise, i.e., the temper-

ature. When the noise is weak, the particle spends a long time at the metastable

state (relative to the time scale introduced by Assumption 7.3), before being able to

escape from it. This is an example of a rare event. The relevant time scale, the mean

exit time or the mean first passage time, scales exponentially in β :
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Fig. 7.2 Sample path of Xt , the solution of (7.1) with the bistable potential (7.2)

τ = ν−1 exp(β ∆V ). (7.5)

We will refer to this as the Kramers time. The inverse of the Kramers time is pro-

portional to the reaction rate (hopping rate) κ ∼ τ−1, which gives the rate at which

particles escape from a local minimum of the potential:

κ ∼ ν exp(−β ∆V ). (7.6)

The prefactor ν is called the rate coefficient. This hopping mechanism between

metastable states becomes less pronounced at higher temperatures. For β suffi-

ciently low, the dynamics (7.1) is dominated by noise, and transitions between the

two metastable states cease to be rare events.

One of our goals in this chapter will be to obtain (7.5) in a systematic way and

furthermore, to obtain a formula for the prefactor ν . More generally, we want to con-

sider stochastic dynamical systems of the form (7.1) that possess several metastable

states. We want to characterize transitions between these states and to calculate tran-

sition rates. This will be done in Sects. 7.2 and 7.3. Later in this chapter, we will also

consider the effect of adding a time-periodic external forcing to stochastic systems

with metastable states. This will be done in Sects. 7.4 and 7.5.

7.2 The Mean Exit Time

In order to calculate the hopping rate κ for the dynamics (7.1) in a metastable poten-

tial (7.2), we need to calculate the time it takes on average for the diffusion process

Xt to escape from one of the local minima of the potential, or more generally, the

time it takes on average for a diffusion process to escape from a metastable state.

This mean exit time from a metastable state is an example of a mean first passage
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time (MFPT): we want to calculate how long it takes on average for a diffusion

process to reach the boundary of a domain. When the domain is the basin of attrac-

tion of one of the local minima of the potential, the mean first passage time gives us

the average time it takes for the diffusing particle to reach the local maximum of the

potential.

We can calculate the mean exit time τ for a diffusion process Xt in a systematic

way by showing that it is the solution of a boundary value problem that involves the

generator of the process Xt . This boundary value problem, see equation (7.9), can

be justified rigorously using Dynkin’s formula (3.110). In this section, we present a

formal derivation of this equation that will be sufficient for our purposes.

The Boundary Value Problem for the Mean Exit Time

Let X x
t denote the solution of the stochastic differential equation

dX x
t = b(X x

t )dt +σ(X x
t )dWt , X x

0 = x, (7.7)

in R
d , and let D be a bounded subset of Rd with smooth boundary. We have intro-

duced the superscript x to emphasize the dependence of the solution to the SDE on

the initial point x. Given x ∈ D, we define the first passage time or first exit time to

be the first time that X x
t exits the domain D:

τx
D = inf{t � 0 : X x

t /∈ D} .

This is an example of a stopping time (see Sect. 3.8): the information that we have

about our stochastic process up to time t is sufficient to determine whether the event

τ � t has occurred. The average of this random variable is called the mean first

passage time or the mean exit time:

τ(x) := Eτx
D = E

(

inf{t � 0 : X x
t /∈ D}

∣

∣

∣
X x

0 = x
)

.

We have written the second equality in the above in order to emphasize the fact

that the mean first passage time is defined in terms of a conditional expectation,

i.e., the mean exit time is defined as the expectation of the first time the diffusion

processes Xt leaves the domain, conditioned on Xt starting at x ∈ Ω . Consequently,

the mean exit time is a function of the starting point x. Consider now an ensemble

of initial conditions distributed according to a distribution p0(x). The confinement

time is defined as

τ̄ =

∫

Ω
τ(x)p0(x)dx =

∫

Ω
E

(

inf{t � 0 : X x
t /∈ D}

∣

∣

∣
X x

0 = x
)

p0(x)dx. (7.8)

We can calculate the mean exit time by solving an appropriate boundary value prob-

lem. The calculation of the confinement time follows, then, by calculating the inte-

gral in (7.8).



7.2 The Mean Exit Time 239

Result 7.1 The mean exit time is given by the solution of the boundary value

problem

−L τ = 1, x ∈ D, (7.9a)

τ = 0, x ∈ ∂D, (7.9b)

where L is the generator of the diffusion process 7.7.

The homogeneous Dirichlet boundary conditions correspond to an absorbing

boundary: the particles are removed when they reach the boundary. Other choices

of boundary conditions are also possible; see Eq. (7.11).

Derivation of Result 7.1. Let ρ(y, t|x) be the probability distribution of the particles

that have not left the domain D at time t. It satisfies the Fokker–Planck equation

with absorbing boundary conditions:

∂ρ

∂ t
= L

∗ρ , ρ(y,0|x) = δ (y− x), ρ |∂D = 0, (7.10)

where L ∗ is a differential operator in y. We can write the solution to this equation

in the form

ρ(y, t|x) = eL
∗tδ (y− x),

where the absorbing boundary conditions are included in the definition of the semi-

group eL ∗t . The homogeneous Dirichlet (absorbing) boundary conditions imply that

lim
t→+∞

ρ(y, t|x) = 0.

That is, all particles will eventually leave the domain. The (normalized) number of

particles that are still inside D at time t is

S(x, t) =

∫

D
ρ(y, t|x)dy.

Note that this is a decreasing function of time. We can write

∂S

∂ t
=− f (x, t),

where f (x, t) is the first passage time distribution. The mean exit time is the first

moment of the distribution f (x, t):

τ(x) =
∫ +∞

0
f (x,s)sds =

∫ +∞

0
−

dS

ds
sds

=

∫ +∞

0
S(s,x)ds =

∫ +∞

0

∫

D
ρ(y,s|x)dyds

=

∫ +∞

0

∫

D
eL ∗sδ (y− x)dyds

=

∫ +∞

0

∫

D
δ (y− x)

(

eL s1
)

dyds =

∫ +∞

0

(

eL s1
)

(x)ds.
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We apply L to the above equation to deduce

L τ =

∫ +∞

0

(

L eL t1
)

dt =

∫ +∞

0

d

dt

(

eL t1
)

dt

= −1.

⊓⊔

When a part of the boundary is absorbing and a part is reflecting, then we end up

with a mixed boundary value problem for the mean exit time:

−L τ = 1, x ∈ D, (7.11a)

τ = 0, x ∈ ∂DA, (7.11b)

η ·J = 0, x ∈ ∂DR. (7.11c)

Here ∂DA∪∂DR = ∂D, where ∂DA �= /0 denotes the absorbing part of the boundary,

∂DR denotes the reflecting part, and J denotes the probability flux.

7.2.1 Examples

We can study now a few simple examples for which we can calculate the mean first

passage time in closed form.

Brownian Motion with One Absorbing and One Reflecting Boundary

We consider the problem of Brownian motion (with diffusion coefficient 2) moving

in the interval [a,b]. We assume that the left boundary is absorbing and the right

boundary is reflecting. The boundary value problem for the mean exit time becomes

−
d2τ

dx2
= 1, τ(a) = 0,

dτ

dx
(b) = 0. (7.12)

The solution of this equation is

τ(x) =−
x2 − a2

2
+ b(x− a).

The mean exit time for Brownian motion with one absorbing and one reflecting

boundary in the interval [−1,1] is plotted in Fig. 7.3a.

Brownian Motion with Two Absorbing Boundaries

Consider again the problem of Brownian motion with diffusion coefficient 2 moving

in the interval [a,b], but now with both boundaries absorbing. The boundary value

problem for the MFPT time becomes
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a b

Fig. 7.3 The mean exit time for Brownian motion with one absorbing and one reflecting boundary

(a) and two absorbing boundaries (b)

−
d2τ

dx2
= 1, τ(a) = 0, τ(b) = 0. (7.13)

The solution of this equation is

τ(x) =−
x2

2
+

a+ b

2
x−

ab

2
.

The MFPT time for Brownian motion with two absorbing boundaries in the interval

[−1,1] is plotted in Fig. 7.3b.

The Mean First Passage Time for a One-Dimensional Diffusion Process

Consider now the mean exit time problem from an interval [a,b] for a general one-

dimensional diffusion process with generator

L = b(x)
d

dx
+

1

2
Σ(x)

d2

dx2
,

where the drift and diffusion coefficients are smooth functions and where the dif-

fusion coefficient Σ(x) is a strictly positive function (uniform ellipticity condition).

In order to calculate the mean first passage time, we need to solve the differential

equation

−
(

b(x)
d

dx
+

1

2
Σ(x)

d2

dx2

)

τ = 1, (7.14)

together with appropriate boundary conditions, depending on whether we have

one absorbing and one reflecting boundary or two absorbing boundaries. To solve

this equation, we first define the function ψ(x) through ψ ′(x) = 2b(x)/Σ(x) to

write (7.14) in the form
(

eψ(x)τ ′(x)
)′

=−
2

Σ(x)
eψ(x).
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The general solution of (7.14) is obtained after two integrations:

τ(x) =−2

∫ x

a
e−ψ(z) dz

∫ z

a

eψ(y)

Σ(y)
dy+ c1

∫ x

a
e−ψ(y) dy+ c2,

where the constants c1 and c2 are to be determined from the boundary conditions.

When both boundaries are absorbing, we get

c1 =
2
∫ b

a e−ψ(z) dz
∫ z

a
eψ(y)

Σ(y) dy
∫ b

a e−ψ(y) dy
, c2 = 0,

whereas when the left boundary is absorbing and the right is reflecting, we have

c1 = 2

∫ b

a

eψ(y)

Σ(y)
dy, c2 = 0.

7.3 Escape from a Potential Well

Now we can use the theory developed in the previous section to calculate the escape

rate and the mean exit time from a metastable state for a particle moving in a double-

well potential of the form (7.2) for the overdamped Langevin dynamics (7.1).

We assume that the left and right minima of the potential are located at x = a and

x = c, respectively; the local maximum is at x = b, a < b < c. We will calculate the

rate of escape from the left minimum. For this, we need to know how long it will

take, on average, for a particle starting close to the minimum a to reach the local

maximum.

We assume that the particle is initially at x0, which is near a. The boundary value

problem for the mean exit time from the interval (a,b) for the one-dimensional

diffusion process (7.1) reads

−β−1eβV d

dx

(

e−βV d

dx
τ

)

= 1. (7.15)

In view of the fact that the particle cannot move too much to the left, since the

potential is confining, we choose reflecting boundary conditions at x = a. We also

choose absorbing boundary conditions at x = b, since we are assuming that the

particle escapes the left minimum when it reaches the point b. We can solve (7.15)

with these boundary conditions by quadratures:

τ(x) = β

∫ b

x
dyeβV(y)

∫ y

a
dze−βV (z). (7.16)

The potential grows sufficiently fast at infinity to allow us to replace the boundary

conditions at x = a by a repelling/reflecting boundary condition at x =−∞:1

1 In other words, the integral
∫ a
−∞ e−βV (y) dy can be neglected.
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τ(x) ≈ β

∫ b

x
dyeβV(y)

∫ y

−∞
dze−βV(z).

When ∆Vβ ≫ 1, the integral with respect to z is dominated by the value of the

potential near a. We can use the Taylor series expansion around the minimum:

V (z) =V (a)+
1

2
ω2

a (z− a)2 + · · ·

Furthermore, we can replace the upper limit of integration by +∞:
∫ y

−∞
e−βV(z) dz ≈

∫ +∞

−∞
e−βV(a)e−

βω2
a

2 (z−a)2

dz

= e−βV(a)

√

2π

β ω2
a

.

Similarly, the integral with respect to y is dominated by the value of the potential

around the local maximum b. We use the Taylor series expansion

V (y) =V (b)−
1

2
ω2

b (y− b)2 + · · · .

Assuming that x is close to the left local minimum a, we can replace the lower limit

of integration by −∞. We have

∫ b

x
eβV(y) dy ≈

∫ b

−∞
eβV(b)e−

βω2
b

2 (y−b)2

dy

=
1

2
eβV(b)

√

2π

β ω2
b

.

Putting everything together, we obtain the following formula for the mean exit time:

τ =
π

ωaωb

eβ ∆V . (7.17)

This is independent of the point x, provided that it is close to the local minimum a.

The rate of arrival at the local maximum b is 1/τ . Once a particle has reached b,

it has a 50% chance of moving to the left and a 50% of moving to the right. In other

words, only half of the particles that reach b manage to escape. Consequently, the

escape rate (or reaction rate) for x in the vicinity of a is given by 1
2τ :

κ =
ωaωb

2π
e−β ∆V . (7.18)

We will refer to (7.17) as the Kramers time and to (7.18) as the Kramers rate.

Example 7.1. We can approximate a double-well potential of the form (7.2) by either

a piecewise linear or a piecewise constant potential. Consider a symmetric bistable

potential with minima at x =±L and maximum at x = 0. We consider the piecewise

linear potential
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Fig. 7.4 Piecewise linear and piecewise constant approximations of a symmetric double-well

potential

VL(x) =







δ
L
(L− x) x ∈ [0,L],

δ
L
(L+ x) x ∈ [−L,0],
+∞ x /∈ [−L,L],

(7.19)

The constant δ > 0 is chosen so that we get the best fit of the double-well potential.

Similarly, we can also consider the piecewise constant approximation

VC(x) =















0 x ∈ [α,L],
ζ x ∈ [−α,α],
0 x ∈ [−L,−α],
+∞ x /∈ [−L,L].

(7.20)

Again, the constants ζ ,α > 0 are chosen to obtain the best fit. These approximations

are compared to a symmetric double-well potential in Fig. 7.4.

Using formula (7.16), we can obtain an analytical expression for the mean

exit time from the left well for the piecewise linear potential (7.19). We have the

following:2

τ(x) = β

∫ 0

x
dyeβ δ

L (L+y)
∫ y

−L
dze−β δ

L (L+z)

=
Lx

δ
+

L2

β δ 2

(

eβ δ − e
βδ
L (x+L)

)

, (7.21)

for x ∈ [−L,0].

In Fig. 7.5a, we use (7.21) (for δ = L = 1) to plot the mean exit time from the left

well for a particle starting at the bottom of the well as a function of the temperature.

In Fig. 7.5b, we plot the mean exit time from the left well as a function of the

starting point for different values of the temperature. As expected, the mean exit

time decreases exponentially fast as the temperature increases. Furthermore, the

mean exit time decreases rapidly in a layer close the the local maximum x = 0.

2 The boundary conditions are reflecting at x = −L and absorbing at x = 0, whence (7.16) is the

correct formula to use.
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a b

Fig. 7.5 Mean exit time for a particle starting at x ∈ [−L,0] for the piecewise linear potential. (a): τ
as a function of temperature; (b): τ as a function of x for different values of the temperature β−1

Fig. 7.6 Mean exit time for a particle starting at x ∈ [−L,0] for the piecewise linear potential at

inverse temperature β = 2

This phenomenon becomes more pronounced for lower values of the temperature.

Similar results can be obtained for the piecewise constant potential; see Exercise 1.

7.4 Stochastic Resonance

In this section, we study the effect of adding a time-periodic forcing to the dynam-

ics (7.1). In particular, we are interested in understanding the effect that the time-

dependent forcing has on the hopping rate between the two wells of the potential

and on whether it can induce a coherent response of the system in the presence of

noise.


