
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tmph20

The Kramers turnover in terms of a macro-state
projection on phase space

Luca Donati, Christof Schütte & Marcus Weber

To cite this article: Luca Donati, Christof Schütte & Marcus Weber (25 May 2024): The Kramers
turnover in terms of a macro-state projection on phase space, Molecular Physics, DOI:
10.1080/00268976.2024.2356748

To link to this article:  https://doi.org/10.1080/00268976.2024.2356748

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 25 May 2024.

Submit your article to this journal 

Article views: 17

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/journals/tmph20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2024.2356748
https://doi.org/10.1080/00268976.2024.2356748
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2024.2356748?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2024.2356748?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2024.2356748&domain=pdf&date_stamp=25 May 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2024.2356748&domain=pdf&date_stamp=25 May 2024


MOLECULAR PHYSICS e2356748
https://doi.org/10.1080/00268976.2024.2356748

CICCOTTI SPECIAL ISSUE (BY INVITATION ONLY)

The Kramers turnover in terms of a macro-state projection on phase space

Luca Donati a,b, Christof Schüttea,b and Marcus Webera

aZuse Institute Berlin, Berlin, Germany; bFreie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany

ABSTRACT
We have investigated how Langevin dynamics is affected by the friction coefficient using the novel
algorithm ISOKANN,which combines the transfer operator approachwithmodernmachine learning
techniques. ISOKANN describes the dynamics in terms of an invariant subspace projection of the
Koopman operator defined in the entire state space, avoiding approximations due to dimensionality
reduction and discretization. Our results are consistent with the Kramers turnover and show that in
the low and moderate friction regimes, metastable macro-states and transition rates are defined in
phase space, not only in position space.
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1. Introduction

The dynamics of high-dimensional chemical systems
can be modelled as one-dimensional Langevin dynamics
governed by the stochastic differential equation⎧⎪⎨⎪⎩

q̇t = pt
m

ṗt = − d
dq

V(q) − γ pt + √
2kBTγm ηt ,

(1)

where qt and pt denote the position and the momentum
of the system at time t on a one-dimensional relevant
coordinate,V : R → R is the potential ofmean force act-
ing on the system along the relevant coordinate, andm is
the effective mass of the system, which represents how
much inertia the system has along the relevant coordi-
nate. The system is coupled to a thermostat at tempera-
ture T, with Boltzmann constant kB, through the friction
coefficient γ and the stochastic force ηt defined as Gaus-
sian white noise with 〈ηt〉 = 0 and 〈ηt , ηt′ 〉 = δ(t − t′),
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where δ(t − t′) is the Dirac delta function. One possible
field of application are molecular processes that exhibit
metastability, where the energy function V(q) presents
minima and maxima with energy barriers that exceed
the thermal energy kBT. In this context, a fundamen-
tal problem is the calculation of transition rates between
potential minima, more precise, between macro-states of
the system. Indeed, transitions between the macro-states
represent the most interesting biochemical processes in
many applications, e.g. the folding of an amino acid chain
or the binding/unbinding process between a receptor and
a ligand. However, they are rare events, i.e. they occur on
very large time scales compared to reference time scales
such as the oscillation times of hydrogen atoms. Conse-
quently, they are difficult to simulate and analyse, e.g. by
means of Molecular Dynamics (MD) simulations. Over
the last century and a half, various theories and meth-
ods have been developed to solve this problem and find
analytical solutions for calculating rates. The first approx-
imate formula of the problem dates back to Arrhenius,

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2024.2356748&domain=pdf&date_stamp=2024-05-24
http://orcid.org/0000-0002-6014-6875
mailto:donati@zib.de
http://creativecommons.org/licenses/by/4.0/


2 L. DONATI ET AL.

who derived in 1884 [1] the proportionality equation

k ∝ e−βEb , (2)

where k denotes the escape rate, β = 1
kBT is the inverse

of the thermal energy, and Eb is the height of the energy
barrier, also known as activation energy of the reaction.
Later, further theories were developed that apply to dif-
ferent contexts of chemistry and physics. Particularly
noteworthy is the work of Kramers, who in 1940 [2] stud-
ied transition rates for one-dimensional systems driven
by the Langevin equation and derived three formulas
that apply to low, moderate and high friction regimes.
The three formulas well reproduce the so called Kramers
turnover, a curve describing the transition rate as a func-
tion of γ : the transition rate is linear with the coeffi-
cient γ at low friction, then, having reached a plateau,
the rate decays inversely to γ . However, Kramers’ the-
ory remains incomplete in some aspects that were only
later resolved. For example, Langer derived a formula
for multidimensional systems that operates in high fric-
tion regime [3], Chandler derived a formula that takes
into account non-Markovian effects [4], Mel’nikov and
Meshkov have found an expression that improves the
prediction in the transition from low to moderate fric-
tion [5], and, Pollak, Grabert and Hänggi found a single
expression that covers the entire friction range using a
normal mode approach [6]. These and other methods,
which we do not mention for the sake of brevity, fall
into the category of model-based methods, i.e. based
on the physical model of the system under investiga-
tion. In this paper, we study the dependence of Langevin
dynamics on the friction coefficient γ using its represen-
tation in terms of the Koopman operator [7, 8], which
allows to transform the nonlinear problem defined in
Equation (1) into a linear problem. The price of this is
that the finite-dimensional dynamics in phase space is
transformed into an infinite-dimensional problem in the
space of observable functions [9, 10]. For this reason, we
seek invariant subspaces of the Koopman operator with
finite dimensions. We use the ISOKANN algorithm [11],
a data-driven method that identifies membership func-
tions that constitute a basis of an invariant subspace of the
Koopman operator preserving the Markovianity of the
projected process. The peculiarity of ISOKANN is that it
does not require the identification and the discretization
of reaction coordinates, instead, membership functions
can be estimated on states of the full space by means of
machine learning techniques such as neural networks,
overcoming the problem of the curse of dimensionality.
Membership functions are a generalisation of ordinary
crisp sets and characterise the metastable macro-states of
the system preserving the time scales of the micro sys-
temwhen projected onto themacro-states [12–14]. Using

ISOKANN, we estimated the phase space membership
functions and calculated the rates, which represent tran-
sitions on the phase space. In this way, we reproduced a
rate curve as a function of friction, which is analogous to
the Kramers turnover. However, our results show that in
low and moderate friction regimes, the rates in position
space are an approximation due to the loss ofMarkovian-
ity of the dynamics defined in Equation (1). To obtain
a correct representation of dynamics, even in low and
moderate friction, it is necessary to take momenta into
account. Thus, with this work, we intend to open up a
new perspective in reaction rate theory. This is possible
through the use of increasingly advanced machine learn-
ing techniques, such as ISOKANN, which allows for the
estimation of rates as functions of the entire phase space,
preventing errors induced by discretization or dimen-
sionality reduction.

2. Theory

We briefly introduce the operator theory that is needed
to project Langevin dynamics onto macro-states [15].

2.1. Transfer operator approach

The dynamics of a stochastic process solution of the
Langevin equation defined in Equation (1) is equivalently
described by the dynamics of the time-dependent prob-
ability density ρt(x) solution of the partial differential
equation

∂ρt(x)
∂t

= Q∗ρt(x) , (3)

where the operator Q∗ defines the Fokker–Planck
equation, or forward Kolmogorov equation, and x =
(q, p) ∈ � ⊂ R

2 represents the state of the system in the
phase space. The solution of Equation (3) is formally
written as

ρt+τ (x) = exp
(Q∗ τ

)
ρt(x) (4)

= Pτ ρt(x) , (5)

wherePτ denotes the propagator of probability densities
with stationary density

lim
t→+∞ ρt(x) = π(x) , (6)

defined by the Boltzmann distribution

π(x) := π(q, p) = 1
Z
exp

(
−β

(
p2

2m
+ V(q)

))
, (7)

where Z is a normalisation constant. Besides considering
the evolution of probability densities, it is useful to study
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the evolution of observable functions f (x). To this end,
we introduce the infinitesimal generator Q, adjoint of
the operator Q∗ that defines the backward Kolmogorov
equation

∂ft(x)
∂t

= Qft(x) . (8)

Analogously to Equation (5), we can write a formal solu-
tion of Equation (8) as

ft+τ (x) = exp (Q τ) ft(x) (9)

= Kτ ft(x) (10)

= E
[
f (xt+τ )|xt = x

]
, (11)

where we introduced the Koopman operator Kτ which
propagates the expectation value of observable functions.

2.2. Rates frommembership functions

Consider the τ -dependent eigenvalues λτ ,i and the asso-
ciated eigenfunctions �i of the Koopman operator Q
such that

Q�i = λτ ,i�i . (12)

If the dynamics is ergodic and not periodic, then the
first eigenfunction is constant �1 = 1 and it is asso-
ciated to the non-degenerate eigenvalue λτ ,1 = 1. In
reversible dynamics, the subsequent nc dominant eigen-
functions � = {�2, . . . ,�nc}, associated to sorted and
negative eigenvalues λτ ,2 > . . . > λτ ,nc, exhibit positive
and negative values, which allows for the identification
of metastable macro-states. In the non-reversible case,
real-valued functions which span an invariant subspace
of the Koopman operator can be applied instead of eigen-
functions. Each point in state space is represented by
a vector which comprises of the values of these finitely
many (nc) functions. These points can be mapped into a
(nc − 1)-simplex whose vertices represent themetastable
states whereas the edges represent the transitions. The
algorithmPCCA+ [12, 13], bymeans of a linear transfor-
mation, transforms the simplex into a standard simplex,
i.e. a simplexwhose vertices are unit vectors. Accordingly,
the set of dominant eigenfunctions is transformed into
a set of membership functions χ = (χ1,χ2, . . . ,χnc)

�,
with χi : � → [0, 1], ∀i = 1, 2, . . . , nc, such that

∑
i χi =

1.Membership functions characterise themembership of
a state x in the macrostates of the system and by exploit-
ing the linearity of the Koopman operator the exit rate
from a macrostate is estimated as

κ = − 1
τ
log(a1)

(
1 + a2

a1 − 1

)
, (13)

where a1 and a2 are obtained solving the linear regression
problem

min
a1,a2

‖Kτ χ(x) − a1χ(x) + a2‖. (14)

For a complete discussion about the χ-exit rates and the
derivation of Equation (13), we refer to [16].

2.3. ISOKANN

The calculation of rates according to Equations (13)
and (14) requires the membership function χ and the
propagated membership function χt = Kτ χ(x). We use
ISOKANN [11, 17], an iterative algorithm which modi-
fies the Von-Mises-Algorithm [18] as iteration scheme

fk+1 = Kτ fk
‖Kτ fk‖ , (15)

where the initial function f0 is an arbitrary function and
‖ · ‖ is the supreme norm. As k → ∞, Equation (15)
converges to the first eigenfunction of the Koopman
operator:

lim
k→∞

fk+1 = �1 = 1. (16)

In fact, by applying Kτ iteratively to a function f, one
obtains the same result as applying the operator with lag
time τ tending to infinity, i.e. a constant function. Con-
sider now a two-metastable system, as the model studied
by Kramers, then the Koopman operator has two dom-
inant eigenfunctions �1 and �2, and the membership
functions are written as{

χ1 = b1�1 + b2�2

χ2 = 1 − χ1
, (17)

with b1 and b2 appropriate coefficients. We introduce a
linear transformation S to prevent the convergence of the
Koopman operator to �1 = 1, and retrieve information
regarding the eigenfunction�2 such that�1 and�2 span
an invariant subspace of the Koopman operator. For this
purpose, we choose as S the shift-scale function

SKτ fk = Kτ fk − min
(Kτ fk

)
max

(Kτ fk
) − min

(Kτ fk
) , (18)

that guarantees that fk : � → [0, 1]. The algorithm
defined in Equation (15) is rewritten as

fk+1 = SKτ fk , (19)

and converges to one of the two membership function:

lim
k→∞

fk+1 = χi i = 1 or 2. (20)

In general, we do not have an analytical representation
of the Koopman operator or do not discretise the entire
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state space to retrieve its matrix representation. However,
we can calculate the action of the Koopman operator on
observable functions applied to specific states in space
�. Exploiting the ergodic property, we approximate the
expectation in Equation (11) as a time average:

ft+τ (x) ≈ f̄ (xτ ) (21)

= 1
N

N∑
n=1

f (xτ ,n) , (22)

where xτ ,n are the final states of N trajectories, solutions
of Equation (1), starting at x0 = x. Thus, Equation (19) is
rewritten as

f̄k+1(x0) = Sf̄k(xτ ) , (23)

Regarding the choice of the initial function f0, a wide
range of options is available. The function should be an
interpolating function that can be trained at each itera-
tion until it converges to one of themembership function.
For higher dimensional systems, the use of neural net-
works is recommended, as was used in ref. [11]. However,
for low-dimensional systems, other interpolation tech-
niques may be used, e.g. spline functions or radial basis
functions.

3. Results

As an illustrative example, we considered the Langevin
dynamics of a fictitious particle of mass m = 1 amu
which moves in a one-dimensional potential energy
function

V(q) = 10(q2 − 1)2 kJmol−1 . (24)

The function is characterised by two wells with minima
at qA = −1 nm and qC = 1 nm, and a height barrier of
10 kJmol−1 at qB = 0 nm as illustrated in Figure 1(a).
For our numerical experiments, we used standard ther-
modynamic parameters: the temperature of the system
was T = 300K and the molar Boltzmann constant was
kB = 8.314 × 10−3 kJ K−1 mol−1.

3.1. Classic Kramers turnover

In order to reproduce the classic Kramers turnover, we
selected 25 friction coefficient values γ between 0.1
and 30.0 ps−1 and we solved the Langevin Equation (1)
using the Brünger, Brooks and Karplus (BBK) integrator
scheme [19] with an integrator timestep �t = 0.005 ps.
For each value of γ , we ran 500 simulations starting at
the bottom of the left well of the potential with an initial
momentum randomly drawn from the Boltzmann distri-
bution. After the particle reached the bottom of the right

Figure 1. (a) Potential energy function (solid line) and harmonic
approximation at the bottom of the wells and at the top of the
barrier (dashed lines); (b) Phase space with energy levels (black
contour lines and yellow dashed line denoting the KBT value)
and three trajectories carried out with friction coefficients: γ =
0.1 ps−1 (blue), γ = 2.2 ps−1 (red), γ = 30.0 ps−1 (green).

well, the simulations were stopped and we calculated the
mean time, i.e. theMean First Passage Time (MFPT) 〈τfp〉
[20], from which we obtained the transition rate as

kA→C = 1
〈τfp〉 . (25)

The results of this numerical experiment are reported
in Figure 2(a) as black squares. If the friction is
very low (γ ≈ 0.1 ps−1), the dynamics of the system
(Equation (1)) is almost deterministic, and the system,
unless it has enough initial momentum, is trapped in the
well with an extremely low probability of escape. Corre-
spondingly, the MFPT is very large and the value of the
rate tends to zero. However, increasing the friction by
a small amount (γ ≈ 1.5 ps−1) the system gets enough
thermal energy through the random force and increases
the probability to escape from the well. In fact, for low
values of γ , the stochastic force

√
2kBTγm ηt , which is

weighted by the square root of the friction coefficient,
dominates the friction force −γ pt , which is linear with
the friction coefficient. Thus, we observe a rapid and
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Figure 2. (a) Classic Kramers turnover: transition rate kA→C estimated by numerical experiment (black squares), Kramers’ formulas
for low (blue), moderate (red) and high (green) friction coefficient γ . The dashed vertical lines denote the threshold between friction
regimes; (b) Kramers turnover between membership functions: transition rate k̂χA→χC estimated by grid-based method (black squares)
and ISOKANN (red circles), transition rate kχA→χC estimated by ISOKANN (blue upside down triangles).

linear increase in rates up to a maximum of kA→C ≈
0.02 ps−1. Beyond the threshold of γ ≈ 1.5 ps−1, the sys-
tem enters what is called the moderate friction regime.
Here, the friction force dominates the Langevin equation,
and the probability of escaping the well, despite the high
thermal energy, decays as kA→C ∝

√
1 + 1

γ 2 . For higher

values of the friction coefficient (γ > 20 ps−1), the fric-
tion term is so strong that the average acceleration of
the system tends to zero. The dynamics is overdamped
and the transition rate decays as kA→C ∝ 1

γ . The three
friction regimes, here qualitatively described, were for-
malised by Kramers in 1940 [2]. He assumed a two-
metastable system governed by the Langevin dynamics
with thermal energy kBT � E+

b = V(qB) − V(qA), so as
to ensure metastability. In addition, he required that the
left well and the top of the barrier of the potential V(q)
are approximated by harmonic potentials with angular
frequencies

ωA =
√

1
m

d2V
dq2

∣∣∣∣
qA

, and ωB =
√

1
m

d2V
dq2

∣∣∣∣
qB
.

(26)

Under these conditions, Kramers derived a transition rate
formula for the low friction regime (γ < ωB)

kA→C = 1
2
γβE+

b exp
[−βE+

b
]
, (27)

for the moderate friction regime (γ > ωB)

kA→C = γ

ωB

⎛⎝√
1
4

+ ω2
B

γ 2 − 1
2

⎞⎠ · ωA

2π
exp

[−βE+
b
]
,

(28)

and the high friction regime (γ � ωB)

kA→C = ωB

γ
· ωA

2π
exp

[−βE+
b
]
. (29)

Note that Kramers defines the three regimes by compar-
ing the coefficient of frictionwith the angular frequencies
of the harmonic potentials that approximate the poten-
tial. In fact, the transition probability also depends on
the curvature near the pit and barrier. The prediction of
Kramers’ formulas, reported in Figure 2(a), is excellent, it
is only around the threshold separating the low andmod-
erate friction regimes that themodel becomes inaccurate.
For more details about Kramers theory, we recommend
Refs. [21, 22].

3.2. Kramers turnover ofmembership functions in
phase space

In the second numerical experiment, we estimated the
transition rates applying ISOKANN to the same setting
of the first experiment. We generated 1000 random ini-
tial points x0 = (q0, p0) from a uniform distribution over
the phase space defined by the q-range [−2.0, 2.0] nm
and the p-range [−10.0, 10.0] amunmps−1, and for each
state we simulated N = 100 trajectories of length τ = 7
ps, corresponding to 1400 timesteps using a timestep
integrator �t = 0.005 ps. The ISOKANN algorithm has
been applied for 20 iterations usingmultiquadratic radial
basis functions (RBF) [23], which are computationally
undemanding and only require a few parameters to opti-
mise during training, resulting in faster convergence. We
considered two cases:
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• the membership functions χA(q) and χC(q), and the
transition rate kχA→χC between the macro-states of
the position space;

• the membership functions χ̂A(q, p) and χ̂C(q, p)
defined on the two-dimensional phase space, and the
transition rate k̂χA→χC between macro-states of the
phase space. Note that from now on, each quantity
markedwith the symbol ·̂ denotes a quantitymeasured
over the entire phase space.

The two rates, as functions of the friction coefficient γ ,
are reported in Figure 2(b), respectively as blue upside
down triangles and red circles. Both curves show a
turnover similar to the rate kA→C reported in Figure 2(a):
rates have an ascending profile for very low range values,
then, having reached the maximum (kχA→χC ≈ 0.4 ps−1

and k̂χA→χC ≈ 0.2 ps−1), descend slowly. However, while
the values of the rate k̂χA→χC in phase space are overlap-
ping with those of the Kramers rate kA→C (although they
are different physical quantities), the rate kχA→χC defined
in position space turns out to be higher in the low friction
region but converges to the values of k̂χA→χC in the high
friction regime. To understand these results, it is use-
ful to take a look at the membership functions obtained
from ISOKANN and shown in Figure 3, where figures

(d,e,f) on the second row and (g,h,i) on the third row
are respectively the membership functions in the phase
space and the position space, for low, moderate and high
friction.

In Figure 3(a) (low friction regime), the membership
functions of the macro-states only have significant val-
ues for those states whose total energy E = p2

2m + V(q) is
less than the height of the barrier. The points with a total
energy exceeding the barrier are depicted in white, indi-
cating that they have an equal probability of belonging to
either χA or χC, approximately 0.5. This occurs because
trajectories originating from this area undergo periodic
oscillations in phase space, visiting both wells as depicted
in Figure 1(b) by the blue trajectory. Correspondingly, in
Figure 3(d), we show the membership function values
as a projection of χ̂A(q, p) and χ̂C(q, p) onto the posi-
tion space. The apparent noise is due to the fact that the
membership functions on phase space are not constant
along the axis of momenta. Therefore, when friction is
low, the membership values projected to position space
are not functions in a strict sense and do not describe
position-based macro-states. In Figure 3(b) (moderate
friction regime), the membership functions draw con-
centric spirals that terminate in the minima of phase
space respectively. This may seem counterintuitive, but

Figure 3. (a,b,c) Membership functions χ̂(q, p) for γ = 0.1, 2.0, 30 ps−1 estimated by grid-based model: The blue-white-red colour
gradient represents values in the range of 0 to 1. The membership functions are complimentary: χ1 + χ2 = 1, then the blue points
represent themacro-stateχ1 and the red points representχ2. Thewhite points can be regarded as transitive regions. (d,e,f ) Membership
functions χ̂ (q, p) for γ = 0.1, 2.0, 30 ps−1 estimated by ISOKANN; (g,h,i) Projection of the membership functions to position space.
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observing how a trajectory behaves in the moderate fric-
tion regime helps to interpret the membership functions
correctly. In Figure 1(b), the red trajectory starts at posi-
tion q = −1 nm and momentum p = −8 amunmps−1,
and reaches the right-hand minimum by following a
clockwise trajectory. Similarly, if we start trajectories that
are far from the central region of the phase space, we
would observe spiral patterns that match with the mem-
bership functions. From this figure, we deduce that in
the moderate friction regime, the effective barrier, i.e. the
transition region, is not at q = 0, but between the two spi-
rals. In particular, in the central box [−1, 1] × [−5, 5]
of the phase space, the barrier corresponds to a diago-
nal line which is not parallel to the momentum axis. The
reason is that if q = 0 and p>0, the system reaches the
right well with low probability of recrossing. Conversely,
if q = 0 and p<0, the system reaches the left region.
Along the white diagonal the system is in an unstable
equilibrium, i.e. the system has the same probability of
reaching one of the wells, and ISOKANN assigns equal
probability of membership to the two macro-states. In
Figure 3(c) (high friction regime), membership func-
tions are independent from momentum space. The two
regions q<0 and q>0 are assigned to the macro-states
regardless of the momentum and the transition region is
almost a vertical line. The projections χA(q) and χC(q)
onto the position space also appear well defined in Figure
3(f). This occurs because as the friction is very high,
the momentum is quickly damped and it does not pro-
vide enough energy to overcome the barrier as shown
by the green trajectory in Figure 1(b). In the high fric-
tion regime, only the thermal noise can provide enough
energy to jump over the barrier.

3.3. Results validation

In order to validate our results, we constructed a refer-
ence solution by means of a grid-based technique sim-
ilar to Ulam’s method [24] which allows to discretise
the operator Kτ defined in Equation (11) into a transi-
tion probability matrix Kτ [25]. Given a discretization of
the phase space � into M disjoint subsets �i, with i =
1, . . . ,M, and a set of N simulations of length τ started
in a random position of the subset �i, then the entries of
the matrix Kτ are written as

kτ ,ij = 1
N

N∑
n=1

1�j(x
τ
i,n) (30)

where 1�j is the indicator function

1�j(x) =
{
1 if x ∈ �j ,
0 if x /∈ �j ,

(31)

and xτ
i,n is the final state of the nth simulation started

in �i. In practice, one counts how many times a simu-
lation starting in�i ends in�j and divides by the number
of simulations to obtain an estimation of the transition
probability. Afterward, an approximation of the infinites-
imal generator, sometimes referred to as pseudogenera-
tor, is obtained as

Q̃ = Kτ − I
τ

, (32)

where I denotes an identity matrix of the same size as
Kτ . Then the membership functions χ̂ (q, p) are calcu-
lated applying PCCA+ to Q̃ and the coarse-grained rate
matrix between macro-states is calculated as a Galerkin
projection of Q̃ onto the membership functions:

Q̃c = (χ�diag(π)χ)−1χ�diag(π)Q̃χ (33)

In Equation (33), diag(π) denotes an M × M diagonal
matrix, whose diagonal entries are the entries of the
Boltzmann distribution π(q, p) Equation (7) evaluated at
the centres of subsets �i.

Assuming a two-metastable system, the rate matrix Q̃
has size 2 × 2:

Q̃c =
(−̃qχA→χC q̃χA→χC

q̃χC→χA −̃qχC→χA

)
, (34)

with q̃χA→χC , q̃χC→χA > 0 representing the transition
rates between the macro-states. For the sole case of a
bimetastable system, these rates are equivalent to the
exit rates defined in Equation (13). Here, we discretised
the q-range [−2.0, 2.0] nm in 80 intervals of the same
length �q = 0.05 nm, and the p-range [−10.0, 10.0] nm
in 70 intervals of the same length �p = 0.29 nm. The
transition rates estimated by PCCA+ are reported in
Figure 2(b) as black squares, while themembership func-
tions are reported in Figure 3(a,b,c). For each subset, we
ran 500 simulations of length 7 ps, with an integrator
timestep of 0.005 ps for a total of 1400 timesteps. There is
excellent agreement between ISOKANN and the method
based on the discretization of the phase space: bothmeth-
ods recreate the Kramers turnover and show the same
patterns for the membership functions.

4. Discussion and conclusion

In this article, we studied the effect of the friction coef-
ficient of Langevin dynamics on metastable macro-states
of the phase space and calculated the transition rate. For
this purpose, we used the ISOKANN algorithm [11],
which identifies macro-states by means of membership
functions that form a basis function of an invariant sub-
space of the Koopman operator. In this subspace, the
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Koopman operator produces a linear dynamical sys-
tem of finite dimensions that preserves the Markovianity
of Langevin dynamics and can be used to determine
kinetic observables such as transition rates. We inves-
tigated a one-dimensional artificial potential, represent-
ing a bimetastable system, and reproduced the Kramers
turnover. However, differently from the original Kramers
work, the transition rate we estimated represents transi-
tions between macro-states in phase space. Our results
show that including both the positions and the momenta
in defining themacro-states is necessary. Indeed, neglect-
ing the momentum in the low and moderate friction
regime introduces non-Markovian effects that are not
properly captured by the position-dependent member-
ship functions. In contrast, in the high friction regime,
the velocity is instantaneously damped, and the macro-
states can be defined as functions of only the position
space. This approach to estimating transition rates can
be extended to highly dimensional problems. The typi-
cal strategy requires solving the fundamental equations
of motion, projecting the dynamics on a small num-
ber of relevant coordinates, and discretizing the low-
dimensional model to create a matrix representation of
the Koopman operator, as is done with Markov State
Models [26–29] or Square Root Approximation of the
infinitesimal generator [30–32]. The price of these tech-
niques is the introduction of assumptions, such as the
Markovianity of the projected dynamics, that can lead
to significant errors [33]. In contrast, ISOKANN does
not require dimensionality reduction or space discretiza-
tion, and the measured rates can be considered the best
representation of the system’s dynamics, net of approxi-
mations introduced a priori, e.g. when the equations of
motion are numerically solved. Thus, the dimensionality
of the system poses no limits to ISOKANN on a theo-
retical level. However, the implementation of ISOKANN
for studying high-dimensional systems is more involved.
Here, considering the low-dimensionality of the system,
weused radial basis functions, but for higher dimensional
systems, we suggest more advanced interpolating func-
tions such as feed-forward neural networks, which allow
the use of all system coordinates, including momenta.
Another aspect to be taken into account is the choice of
themathematical representation of themolecular system.
Indeed, neural networks are not invariant with respect
to translations and rotations when Cartesian coordinates
are used as input data. Thus, Cartesian coordinates must
be transformed to a suitable set of input coordinates,
for example pairwise distances, internal coordinates or
atom-centred symmetry functions [34]. In summary,
with this work, we have shown that ISOKANN is a valid
tool for the study of dynamical systems that avoids the
subspace projection of transfer operators. Here, we have

focussed on the classic Kramers problem, studying how
macro-states are defined in phase space and highlighting
the importance of considering momenta in rate calcu-
lation. Nevertheless, ISOKANN’s flexibility and modern
machine learning techniques allow for the study of even
more complex systems.
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