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Abstract. This article is about molecular simulation. However, the theoretical results apply for general over-
damped Langevin dynamics simulations. Molecular simulation is often used for determining the stability of
a complex (e.g., ligand-receptor). The stability can be measured by computing the expected holding time of
the complex before its dissociation. This dissociation can be seen as an exit event from a certain part S of
the conformational state space Γ. Determining exit rates (i.e, for SDE-based simulations exiting from a given
starting set S ) for a stochastic process in which the exit event occures very rarely is obviously hard to solve by
straight forward simulation methods. Finding a low variance procedure for computing rare event statistics is
still an open problem. Imagine now, e.g., a simulation of a diffusion process. As long as the time-dependent
state trajectory is inside the starting set S , no information is gained about the rare event statistics. Only at that
point of time, when the process leaves the starting set, a piece of information about the exit rate is collected. If
S , however, is a fuzzy set given by a membership function, then there might be additional information of the
kind “the process is about to leave the set”. However, how to define an exit rate from a fuzzy set?

1 Introduction
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Figure 1. In the state space Γ (rectangle) there is a subset S of
starting points (big circle). If we start trajectories of a stochastic
process at a starting point x ∈ S of a fixed time-length t, then
there is a certain probability that we get a trajectory that is always
within S (dashed line) and that does not leave S (dotted line). We
are interested in how this probability depends on the time-length
t and on the starting point x. The “core” is a subset of S which is
very likely to be reached by trajectories starting in S .

In molecular simulation we are often faced with the
situation that is depicted in Fig. 1. Let us assume, that
we run a Brownian dynamics (potential-driven diffusion,
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overdamped Langevin) simulation guided by a given po-
tential energy. This is mathematically formulated in Eq.(1)
below. Brownian dynamics trajectories that start in low-
energy regions S of the potential energy surface will leave
these regions (dotted line) only with a very small proba-
bility. It is more likely to observe that the trajectory will
approximate (dashed line) and dominantly sample states
within the lowest energy part of S . This part is denoted as
“core” in Fig. 1. That means that it is very probable to ob-
serve trajectories to approximate the core set rather than
trajectories which leave the low-energy region S . This
“exit event” is, thus, a rare event. The (biological or chem-
ical) stability of many molecular systems is given by the
rareness of these events. A straight forward molecular
simulation approach to estimate the exit rate is the follow-
ing: We start several trajectories from x ∈ S and determine
the time they need to exit from S . This approach will be
extremely inefficient, because the statistics will depend on
rare events.

Many approaches in literature try to overcome the
sampling problem of rare events. Here are some exam-
ples:

• An uncountable number of molecular simulation meth-
ods try to accelerate the transitions between the molec-
ular conformations. Girsanov’s Theorem can be ap-
plied in order to reweight the accelerated samplings to-
wards the original slow process [1]. However, evaluat-
ing the reweighting formula and finding proper acceler-
ation methods can be difficult.
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• Computing rare events by milestoning [2] discretizes
the exit path of the molecular system and determines
the (fast) rates between the milestones. However, this
approach is based on a discretization scheme for high-
dimensional spaces.

• Parallel Trajectory Splicing [3] is a method that exten-
sively makes use of parallel computation facilities on
supercomputers. Since this method is not based on
high-dimensional discretization schemes it is a promis-
ing way, if supercomputers are available to run many
trajectories in parallel. Parallel Trajectory Splicing,
however, is depending on (set-based) defining different
states of the system. It also depends on a certain eigen-
value gap between two consecutive eigenvalues of the
infinitesinaml generator L∗. This gap controls the error
of the artificially generated long-time simulation (from
many short-time trajectories).

What all approaches have in common, is that they try
to estimate an exit rate out of a given (metastable) set S .
Reaching the boundary of that set S during a Brownian dy-
namics simulation is a rare event. If S is a set, then there
is in principle no preferences between “approaching the
core” (Fig. 1, dashed line) or “being about to leave the set
S ” in these approaches. There is no further discrimmina-
tion between those trajectories which stay inside S . There
is only a discrimmination between trajectories which ei-
ther leave the set or stay in S .

This article will start with defining a membership func-
tion (fuzzy set) χ instead of S by applying the Robust Per-
ron Cluster Analysis [4, 5] (PCCA+) to the eigenfunctions
of some infinitesimal generator. This fuzzyness will pro-
vide the discussed discrimmination.

2 Theoretical Background

2.1 The stochastic differential equation

The presented theory is based on reversible, ergodic, and
stochastic equations of motion [6]. The motion is a diffu-
sion in an energy landscape V : Γ → R, i.e., the realiza-
tions of the dynamics lead to trajectories xt ∈ Γ, t ∈ [0,∞),
with

d xt = −∇xV(xt) dt + σ dBt, (1)

where Bt denotes Brownian motion and σ the constant
diffusion parameter. The non-linear diffusion equation
(1) generates trajectories of states. If instead of a single
state xt a density of states πt is propagated with the above
dynamics, then the corresponding linear Fokker-Planck
equation describes this propagation of densities [7]:

∂πt

∂t
= Lπt = −divx(∇xV(x) πt) +

σ2

2
∆xπt, (2)

where L is the corresponding Fokker-Planck operator and
where ∆x denotes the Laplacian operator. We assume er-
godicity of this process, which leads to the invariant den-
sity π defined by Lπ = 0. π gives rise to a weighted scalar
product 〈·, ·〉π. Note that, although the diffusion equation
(1) is non-linear, the corresponding propagation of densi-
ties is given by a linear equation (2). In the following, the

adjoint operator L+ of L, i.e., the infinitesimal generator
of the stochastic process in the form

L+ = −∇xV(x) · ∇x +
σ2

2
∆x,

will play an important role. We will use L∗ = −L+. From
this infinitesimal generator the transfer operator Pτ of the
process for the time-length τ can be derived as

Pτ = exp(−τL∗). (3)

The transfer operator is a widely used tool to compute
transition probabilities between molecular conformations
[8]. Its spectral properties [9] are strongly connected to
the spectral properties of L and L∗.

2.2 Defining membership functions

The algorithm PCCA+ [4, 5] is commonly used for iden-
tifying metastable membership functions χ of molecular
systems. The way this algorithm works is the following:
Eigenfunctions of the transfer operator Pτ are computed
which correspond to eigenvalues close to the eigenvalue
λ = 1 of Pτ. PCCA+ defines membership functions as
a linear combination of these eigenfunctions. Due to (3),
the eigenfunctions of Pτ correspond to the eigenfunctions
of L∗. The constant function 11 is always the first (domi-
nant) eigenfunction. In the easiest case, χ is a non-trivial
linear combination of 11 and an eigenfunction f : Γ → R
of L∗. Let f be an eigenfunction of L∗ corresponding to
some eigenvalue ε̄ , 0. From the reversibility of the pro-
cess one can derive that {11, f } are orthonormal functions
(with regard to the scalar product 〈·, ·〉π). Then χ is a linear
combination of these two functions with χ = ᾱ f + β̄11 with
real numbers ᾱ, β̄. This provides:

f =
1
ᾱ
χ −

β̄

ᾱ
11.

Thus,
L∗χ = ᾱε̄ f = ε̄χ − ε̄β̄11 = αχ + β, (4)

where α = ε̄ and β = −ε̄β̄.

2.3 Implication of PCCA+ result

Equation (4) can be understood in the following sence.
The action of the infinitesimal generator L∗ in the situa-
tion of Sec. 2.2 is like shifting and scaling the function χ.
If equation (4) holds, what does it imply? Equation (4) is
equivalent to

L∗χ = ε1χ − ε2(1 − χ), (5)

where ε1 = α+β and ε2 = −β are fixed numbers defined by
the PCCA+ algorithm. By multiplying (5) with the expres-
sion e−ε1t, and by defining a function pχ(x, t) := χ(x) e−ε1t,
we equivalently get:

− L∗pχ − ε2
1 − χ
χ

pχ = −ε1 pχ, (6)



for all x ∈ Γ with χ(x) , 0. The definition of pχ can be
expressed by an ordinary differential equation:

∂pχ
∂t

= −ε1 pχ and pχ(x, 0) = χ(x). (7)

Combining (7) and (6) leads to the following differential
equation:

∂pχ
∂t

= −L∗pχ − ε2
1 − χ
χ

pχ, pχ(x, 0) = χ(x). (8)

The equation (8) is the solution of the following con-
ditional expectation value problem according to the
Feynman-Kac formula (Equations III.1 and III.2 in [10]):

pχ(x, t) = E

[
χ(xt) · exp

(
− ε2

∫ t

0

1 − χ(xr)
χ(xr)

dr
)]

x0=x
. (9)

In this expression, xt ∈ Γ are realizations of the stochastic
differential equation starting in x0 = x.

2.4 Holding probability of membership functions

If we assume that exp(−∞) = 0, then the equation (9) turns
into

p11S (x, t) = E

[
11S (xt) · δ0

( ∫ t

0
(1 − 11S (xr)) dr

)]
x0=x

. (10)

Here, we replaced χ with a characteristic function 11S of a
set S . The characteristic function 11S : Γ → {0, 1} of the
set S , is only 1 for x ∈ S . In equation (10), the function
δ0 : R → {0, 1} is only 1 if the integral is zero. Equation
(10) is the well-established way of defining holding proba-
bilities. Each realization of the stochastic process provides
a trajectory xt ∈ Γ. The starting set S ⊂ Γ is a connected,
open subset in the state space Γ. The holding probability
p11S (x, t) of the set S is the percentage of realizations of
the stochastic process starting in x0 = x which have never
left the set S until time t, i.e., xr ∈ S for all r ∈ [0, t].
The longer the time t the more trajectories will leave S ,
thus, the smaller p11S (x, t). Equation (9) can, therefore,
be seen as the definition of a χ-holding probability of a
membership function χ. The term χ-holding probability is
different from the set-based definition of a holding prob-
ability. In this article we will define further quantities of
this fuzzy-set-based kind. Under the assumptions of Sec.
2.3 the χ-holding probability decreases exponentially with
time

pχ(x, t) = χ(x) e−ε1t. (11)

From the structure of equations (9) and (11), we can derive
that ε1 > 0 is the χ-exit rate of the membership function
χ. Note that, equation (11) is consistent with the definition
of χ(x) = pχ(x, 0), because χ(x) is the probabilty to clas-
sify x as a starting point of the diffusion process. Usually,
one can not show that the set-based holding probability
depends exponentially on the simulation time t. The fol-
lowing would just be an approximation:

p11S (x, t) ≈ 11S (x) e−εt. (12)

Since (12) is not an equality, the definition of a set-based
exit rate ε is often understood as a fitting parameter of exit
time distributions [11], as an optimization quantity [12],
or as an asymptotic value, e.g., in the large deviation prin-
ciple [13]. The membership-based χ-holding probability
decreases exponentially, if the conditions of Sec. 2.3 are
satisfied.

2.5 Formula for exit rates

According to the previously identified relations between
the defined quantities ε1 and pχ(x, t), we can define what
an exit rate out of a fuzzy set should be.

Definition: Given a membership function (fuzzy set)
χ : Γ → [0, 1] for the starting points of a potential-based
diffusion process with infinitesimal generator L∗ such that
L∗χ = αχ + β11, then ε1 = α + β is the χ-exit rate out of χ,
i.e., the χ-holding probability meets pχ(x, t) = χ(x) e−ε1t.

2.6 Formula for exit paths

If one wants to compute the exit path direction from a
given state x ∈ Γ, then there are in principle two ways
to define them in the χ-context. First, the exit path is con-
nected to a decreasing holding probability. Given the χ-
holding probability pχ(x, t), the exit path direction can be
defined as the negative gradient of pχ, because this is the
direction starting in x in which the holding probability de-
creases the most. Due to the formula of the exit rate, this
direction is given by −∇xχ(x). Second, given a member-
ship function χ, the exit path direction can be defined by
a decreasing χ-value. Both definitions lead to the same
direction −∇xχ(x) of the path. Following the negative gra-
dient of χ from a given starting point x provides the χ-exit
path. In the PCCA+ context, note that the gradient of χ
and the gradient of the eigenfunction f are linearly de-
pendent, which means that also the eigenfunctions of L∗

provide the exit paths in the situation of Sec. 2.2.

2.7 Mean holding time

According to the theory [14] of stocahstic differential
equations, the mean holding time of a process can be ex-
pressed by the integral of the holding probability. In our
case, a corresponding definition of a χ-mean holding time
t1(x) depending on the initial state x0 = x of the process
would be the following integral:

t1(x) =

∫ ∞

0
pχ(x, t) dt = χ(x)

1
ε1
.

Due to the choice of the sign of L∗, one would further
expect from theory [14] that a set-based mean holding time
t(x) meets L∗t(x) = 1 inside the open set S . We replaced
S by the fuzzy set χ. For the χ-mean holding time we get:

L∗t1(x) =
1
ε1
L∗χ(x) = χ(x) −

ε2

ε1
(1 − χ(x)).

This is indeed what we expect, if x ∈ S corresponds to
χ(x) ≈ 1.



2.8 Summarizing the main equations

In the center of discussions there is a membership function
χ which satisfies the “almost” eigenvalue equation

L∗χ = (ε1 + ε2)χ − ε2,

with ε2 � ε1 and some infinitesimal generator L∗. The
exit paths out of those fuzzy sets χ are given by following
the gradients −∇χ(x). On the basis of χ, a new quantity
denoted as χ-holding probability is defined as

pχ(x, t) = E

[
χ(xt) · exp

(
− ε2

∫ t

0

1 − χ(xr)
χ(xr)

dr
)]

x0=x
.

Under certain conditions this quantity depends exponen-
tially on time, i.e.,

pχ(x, t) = χ(x)e−ε1t.

The positive number ε1 > 0 is the χ-exit rate, leading to
the χ-mean holding time t1(x) = χ(x)/ε1, which is result
of a partial differential equation:

L∗t1(x) = χ(x) −
ε2

ε1
(1 − χ(x)).

This equation is “almost” like the equation L∗t(x) = 1 for
computing set-based mean holding times in the interior of
a given set S .

3 Approximations

3.1 Implications of χ(x) ≈ 1

The definition of a χ-holding probability (9) is different
from the set-based definition (10). The random variable
in the set-based definition can only be 0 or 1. Thus, only
the “exit event” defines the χ-exit rate. In the case of the
χ-holding probability the function χ is not constantly 1
inside the fuzzy set of starting points. The χ-exit rate could
origin from the exponential penalty term

exp
(
− ε2

∫ t

0

1 − χ(xr)
χ(xr)

dr
)
.

Thus, maybe not the “exit event” produces the χ-exit rate,
but it stems from the fuzzy definition of χ. We have to
answer the question of the problematic time-scale, i.e., at
what time t2 the exponential expression starts to dominate
the function χ? In order to compute this, we will assume
that χ is constant. The question is now, when will

exp
(
− ε2 t2

1 − χ
χ

)
≤ χ?

This is the case for

t2 ≥
− ln(χ)χ
(1 − χ)ε2

.

If we assume, that χ is nearly 1 and take the limit of that
expression for χ→ 1, then the result is t2 ≥ ε−1

2 according
to the rule of De L’Hospital. This means, that the mean

holding time of χ should be smaller than ε−1
2 , such that

the “exit event” dominates the definition of pχ. The mean
holding time t1 (identical to the mean first exit time) is
given by t1 = χ(x) 1

ε1
. Again we assume χ(x) ≈ 1. Thus,

if ε1 > ε2, then the “exit event” dominates the definition of
the holding probability. In this case, the definition of the
χ-exit rate is consistent with our physical interpretation. A
lemma (Lemma 3.6 in [5]) provides the following connec-
tion between β̄ in equation (4) and the statistical weight πχ
of χ:

β̄ = πχ :=

∫
Γ
χ(x) π(x) dx∫
Γ
π(x) dx

,

where π is the invariant density of the stochastic process.
Using the easy formula of Sec 2.5, the χ-exit rate is com-
puted as ε1 = ε̄(1 − β̄) = ε̄(1 − πχ). Furthermore, ε2 = ε̄πχ.
The condition ε1 > ε2 means that the concept of the χ-
holding probability and the corresponding χ-exit rate is
only physically meaningful, if πχ < 0.5, i.e., it is mean-
ingful for starting points out of a small “subset” χ of the
state space Γ.

3.2 Approximating χ

Section 2.5 provides an equation for computing χ-exit
rates, which are physically meaningful under certain con-
ditions mentioned in the last section. However, if we apply
Sec. 2.5 in the PCCA+ context, then computing the χ-exit
rate is given by ε1 = ε̄(1 − πχ). In order to compute one
(let us denote it as) local property ε1, one needs two global
properties of the system, namely one eigenvalue ε̄ of L∗

and the statistical weight of χ. These two quantities are
correlated via the eigenfunction f . In practise, the problem
of computing a χ-exit rate would turn into a function ap-
proximation problem for f in high-dimensional spaces Γ.
Function approximation has in general a non-polynomial
complexity. A lot of effort has been spent in order to cir-
cumvent this “curse of dimensionality”. Approximations
of eigenfucntions of the transfer operator Pτ have been
computed using Markov State Modeling [15–17], diffu-
sion maps [18], the variational principle [9], committor
functions [19], and many other mathematical tools. Note
that the core set approach [20] approximates eigenfunc-
tions of Pτ based only on committor values which can be
sampled by generating an ensemble of trajectories accord-
ing to (1).

One result of Sarich [21] (Theorem 13) is the follow-
ing: The subspace spanned by two eigenfunctions {11, f }
and the subspace spanned by a committor function ξ and
11−ξ almost coincide using suitably defined core sets. This
is especially the case, if the stochastic process between the
core sets is metastable. Thus, instead of computing f , one
can compute a committor function ξ. Since ξ is a function
between 0 and 1, the PCCA+ result on the basis of this
approximation space {ξ, 11 − ξ} would be χ = ξ. Thus, the
membership function defined in Sec. 2.2 is almost identi-
cal to a committor function ξ.

However, how can we estimate a committor function,
if there is only one core set? We invert the argument of
the introduction and note that if we generate a trajectory



of certain length T (much smaller than the mean exit time)
starting in x and reach the pre-defined core within or be-
fore that time, then we expect x ∈ S . If the trajectory does
not reach the core, then we expect x < S . Thus, by esti-
mating the probability χ(x) to reach the core in a certain
time-span T starting in x we get a membership function.
This membership value is very close to a committor func-
tion value, if the core sets are assumed to be absorbing.
The reason is, that a process starting in S would quickly
find the core. A process that needs “too much” time, prob-
ably found another core set and is trapped.

Besides committor functions, there are other ideas to
access χ efficiently. All methods which compute reaction
coordinates and reaction paths [22] (as paths in high di-
mensional spaces) can also be used to approximate χ, if
we use the result of Sec. 2.6 that the holding probability
decreases the most in the direction of that path.

3.3 Time discretization

According to the ideas of the last section, one can find
methods to evaluate χ(x) which are not based on a lin-
ear combination of ansatz functions. The computation is
based on reaction paths or on sampling from trajectories
starting in x. Thus, the function evaluation χ(x) is a result
of a simulation, i.e., of a discretization of time and not of
a discretization of Γ and, thus, circumvents the curse of
dimensionality. We will apply this idea in order to find
the paramters α and β such that αχ + β11 approximates
L∗χ as good as possible. However, even if it is possible to
evaluate χ(x) pointwise by defining a core set and running
simulations or, alternatively, by computing reaction paths
starting in x, the pointwise computation of L∗χ is not that
straight forward. To solve this, we will exploit the fact that
Pτ = exp(−τL∗). Starting with the condition that we want
to acchieve,

L∗χ = αχ + β,

we get that L∗ is a scale-shift-operator for χ. For i > 0, an
iterative application of that operator leads to(

− τL∗
)i

i!
χ =

(−τα)i

i!
χ +

(−τ)iαi−1β

i!
.

By taking the sum for i = 1, . . . ,∞ and adding χ on both
sides

Pτχ = e−ταχ +
β

α

(
e−τα − 1

)
. (13)

This has the following algorithmic consequences. In-
stead of L∗χ we can evaluate Pτχ pointwise: Given the
point x ∈ Γ for which we want to evaluate Pτχ, we start
M trajectories in x of time-length τ. For all the end points
x(k)
τ , k = 1, . . . ,M of those trajectories we average over the

values χ(x(k)
τ ). This provides the value of Pτχ(x). We will

also evaluate χ(x) at the starting point x and, after that,
solve the linear regression problem

min
γ1,γ2
‖Pτχ(·) − γ1χ(·) − γ2‖, (14)

where every starting point x generates one entry Pτχ(x) −
γ1χ(x) − γ2 of the vector. If the regression problem is ex-
actly solvable, then

γ1 = e−τα, γ2 =
β

α

(
e−τα − 1

)
(15)

according to Eq. (13). The proposed computation of the
χ-exit rate is depicted in Algorithm 1.

Algorithm 1 Computing χ-exit rates
1. Determine a finite set X of points in Γ.

2. For every point x ∈ X evaluate χ(x) and Pτχ(x) using
simulations of (1).

3. Solve the linear regression problem (14) for the compu-
tation of γ1 and γ2.

4. With the aid of Eq. (15) compute the values

α = −
1
τ

ln(γ1)

and
β =

αγ2

γ1 − 1
.

5. The χ-exit rate is ε1 = α + β.

3.4 Square-Root-Approximation of L∗

The sqrt-approximation is only needed for the artificial,
illustrative examples in order to can compute analytical
(non-statistical) results. A spatial discretization is, in prin-
ciple, not needed for the application of the above theory.
L∗ is a continuous operator. For some easy examples, we
will use a matrix L∗ ∈ Rn×n instead of L∗. A possible,
heuristic discretization scheme is available [23]. Note that
−L∗ can be regarded as a transition rate matrix. If we as-
sume a discretization of the state space Γ into n subsets,
then the transition rate between neighboring subsets i and
j is given by −L∗i j =

√
π j/πi, where πi = exp(− 1

kbT V(i))
is the Bolzmann weight and V(i) is the potential energy
value at the center of box i. kb is the Bolzman factor, T is
the temperature. The diagonal elements of L∗ are adjusted
such that the row sum of L∗ is zero. This type of defining
L∗ leads to a reversible process with a stationary distribu-
tion given by the Bolzmann distribution. We will use this
square root approximation for the numerical examples be-
low.

4 Illustrative examples

4.1 Idea 1: χ-exit rates from eigenvalues and
eigenfunctions

The first example demonstrates how χ-exit rates can be
computed if a non-trivial eigenfunction and its eigenvalue
ε̄ , 0 of L∗ are known. For this purpose the following
2-dimensional potential energy function V : R2 → R is
analyzed:

V(x) = 3 exp
(
− (4x1 − 2)2 − (4x2 −

7
3

)2)

donat
Evidenziato



Figure 2. The potential energy function (16) has two deep min-
ima (dark blue, left and right) and a less deep minimum at the
top. High values are indicated by red color, whereas low values
are indicated by blue color.

−3 exp
(
− (4x1 − 2)2 − (4x2 −

11
3

)2)
−5 exp(−(4x1 − 3)2 − (4x2 − 2)2)

−5 exp(−(4x1 − 1)2 − (4x2 − 2)2)

+0.2 (4x1 − 2)4 + 0.2 (4x2 −
7
3

)4. (16)

This function is depicted in Fig. 2. In order to easily con-
struct a discretized infinitesimal generator −L∗ on that po-
tential, we generated a regular 50 × 50 box discretiza-
tion on the definition set [0, 1] × [0, 1]. The transition
rates between neighboring boxes i and j were set to be
−L∗i j =

√
π j/πi, where πi = exp(−V(i)) is the Bolzmann

weight and V(i) is the potential energy value at the center
of box i. This construction is according to the proposed
square root approximation of infinitesimal generators [23].

With the aid of this discretization scheme, we can ap-
proximate one eigenfunction f , which has the third lowest
eigenvalue ε̄ = 0.0086. This eigenfunction is shown in
Fig. 3. According to what has been said in Sec. 2.6 one
can already derive the exit paths out of the top minimum
of the potential energy surface from the negative gradi-
ent of the eigenfunction. Given a point x in the definition
set Γ, the holding probability decreases the most in the
direction of −∇ f (x). The highest value of the eigenfunc-
tion is maxi f (i) = 0.0543 whereas the minimal value is
mini f (i) = −0.0133. Given one eigenfunction of L∗, the
computation of the membership function χ = ᾱ f + β̄11
based on PCCA+ is unique [4] with

ᾱ =
1

maxi f (i) −mini f (i)

and

β̄ =
−mini f (i)

maxi f (i) −mini f (i)
.

Figure 3. An approximation of one eigenfunction of L∗ using
the discretized operator L∗. This eigenfunction “corresponds” to
the less deep minimum of the potential energy function.

These quantities are sufficient to calculate the χ-exit
rate ε1 = ε̄(1 − β̄) = 0.0069, also the statistical weight
πχ = β̄ = 0.1965, and the penalty parameter of the holding
probability which is ε2 = ε̄πχ = 0.0017. The χ-exit rate
is physically meaningful according to Sec. 3.1, because
ε2 � ε1.

4.2 Comparison: fuzzy vs. set

The mean holding time for a set S is zero at the boundary
of the set. The χ-mean holding time t1(x) = χ(x)/ε1 is
only zero for χ(x) = 0. Therefore, the set-based holding
time t(x) computed from the partial differential equation
L∗t(x) = 1 must be different from t1(x). Note that in the
molecular simulation setting, a simulated process has not
reached the core of another conformation if the trajectory
is at the boundary of the set S . If we want to compare
the results of the χ-mean holding time with a set-based ap-
proach, the fuzzyness of the answer to the question “where
in Γ do we reach another conformation?” plays an impor-
tant role. If we, e.g., define S in the situation of Sec. 4.1
to be that part of Γ which is defined by

S = {x ∈ Γ | χ(x) > 0.22},

then a set-based holding probability will be zero at the
boundary of S , while the χ-holding probability will be
0.22
ε1

= 31.88. This is a huge difference. In Fig. 4, we com-
pare the χ-mean holding time with the computed set-based
mean holding time for the 2500 cells of the discretization
ofL∗. There is a clear correlation between these two quan-
tities, except for the fact, that the χ-mean holding time
t1(x) does not have the zero-plateau. For a definition of
S on the basis of the condition χ(x) > 0.5, the set-based
holding time t(x) would be much smaller than t1(x). For
a definition of S on the basis of the condition χ(x) > 0.1,



Figure 4. In this plot the x-axis is the χ-mean holding time t1(x)
and the y-axis is the set-based mean holding time t(x) compared
for the values of the 2500 discretization boxes in the situation of
Sec. 4.1 and for S = {x ∈ Γ | χ(x) > 0.22}. The two quantities are
mainly identical, except for a different behavior at the boundary
of S .

the set-based holding time would mostly be much higher
than t1(x). The χ-mean holding time is, thus, like a “com-
promise” in that sense. It is like a “mean” mean holding
time for different possible choices of the boundary of the
metastable set S .

4.3 Idea 2: Linear regression of PCCA+ results

The case, that has been described in Sec. 4.1 is artificial.
Usually, not every single eigenfunction of L∗ can be inter-
preted as a membership function. Sometimes the member-
ship function χ has to be composed as the linear combina-
tion of several eigenfunctions. This situation is shown in
Fig. 5. In this situation

χ = 0.4452 · 11 + 17.7865 · f2 − 4.1266 · f3,

where f2 and f3 are approximated eigenfunctions of L∗

corresponding to the eigenvalues 0.0025 and 0.0086, re-
spectively. From the first factor, we can directly extract
πχ = 0.4452 which is less than 0.5, thus, we will have the
good case that ε2 < ε1. In the given situation it is possible
to compute L∗χ analytically:

L∗χ = 17.7865 · 0.0025 · f2 − 4.1266 · 0.0086 · f3.

In the case of several eigenfunctions, L∗χ is not a linear
combination of 11 and χ any more. But if we solve the
linear regression problem of minimizing the norm ‖L∗χ −
αχ − β11‖, then the result is α = 0.0028 and β = −0.0014.
Thus, the χ-exit rate is ε1 = α + β = 0.0014.

Figure 5. The membership function χ which represents the
starting point assignment for the left deep minimum of the po-
tential energy surface of Fig. 2. This function is a linear combi-
nation of three eigenfunctions of L∗.

4.4 Idea 3: Committor functions as approximation
space

Given the square root approximation L∗ (with kbT = 1)
one can easily compute the discretized committor func-
tion of the process between the left and the right deep
minimum. This committor function will now serve as an
approximation for the membership function, it will, there-
fore, also be denoted as χ. For the committor function
between the two minima, two core sets are needed. The
core sets are based on the 50 × 50 discretization of Γ. All
discretization boxes having a statistical weight higher than
0.0025 are assigned to one of the core sets. After comput-
ing χ, the propagated values Pτχ with τ = 100 are deter-
mined. Note that Pτ = exp(−τL∗). In Fig. 6 the χ-values
are plotted against the Pτχ-values for solving the regres-
sion problem (14). Depending on the regression norm, the
regression results may differ. Taking the ‖ · ‖2-norm, the
results are γ1 = 0.8201 and γ2 = 0.900. Thus, α = 0.0020
and β = −0.0010. The χ-exit rate is approximated to be
ε1 = 0.0010, which is lower than the result of Sec. 4.3.

4.5 Idea 4: Short-time simulations for estimating
committor functions

In the three illustrative examples above, a discretized ver-
sion of the infinitesimal generator was given. Thus, we
were able to compute (approximative) eigenfunctions and
eigenvalues of L∗ that can be used to define membership
functions and χ-exit rates out of those corresponding fuzzy
sets χ. The need for a discretization is a drawback of
that method in high-dimensional conformational spaces
of molecular systems. In Sec. 3.2 it has been discussed,
whether there is a way to estimate the (committor) func-
tion χ by running simulations only. If this is possible, then

donat
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Figure 6. Computing χ as a committor function of the process
and Pτχ for τ = 100. The red points correspond to the plot of the
2500 χ-values against their propagated values Pτχ. The black
line is the ‖ · ‖2- regression result. Many possible lines can fit the
given data depending on the regression norm.

Figure 7. “Evaluating” χ and Pτχ at 50 randomly chosen points
x ∈ Γ. The relation betwen these two quantities should be linear.
By linear regression a line is fitted into the data providing γ1 =

0.9870 and γ2 = 0.0128.

the Algorithm 1 would also provide χ-exit rates. In or-
der to illustrate how this algorithm practically works, we
took again the potential energy function of Fig. 2. This
time we will apply a Brownian dynamics simulation of Pτ

instead of the square root approximation ofL∗. The Brow-
nian dynamics is chosen to be “faster” than the square-root

approximation: For computing the value of χ(x) for each
x ∈ X, we start 100 trajectories in x according to (1) with
σ = 0.8 and an Euler-Maruyama time discretization of
δt = 0.001. χ(x) is defined as the percentage of those
trajectories which have reached a certain core set within
less than 100 integration steps. The core set is reached,
if the x1-coordinate is in the interval [0.2, 0.3] and the x2-
coordinate is in the interval [0.4, 0.5]. By this procedure
we get a χ-function which is very similar to that in Fig. 5.
Different from the situation of Sec. 4.3, χ is only given
point-wise. 50 randomly chosen points x in the box [0, 1]2

have been used for this χ-function evaluation. Pτχ(x) has
also been evaluated in a similar way. 100 trajectories with
50 integration steps only (total time length is τ = 0.05)
have been generated to propagate x. At those propagated
points x(k) the χ-function has been evaluated as described
above. Pτχ(x) is given by the averaged χ-value at the
propagated points. In Fig. 7 the Pτχ-values are plotted
against the χ-values at the 50 chosen points.

If χ had been a linear combination of an eigenfunction
of L∗ and 11, then this plot would show a line. From the
axis intercept γ2 and the slope γ1 of that line, the χ-exit
rate is estimated. Small deviations from the perfect line
due to sampling errors, however, lead to high relative er-
rors in ε1. By fitting a line to the data points in Fig. 7, we
estimated the χ-exit rate ε1 = 0.0042.

5 Molecular example

Algorithm 1 can easily be applied to molecular systems.
We will demonstrate this algorithm for the simulation of an
n-pentane molecule, shown in Fig. 8. This molecule has 17
atoms. Thus, its state space Γ = R3·17 is 51-dimensional.

φ

ψ

C

C

C

C

C

Figure 8. The pentante molecule consists of 5 carbon atoms and
12 hydrogen atoms (not shown). Two torsional angles φ and ψ
determine the conformation of that molecule. The depicted con-
formation corresponds to φ = ψ = 180◦, which is the most stable
conformation. For this conformation we aim to compute the exit
rate.

Defining the core set. The definition of the core set
depends on the kind of rare event statistics which we want
to estimate. If we want to figure out the slow diffusion
of the pentane molecule in the 3-dimensional space, then
we would project the 51-dimensional coordinates, e.g.,
onto the center of mass of pentane and define the core set
as a ball in this 3-dimensional space. However, chemists
are more interested in the internal transitions of the
molecule (i.e., its conformations). It is well-known that



the pentane molecule has several metastable low-energy
conformations. Those can be determined by considering
two torsional angles φ and ψ. Each torsion angle is defined
by 4 consecutive carbon atoms, see Fig 8. A long-term
simulation of pentane at 700K (with fast transitions
between the conformations) reveals that there are nine
different peaks of the stationary (Boltzmann) distribution
in the φ-ψ-digram shown in Fig. 9 (cyan circles and dotted
boxes). If we want to estimate the exit rate from the
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Figure 9. Torsion angle distribution of the two torsion angles
of pentane at 700K, for the interval of 0 to 360 degrees (cyan
circles). Sampling starting points x ∈ X for the Algorithm 1
from the box [120, 240]2 =: S (red crosses). Total number of
starting points is 50.

central conformation of pentane, then the core set can be
defined as all states x ∈ Γ of pentane which have a pair
of torsion angles approximately at (φ, ψ) ≈ (180, 180).
This core set is indeed a non-convex, connected, unbound
set in Γ = R51. In the φ-ψ-plane it is a circle, see the
blue circle in the center of Fig. 9. Although the described
core sets can easily be projected to a 3- or 2-dimensional
space, neither the potential energy V nor the membership
function χ is a 3- or 2-dimensional function. This example
of pentane is indeed 51-dimensional with χ : R51 → [0, 1].

Application of Algorithm 1. Instead of discretizing
the 51-dimensional space for approximating χ, which
would lead to a curse of dimensionalty, we will only
evaluate χ(x) and Pτχ(x) at 50 different points x ∈ X.
The projection of those 50 points onto the φ-ψ-plane is
shown as red crosses in Fig. 9. To compute the χ(x)-value
30 GROMACS stochastic dynamics (SD) simulations for
each x ∈ X with time discretization step δt = 0.001ps
at a temperature of 310K (conformational transitions
are rare events at this temperature) were performed. All
molecular simulations are performed with GROMACS
5.1.2 [24, 25]. Based on this simulation the percentage of
the trajectories which have reached the core within first
0.5ps was calculated. The coordinates at the end points
of these simulations are used for computing the value of
Pτχ. For each point 30 more simulations with 1000 time
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Figure 10. χ and Pτχ for the indicated 50 starting points in
Fig. 9. The red stars correspond to a GROMACS SD simulation.
The linear regression of the corresponding χ-Pτχ-correlation is
given by a solid line. If an MD simulation is performed (blue
circles), then the correlation between χ and Pτχ is worse (dotted
line) and does not lead to an interpretable rate estimation.

steps and the same time step δt = 0.001ps (total time is
1ps) were done. Pτχ(x) was calculated as the average
of the χ-values for the propagated points. Using linear
regression we get γ1 = 0.9738, γ2 = 0.0220. Therefore,
the χ-exit rate is computed to be ε1 = 0.01ps−1. This
result means, that on average it needs about 100ps to exit
from the central conformation of n-pentane. However, to
yield this result, we used only much shorter trajectories
(of 0.5ps or 1ps) which could easily be generated inde-
pendently in parallel on different processors.

MD versus SD. For showing that the theory depends
on a certain kind of equations of motion, we performed
molecular dynamics (MD) simulations in which all
parameters and starting states were chosen to be equal to
the SD simulation. MD simulation is based on Newton’s
equations of motion and not on (1). For detailed informa-
tion, please, see chapter 3.8 of the GROMACS manual
[24, 25]. In the MD case, the linear regression led to a
different result with γ1 = 0.8731 and γ2 = 0.1280 (see
Fig. 10). Thus, α = 0.2714 and β = −0.2738. Therefore,
we get a negative value for the exit rate. For the presented
theory it is mandatory to use (1) as the equations of
motion. MD is not applicable.

Parallelization. For our approach, two different
kinds of computational parallelization can be combined.
There are already some built-in parallelization schemes
in GROMACS to run trajectories. As we additionally
know that all 50 start states are independent, it is trivial to
parallelize the simulation of those trajectories as well. For
the MD/SD simulations and calculation of χ, Pτχ values
all available cores were used. In order to achieve optimal
simulation performance the number of starting trajectories



should be divisible by the number of used cores.
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Figure 11. χ and τ for the indicated 50 starting points in Fig. 9.
There is a relation between the membership value χ(x) and the
simulated mean exit time t(x).

Validation. For a validation we will compare the χ-
exit rate with a set-based exit rate. For this validation we,
thus, need to define a starting set S , which makes this com-
parision difficult, because the quality of our result will de-
pend on the choice of S . We computed the mean first exit
time t for leaving the blue box S indicated in Fig. 9. This is
an arbitrarily chosen starting set according to chemical in-
tuition about the dominant conformation of n-pentane. To
estimate the exit rate, we again started 30 SD-simulations
from the 50 starting points given as red crosses in Fig. 9.
These simulations were 200 times longer (100ps) than our
simulations for the χ-exit rate estimation. In principle, by
this estimation a function t(x) of set-based mean holding
times in Γ is approximated point-wise. From Fig. 11 we
see that the starting points with χ(x) = 1 have a mean
holding time of about 40ps. This would mean, that the
set-based exit rate should be about 0.025ps−1, which is in
the same order of magnitude as our result 0.01ps−1 but 2.5
times higher. According to our presented theory, we ad-
ditionally know that t1(x) = 1

ε1
χ(x) is the χ-mean holding

time. Like in Fig. 4: If t1(x) would be a good representa-
tion of the set-based mean holding time behavior t(x), then
there should be a linear dependence between the simulated
exit time and the membership value χ(x) as it is indeed
the case in Fig. 11. Note that the t(x)-computation suffers
from high variance for larger holding times.

We calculated the mean exit time for each starting
point based on the 30 SD-simulations. Only 1 of 50 start-
ing points has the mean exit time less than 1ps, there-
fore we can say that in this case the exit rate is equal to
τ = 0.02.

6 Conclusion

If one question is too complicated to answer, then maybe
there is a slightly different question which provides the

same kind of technical value and reveals simple relations.
We started the article with the observation that a potential-
driven diffusion process tends to sample from the core of
a metastable set S . Trajectories starting in some point
x ∈ S which are constructed according to Eq. (1) prob-
ably quickly reach the core and extremely rarely leave the
set S . In Sec. 3.2 we inverted this observation and turned
it into a definition of a membership function χ. If a tra-
jectory starts in x ∈ Γ and quickly reaches a pre-defined
core, then we expect that x is part of the (implicitly pre-
defined) metastability. The function value χ(x) is defined
as the portion of trajectories which start at x and reach the
core quickly. A function χ of that type can be efficiently
estimated point-wise by running simulations. There is no
curse of dimensionality, if the χ-function is approximated
point-wise. Given that the metastability is now a fuzzy set
χ, then we need a new definition of what we want to un-
derstand to be the holding probability. In this article we
introduced a definition of a χ-holding probability which
provides easy mathematical relations between χ-exit rates,
χ-exit paths, and χ-mean first exit times. In principle, the
χ-exit rate is given by the slope and the axis intercept of
the linear relation between χ and Pτχ. For recovering the
linear relation between χ and Pτχ, it is very “useful” that
χ has values ranging from 0 to 1, i.e., the information of
“how much does a state x belong to the metastability” is
exploited.
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