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ABSTRACT
The problem of determining the rate of rare events in dynamical systems is quite well-known but still difficult to solve. Recent attempts
to overcome this problem exploit the fact that dynamic systems can be represented by a linear operator, such as the Koopman operator.
Mathematically, the rare event problem comes down to the difficulty in finding invariant subspaces of these Koopman operators K. In this
article, we describe a method to learn basis functions of invariant subspaces using an artificial neural network.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015132., s

I. INTRODUCTION

In molecular dynamics (MD) simulations, it is often difficult
to determine the rates of rare events. Using the information from
long-time simulations suffers from the statistical disadvantage that
the time steps with which the (mechanical) movements of molecular
building blocks are simulated are in the range of femtoseconds, while
the transitions of interest (conformational changes, binding events,
aggregation of building blocks, etc.) are in the range of milliseconds
or seconds. The transitions themselves can be abrupt, but they are
very rare. Therefore, simply counting the rare events is statistically
inefficient.

In the last decades, a lot of approaches have been invented in
order to overcome this rare event problem of molecular simulation.
The main idea behind using short-term trajectories to compute the
rate of rare events goes back to the method of milestoning.1 Instead
of tracing the steps of one single long-term trajectory, many short-
term trajectories are “started,” which represent intermediate steps
of the analyzed molecular event of interest. In this approach, only
transitions between “neighboring” intermediate steps are computed.
Hence, these are not rare events anymore. This method applies a
certain clustering (or projection) of system states into subsets of
“different intermediate steps.” In essence, it is clustering in a high-
dimensional space. Another way to circumvent rare events statistics

is to apply transition path theory.2 In this approach, the problem of
estimating transition rates is transformed into a function approxi-
mation problem in high-dimensional spaces. Committor functions
are derived from a differential equation based on a linear partial-
differential operator. These functions include all relevant informa-
tion about the rareness of the transition events. Many physical pro-
cesses are highly non-linear and therefore complicated to simulate
and analyze. However, for any Markov process, as for any equation
with a time-derivative of the first order, the description with a lin-
ear operator is always possible if the time-depending evolution of
the probability density distribution of system states is considered.
The transfer3 operator T τ propagates a density function % of system
states for a given lag-time τ. This operator is the basis for the com-
mittor function computation as well as for the clustering approach
in milestoning.

Instead of computing committor functions from linear oper-
ators, one can also regard the rare event problem as a (Galerkin)
projection problem from an infinite-dimensional linear operator
to a finite-dimensional matrix.4 The density function is projected
from a continuous state space to a finite discrete set of states,
i.e., to a vector ψ, which can then be propagated from a sim-
ple transition matrix P to a (simplified) state Pτψ for the time
interval τ. This projection commutes with propagation of states if
and only if the projection function is an element of the invariant
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subspace of T τ or (more precisely) its adjunct, the Koopman-
operator Kτ = (T τ)∗.

Our aim is to contribute to the coarsening strategy by present-
ing a method for the automated generation of invariant subspaces of
Koopman operators while avoiding a linear algebraic discretization
of the function space of %. In a similar way, the VAMPnets approach5

tries to circumvent the curse of dimensionality. In VAMPnets, two
linear subspaces are learned: one for the “input” step of the molec-
ular process and one for the “output” step. This corresponds, in
principle, to a singular value decomposition approach of Kτ . The
fitness function of this learning strategy is based on the variational
principle of this type of decomposition. However, the trained spaces
are not invariant with regard to Kτ , which is crucial in order to
extract the correct time scales and to derive kinetics from the basis
functions. In contrast to VAMP, our novel artificial neural net-
work (ANN) approach invariant subspaces of Koopman operators
learned by a neural network (ISOKANN) learns single basis func-
tions of invariant subspaces of Kτ . This corresponds to a Schur-
based decomposition of matrices and provides the intended kinetic
information.6

Although our idea (ISOKANN) is mathematically straightfor-
ward, the benefits of learning invariant subspaces from Koopman
operators efficiently can be very diverse. From the basis functions,
the statistics of rare transitions can be derived, and even the reac-
tion coordinates (non-zero directions of the gradients of the basis
functions) can be extracted.7

II. MATHEMATICAL FRAMEWORK
The ISOKANN method is illustrated with a simple stochastic

process: a microscopic particle moving in two-dimensional space
with overdamped Langevin dynamics (OLD). Although our method
for approximating the invariant subspace of Koopman operators is
valid, in general, for all Markov processes (i.e., whenever the stochas-
tic or deterministic differential equation describing the dynamics has
only a first order derivative in time), we will use Langevin dynamics
for illustrative reasons. Using this type of dynamics is advantageous,
because not only the invariant subspace but also the characteristic
time scales can be directly computed from the result of the trained
neural network (see Sec. IV C).

A. Overdamped Langevin dynamics and MD
Langevin dynamics describes how a microscopic particle moves

in a medium according to Brownian motion under the additional
influence of a potential energy. Here, overdamped implies that the
particle reaches the new velocity instantaneously (without accelera-
tion phase) after each impact because the particle is considered to be
massless and therefore has no inertia.

The Overdamped Langevin Dynamics (OLD) is given by the
following equation:8,9

γẋ = −∇V(x) +
√

2β−1R(t) with β = (kBT)−1, (1)

where x = x(t) ∈ Rn is the location of a particle, t is the time variable,
ẋ is the time-derivative, V : Rn → R is the potential energy, kB is
the Boltzmann constant, and T is temperature. R(t) is a stationary

Gauss process with an expectation value 0: ⟨R(t)⟩ = 0. Furthermore,
⟨R(t)R(t′)⟩ = δ(t − t′) with the Dirac delta distribution δ, i.e., the
probabilities at different points in time, are uncorrelated. Thus, OLD
is a Markov process. For the sake of simplicity, we will set γ = 1.

Simulations of molecular processes can also be performed with
the OLD approach. In the software package GROMACS,10 this is
denoted as “Stochastic Dynamics.” In principle, any Markov process
is suitable for ISOKANN. In order to turn deterministic Hamil-
tonian dynamics into a stochastic Markov process rigorously, one
would need to project the phase space onto the spatial coordinates
by treating the momentum variables as random variables.3

B. Invariant subspaces of Koopman operators
D denotes the state space of states x ∈D of a system, and %(x, t) :

D × R → W with W ∶= {y ∈ R ∣ 0 ≤ y ≤ 1} represents the temporal
evolution of a density function over D according to an infinitesimal
generator L,

∂%(x, t)
∂t

= (L%)(x, t). (2)

For the OLD investigated here, the L corresponds to the Fokker–
Planck operator. The formal solution of (2) with a given initial
density function %(x, t) at time t is given by

%(x, t + τ) = (T τ%)(x, t), (3)

where the transfer operator T τ can formally be written as

T τ = eτL. (4)

The operators T τ and Kτ are (as already stated) a pair of adjoint
operators,

Kτ = (T τ)∗. (5)

Thus, the eigenvalues of T τ are also eigenvalues of Kτ , denoted as
λi. Furthermore, (4) provides an approach for calculating the eigen-
values of L as ln λi. Due to Perron–Frobenius theory, eigenvalues λi
close to the highest possible absolute value 1 correspond to eigen-
values of L near zero because ln 1 = 0. For the corresponding eigen-
functions, the approximation ∂%

∂t ≈ 0% = 0 holds. If it is possible to
interpret such a function ∂% as a density function, then the following
is applicable.

Eigenvalues close to zero correspond to probability densities
that hardly change over time, and therefore, an initial state arranged
according to this function will only show rare transitions to other
parts of the system space. The higher the potential barrier that
must be overcome for the system to assume a different state, the
rarer or less likely the transitions of the system over those barri-
ers. Precisely, these transitions are of particular interest in the bio-
chemical context. This could be, e.g., a process in which a ligand
(a drug molecule) binds to a target protein (a receptor). For this
reason, an algorithm is chosen for this methodology, which pro-
vides basis functions χs of the space spanned by the eigenfunctions
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close to the eigenvalues with the largest magnitude. Of primary
interest is a finite-dimensional Kτ-invariant subspace U of a func-
tion space F,

Kτ(U) ⊆ U, where U ⊆ F. (6)

The formal definition of a Koopman operator using the expec-
tation value E of function values f (x(t)) ∈ F for a given lag-time τ is

(Kτf )(x) ∶= E(f (x(τ)); x(0) = x), (7)

where x(0) is an initial state of an ensemble of OLD simulations for
lag-time τ.

C. Rare event analysis
As already indicated in the Introduction, the coarsening strat-

egy uses a simplified (or coarser) representation ψ = ψ(t)
= (ψ1,ψ2, . . . ,ψs, . . . ,ψσ)T of the system state. In contrast, the exact
representation consists of the atomic positions x of the molecules at
the time t or the representation of the probability density distribu-
tion %(x, t) as an average over these positions. From the previous
example, for the ligands placed in a solution containing receptors, at
time t = 0, the ligands are not bound to the receptors. All ligands are
in the “unbound” state [i.e., ψ(0) = (1; 0)T]. Over time, the propor-
tion of bound ligands (possibly) increases [e.g., ψ(τ) = (0.8; 0.2)T],
if after time τ, one-fifth of the ligands are bound. In more general
terms, the component ψs(t) of this vector, which is mapped accord-
ing to W, corresponds to the expected relative frequency of the sth
preferred conformation of the molecule or the sth metastable state
of a system at time t, where ψ1 + ψ2 +⋯ + ψσ = 1.

The procedure of rare event analysis is shown in Fig. 1, which is
taken from Ref. 4 and extended by additional diagonal arrows. The
projections are represented by vertical arrows, and the propagations
are represented by horizontal arrows; diagonal arrows symbolize a
combination of both. The probabilities of rare transitions of the sys-
tem into other metastable states are of interest. However, from an
algorithmic point of view, the way of first projecting and then prop-
agating is more easy to represent in a computer program since a
continuous operator T τ cannot be fully represented.

It can be assumed that the set of functions χs represented by
χ = χ(x) = (χ1, χ2, . . . , χσ)T is the basis of an invariant subspace U
according to (6). Furthermore, χs are assumed to be non-negative

FIG. 1. Principle of the rare event analysis: Detailed state descriptions are posi-
tioned at the top of the diagram, and simplified descriptions are positioned at the
bottom.

functions with function values between 0 and 1. Then, they can
be interpreted as membership functions of a subregion Bs of D. χs
is also a metastable subregion of the process, if the invariant sub-
space U corresponds to eigenvalues of Kτ with the highest absolute
values.11 The diagram in Fig. 1 commutes because of the invariant
subspace condition of the projection.4 Changing the order of propa-
gation (with T τ or with Pτ) and projection (with χ) leads to the same
result. This will be used now.

The projection of %(x, t) onto ψ(t) is given by

ψ(t) = ∫
D
%(x, t)χ(x)dx. (8)

Equivalently, the projection of %(x, t + τ) onto ψ(t + τ) regarding (3)
is

ψ(t + τ) = ∫
D
(T τ%)(x, t)χ(x)dx. (9)

Finally, because of (5), Eq. (9) turns into

ψ(t + τ) = ∫
D
%(x, t)(Kτχ)(x)dx. (10)

Equation (10) corresponds to the diagonal arrows in the above dia-
gram. Using the invariant subset definition (6), each element of U
is a linear combination of basis elements of U, Kτχs = ∑σ

j=1 p
(τ)
sj χj.

Therefore, the propagations between the simplified states can be
expressed by a transition matrix Pτ ∈ Rσ×σ with entries p(τ)sj . As an
alternative to using expression (9) or (10), the propagated state ψ(t
+ τ) can be directly represented by using ψ(t) to avoid the evaluation
of the mapping T τ ,

ψs(t + τ) =
σ
∑
j=1

p(τ)sj ψj(t). (11)

Determining basis vectors χs is therefore the main step of rare
event analysis. These functions can only be approximated numeri-
cally, which is the primary aim of this article. For this task, artificial
neural networks (ANNs) are excellently suited (for each χs, its own
network is trained).

III. ALGORITHMIC APPROACH
A methodology for the determination of an invariant subspace

of a Koopman operator has been described, which avoids a dis-
cretization of the state space. ISOKANN is based on the power
method (also known as von Mises iteration). It uses an algorithm
that (under certain conditions) supplies the eigenvector for a given
matrix at the eigenvalue with the largest magnitude.12 The power
method is applied to continuous functions that converge against the
eigenfunctions connected to eigenvalues with the largest absolute
value. The use of the power method is advantageous because only
that part of the spectrum of eigenfunctions is sought that can be
assigned to the eigenvalues with the largest absolute value.
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A. Modified power method
The power method is an iterative procedure, where in each step

the linear mapping, or here the Koopman operator Kτ , is applied to
the current approximation f i, with i ∈ N0, and then normalized,

fi+1 ∶=
Kτfi
∥Kτfi∥

. (12)

However, in our case, the scaling with the inverse of the norm
∥Kτfi∥−1 is supplemented by a shifting in such a way that the result-
ing function is χi+1: D → [0, 1]. Therefore, the modified variant of
the power method is

χi+1 ∶=
Kτχi −min(Kτχi)

∥Kτχi −min(Kτχi)∥max
. (13)

Thus, convergence against the constant function, f (x) ≡ 1, is avoided,
which is always the dominant eigenfunction of the Koopman oper-
ator. Instead, the procedure then converges against a membership
function χ ∶= lim

i→∞
χi, which will be explained later.

The requirement of an appropriate convergence criterion
immediately arises for this iterative procedure. If χ is the lin-
ear combination of the constant function and a further dominant
eigenfunction of Kτ , then a linear relation is expected,

Kτχ ∼ χ. (14)

Thus, the pairs (χi(xn), χ̃i+1(xn))n, with n ∈ N, are interpolated
with a straight line, where χ̃i+1 ∶= Kτχi, i.e., the function values
that were neither scaled nor shifted after the last iteration step. A
suitable measure for the quality of a linear relationship is the cor-
relation coefficient r.13 In the context of the proposed algorithm,
it is arbitrarily determined that the convergence criterion is met if
r ≥ 0.999 applies. For technical reasons, the correlation coefficient
of the pairs just mentioned is not calculated, but that of the pairs
(χi(xn), χi+1(xn))n is calculated. The calculated value of the correla-
tion coefficient is the same for both sets of pairs. However, the linear
single regression results in different gradients and axis intercepts of
the straight line. As shown later, only the regression line to the pairs
(χi(xn), χ̃i+1(xn))n of the final iteration step is of interest.

In the illustrations, ISOKANN is applied to OLD (1) with the
following potential V(x) : R2 → R, which is taken from Ref. 14 and
has already been applied in Refs. 4 and 7:

V = 3e−x1
2
−(x2−

1
3 )

2

− 3e−x
2
1−(x2−

5
3 )

2

− 5e−(x1−1)2
−x2

2

− 5e−(x1+1)2
−x2

2

+ 0.2x1
4 + 0.2(x2 −

1
3
)

4
.

(15)

The potential has three minima identified as metastabilities of the
dynamics, which are approximately in the proximity of the following
three points (see Fig. 2):

● Metastability 1: (0; 1.5),
● Metastability 2: (−1; 0),
● Metastability 3: (1; 0).

FIG. 2. Potential.

Thus, a set of three eigenfunctions with eigenvalues close to 1
can be expected. The next eigenfunctions have eigenvalues that are
far away from 1. This clear separation of more and less dominant
eigenfunctions in the spectrum of the Koopman operator makes the
power method very efficient. The first eigenfunction is, as previously
mentioned, the constant function 𝟙. The next two eigenfunctions
are e2 and e3. The χ membership functions are generally different
from the eigenfunctions of the Koopman operator. However, we
can find three membership functions that span the same invariant
subspace like the eigenfunctions. Thus, we apply the power method
(13) three times, each with different initial functions, in order to
retrieve three linear independent functions. The three initial func-
tions χ̃s0 = χ̃s0(x1, x2) : D → R, where s ∈ {1, 2, 3} are randomly
chosen. In the OLD example,

χ̃10 = sin(x1 + 0.5x2) + 0.5x2 cos(2x2
2) + 0.01x1

4

+ 0.01(x1x2)3, (16)

χ̃20 = − 2 sin(x1

3
+
x2

6
) + 0.5x2 cos(x2

2) − 0.01x2
4

+ 0.005(−(x1 − 0.5)(x2 − 0.5))3, (17)

χ̃30 = sin(0.5x1 + x2) + 0.5 cos(0.1(x2 − 3)2)
− 10−4((x2 − 6) − (0.7x1)2)4. (18)

From the initial functions, we directly arrive at the scaled and shifted
initial functions χs0 = χs0(x1, x2) : D→ [0, 1],

χs0 ∶=
χ̃s0 −min(χ̃s0)

∥χ̃s0 −min(χ̃s0)∥max
. (19)

The set of the three linear independent membership func-
tions spans a three-dimensional space. After the convergence of the
method, the three functions χ1, χ2, and χ3 approximately span an
invariant subspace of the Koopman operator, i.e., it is expected that

lim
i→∞

χsi =: χs = as𝟙 + bse2 + cse3, where as, bs, cs ∈ R, (20)

because dominant eigenvalues “survive” the power method, whereas
lower eigenvalues “vanish.”
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B. Training strategy

The initial functions χs0 and all approximations χsi are obtained
from a multilayer neural network. The ANN, therefore, represents
an approximation of χs0 or χsi at the starting point or after each indi-
vidual iteration step of the learning phase. χs0 ∈ F can be chosen
arbitrarily, but each of them has to contain a non-vanishing portion
that is an element of a basis of the invariant subspace being searched
for so that ISOKANN can converge on that portion. This condition
should be fulfilled here because in this methodology, an approxi-
mation of the functions χs0 takes place and an exact zero fraction
becomes improbable (Fig. 3).

Another possible approach would be to not select the initial
functions manually but to directly generate the ANN with random
weightings and threshold values. This would be advantageous for
an application to problems that require a particularly large number
of initial functions. Furthermore, initial functions generated from
pseudo-random numbers (or even from real random numbers) are
usually preferable to manually selected ones, in order to avoid any
systematic error. However, in the illustrative OLD example, it is
advantageous that the initial functions can be directly influenced so
that the procedure can be tested with different start configurations.
Therefore, it is possible to test, e.g., the shape of the membership
function at the end if higher function values are to be found in the
range of a certain metastability at the start time.

The algorithm ISOKANN for determining the invariant sub-
space of the Koopman operator is illustrated with a Python-style
pseudocode (code 3). The source code, including the details of

the system configuration, can be referred to in the supplementary
material.

At the beginning, a large number of random test points
xtestn =̂x_test[n] with n ∈ {1, 2, . . ., n_points} are generated
(pseudocode l. 1) such that xtestn ∈ D.

Next, the ANN model is initialized (see pseudocode l. 2). An
ANN with 5 hidden layers and 50 artificial neurons per layer is cre-
ated. After some test runs, these values turn out to be well-suited
with regard to the highest possible accuracy on the one hand and
also the overfitting to be avoided. In the last layer, a linear function
is used as the activation function, and in all other layers, the ReLu
function is used. Furthermore, the ANN is configured with the error
function mean square error and with the optimizer Adam.15

This is followed by a loop that implements the power method
(pseudocode ll. 4 ff.). Then, a multitude of random training points
xtraink with k ∈ {1, 2, . . ., n_train_points} is generated (pseudocode
l. 5), for which xtraink ∈ D. It should be noted that the same test points
are always used (even for different initial functions). However, new
random training points are generated in each iteration step of the
power method.

A new execution of the source code provides the same pseudo-
random numbers used as test and training points for replicability.
The trajectories of the dynamics will always be the same. However,
this does not apply to the random numbers used by functions from
the libraries Keras16 and TensorFlow.17 These two libraries are used
in the program for implementing the ANN. Keras is the frontend,
and TensorFlow is the backend. Thus, results can still be expected
that differ slightly from each other for statistical reasons.

FIG. 3. Pseudocode: ISOKANN for determining the invariant subspaces of the Koopman operator.
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If the loop is run for the first time, the exact function values
for the individual training points are calculated from the (current)
initial function and stored in the array y_train (pseudocode ll. 6
f.). In the first loop pass, the power method is not yet executed. In
the succeeding pass, two nested loops are executed (pseudocode ll.
8-14).

The first loop iterates over the number of training points
and the second over the number of trajectories per point
n_trajectories_per_point. Starting from the starting points
x_train, trajectories are calculated according to dynamics (1), and
the end points are stored in x_end (pseudocode l. 12). The duration
of a trajectory is τ as the following applies: τ =̂timestep ⋅ n_steps.
Then, calculation of the approximated function values x_tmp at
the end points takes place with the ANN (pseudocode l. 13). The
expected value is calculated from the set of all function values for
a training point (pseudocode l. 14). The expected values ytraink are
scaled and shifted (pseudocode l. 15) so that the following applies:
ytraink ∈ [0, 1]. As per (7), with f = χsi , the set of expected val-
ues then represents the training data y_train. In the next step, the
ANN is trained with it (pseudocode l. 16). For the current iteration
step, i =̂ i would therefore apply at the end of the loop of the power
method,

χsi ≈ χsappi =̂ model, (21)

χsappi (xtraink) = ytraink . (22)

Thereupon, the approximated function values at the test points can
be calculated with the ANN and assigned to the array y_predicted
(pseudocode l. 17).

If it is not the first loop pass (i.e., if i ≥ 1), the corre-
lation coefficient r(ypredi , ypredi−1) of the pairs y_predicted and
y_previous_predicted is determined and assigned to the vari-
able pearson_r (pseudocode ll. 18 f.). Afterward, the reference of
y_predicted is assigned to y_previous_predicted (pseudocode
l. 20), which has already been declared outside the scope of the loop
such that the next iteration step is possible (pseudocode l. 3). If it is
true that the correlation coefficient r(ypredi , ypredi−1) ≥ 0.999, the con-
vergence criterion is considered to be fulfilled and the power method
is aborted (pseudocode ll. 21 f.).

In the last iteration step, the ANN must be trained with nei-
ther scaled nor shifted training data. This is exactly the difference
between χsappi and χ̃sappi .

The algorithm described above has to be executed once for
each of the three initial functions, where s =̂initial_function
_selection. The same test points are always selected for com-
parison purposes. A separate (new) ANN is created for each initial
function. On the other hand, the existing net is merely adjusted in
each iteration step of the power method since it can be assumed that
the function to be approximated changes only slightly during a sin-
gle iteration step. This increases the accuracy of the approximation
for the same computational effort for training the mesh.

Parallel to the calculation of membership functions using the
power method and an ANN, the membership function (χscalci ) is cal-
culated directly for the sake of comparison by using long trajecto-
ries. The number of long trajectories generated for each test point
is also n_trajectories_per_point. For the respective iteration
step i, these consist of i multiplied by the number of steps of the

trajectories used in the first mentioned calculation (i.e., the number
i ⋅ n_steps). Hence, (7) is applied, with iτ, instead of τ, and the
arithmetic expectation value, instead of the exact one,

χscalci ∶=
Ē −min(Ē)

∥Ē −min(Ē)∥max

≈ (Kiτχs0)(x) −min((Kiτχs0)(x))
∥(Kiτχs0)(x) −min((Kiτχs0)(x))∥max

, (23)

where Ē = Ē(χs0(x(iτ)); x(0) = x) does not represent the exact
expected value E, which is based on the theoretically expected fre-
quency, but a numerical approximation of it inevitably results from
a limited number of trajectories. This is because the formula using
E = E(χs0(x(iτ)); x(0) = x) represents the following relationship:

χsi =
E −min(E)

∥E −min(E)∥max

= (Kiτχs0)(x) −min((Kiτχs0)(x))
∥(Kiτχs0)(x) −min((Kiτχs0)(x))∥max

. (24)

Nevertheless, the long trajectories are divided into several small ones
during the direct computation for technical reasons. These trajecto-
ries are joined one after the other during the iteration steps of the
loop. Thus, without redundant computational effort, a result from
the direct calculation is obtained after each individual iteration step.
The function values from the direct calculation are stored in the
variable y_calculated. Both types of calculation suggest similar
function values,

χsi ≈ χsappi ≈ χscalci . (25)

In an array error =̂ χserri , the difference between y_calculated and
y_predicted (i.e., the errors between both arrays) are then stored
and plotted.

IV. DISCUSSION OF THE INTRODUCTORY
2D-EXAMPLE

The results of ISOKANN presented earlier are described and
discussed.

A. Rare event problem
To depict the motion of a particle according to OLD, a cer-

tain number (n_saved_trajectories) of trajectories are plotted.
Figure 4 shows an example of a trajectory with 10 000 steps. The
particle starts in the first metastability and finds its way to the third
metastability after relatively few steps, where it remains until the end
of the simulation. Repeating the simulation with the same starting
point shows a similar picture. In most cases, the particle migrates
into one of the other two metastabilities after a short time and is only
rarely able to leave metastability 2 or 3. If it does, it usually migrates
back into metastability 1 but rarely from the second metastabil-
ity directly into the third or vice versa. The reason behind this is
that the value of the potential at the location of metastabilities 2
and 3 is lower than at the location of metastability 1. In addition,
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FIG. 4. Representation of a trajectory of a particle that starts at point (0; 1.5)
and moves 10 000 steps according to the dynamics. The potential is shown in
the background.

a higher potential barrier must be overcome directly between the
lower two metastabilities than in the detour via the metastability
on top. Increasing the temperature, which is indirectly achieved by
changing the variable BETA =̂β, leads to larger steps because the
stochastic part of the movement becomes larger. Therefore, at higher
temperatures, a change of the particle into other metastable states is
more often observed than at low temperatures.

However, in practical molecular simulations, it happens
extremely rarely that the state changes from one metastability to
another. Instead, the states remain in the same metastability all the
time. The advantage of this approach is that instead of long trajecto-
ries leading from one metastability to another, only short trajectories
are required, which can start at any location. An idea for further

studies is to let the trajectories start at transient areas (i.e., areas
with maximum potential values) in order to learn more about the
transitions.

B. Application of ISOKANN
In order for the methodology to provide correct results, it is

necessary for the ANN to be a sufficiently accurate approxima-
tion of the function to be learned after training. From Fig. 5, it
can be seen that the ANN approximates the initial function well;
therefore, the requirement is fulfilled. The exact function values
at the test points are plotted on the left-hand side of the graph,
which are calculated directly with (16). In the middle, the approx-
imation of the function values at the test points is plotted by the
ANN. The differences are negligible. The error between the exact
and the approximated function values is shown on the right. The
maximum error is approximately 0.060 for the first initial function,
0.011 for the second, and 0.023 for the third. A similar situation
is observed when the script is executed again. This is due to the
more complicated nature of the first initial function (e.g., shorter
period length of trigonometric functions) compared to the other
two. Nevertheless, each time the script is executed again, the dis-
tribution of the error is at least slightly different. The reason is that
the initial setting (weightings and thresholds) of the ANN is ran-
domly chosen, and the training also contains random components
(these are pseudo-random numbers). This leads to always differ-
ently trained nets. In contrast, the predictions of the ANN are purely
deterministic.

The number of steps of the trajectories used in the methodol-
ogy is 10, i.e., significantly lesser than in the trajectory shown. The
reason behind the low number of steps will be discussed later. There-
fore, the ANN converges slowly against the membership function.

FIG. 5. Initial function 1: On the left side, the directly calculated function values are shown. In the middle, the approximation of the function values with the ANN is shown. The
amount of the difference between the function values is shown on the right. The plots above show the function values before the power method is executed, and the plots
below show the function values after the ninth iteration step is completed.
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TABLE I. Median function values Ω(z)s in the region Bz of function χs.

Metastability 1 Metastability 2 Metastability 3

Function 1 Ω(1)1 : 0.8 Ω(2)1 : 0.0 Ω(3)1 : 0.9
Function 2 Ω(1)2 : 0.1 Ω(2)2 : 1.0 Ω(3)2 : 0.3
Function 3 Ω(1)3 : 1.0 Ω(2)3 : 0.0 Ω(3)3 : 0.6

In the plots generated by the script after each single iteration step
of the power method, the development of the ANN as an approx-
imator from the initial function to the membership function can
hence be traced exactly. The initial functions randomly selected at
the beginning are iterated into the membership functions, which
have three plateaus. The corresponding (mean) function values will
be denoted as Ω(z)s , where z ∈ {1, 2, 3}. A comparison with previous
results from the literature (see Refs. 4 and 7), in which the same game
example is treated, shows the similarity of the generated member-
ship functions. Three ranges Ω(z)s can be seen per function since the
dynamic also has three metastabilities. Each area of a plateau Ω(z)s
contains the location of a metastability. The values merge continu-
ously at the border of the areas. In Table I, the approximate average
values of Ω(z)s and the metastabilities are listed. Due to the approx-
imation, the values are not exact but lie approximately between
0 and 1.

In accordance with the fact that the ANN continuously con-
verges against the membership functions, the plotted pairs also
approach toward the regression line with every further iteration
step. Correspondingly, the correlation coefficient also shows a value
closer to 1 with every iteration step. The following list shows the total
number of iteration steps until convergence is reached and the func-
tion obtained from the linear regression. The values are rounded to
five decimals:

● Initial Function 1: After iteration step 9,
χ̃1app9

= 0.995 30χ1app8
+ 0.006 69.

● Initial Function 2: After iteration step 7,
χ̃2app7

= 0.994 67χ2app6
+ 0.005 43.

● Initial Function 3: After iteration step 12,
χ̃3app12

= 0.991 44χ3app11
+ 0.001 97.

In Fig. 6 (bottom row), the functions are drawn as red straight
lines. It should be noted that in the bottom row (in contrast to the
upper row), the function values are plotted on the ordinate, which
have neither been scaled nor shifted. Furthermore, Fig. 6 shows
the strong dispersion of the pairs at the beginning, and the clear
agreement of the pairs with the regression line after the conver-
gence criterion has been reached (upper and lower rows). The corre-
sponding values on the abscissa match the values from Table I quite
well.

From Table I, it is apparent that there is a linear indepen-
dence between the three membership functions. Together, they span
a three-dimensional space U,

U ∶= span{χ̃1app9
, χ̃2app7

, χ̃3app12
}. (26)

The Kτ invariant subspace U is the central result of the von Mises
iteration methodology.

C.Further calculations
The three trained functions span a three-dimensional invariant

subspace of the Koopman operator Kτ . Due to the novel rescal-
ing and shifting approach (23) used, the basis functions can also
be seen as membership functions of fuzzy sets or regions Bs of
the state space. In order to obtain a partition of unity, i.e., to get
∑3

s=1 χ̃s(x) = 1, a linear combination of these functions has to be
determined by PCCA+,18 which is beyond the scope of this arti-
cle. Thus, continuing from the previous results, the next step would
be to determine the exit rates (the rare event statistics) from the

FIG. 6. Display of the function value
dependency on the function values after
the previous iteration step (from left to
right) for the first, second, and third initial
functions. Furthermore, a regression line
is represented by each of these points.
Upper row: representation of the pairs
(χsapp0

(xn), χsapp1
(xn))n after comple-

tion of the first iteration step. Lower
row (from left to right): representation of
the pairs (χsappi (xn), χ̃sappi+1

(xn))n after
completion of the ninth, seventh, and
twelfth iteration steps.
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linear functions listed above. This exit rate rexits can be determined7

for each region Bs. Furthermore, the holding probability ps can be
also calculated,

ps(x, τ) = χ̃s(x)e−rexits τ . (27)

The above equation implies that our learned functions are propor-
tional to the holding probabilities (for fixed τ). The holding prob-
ability depends on the location of the particle (or the state of the
system) and the time (the duration of the trajectory). It indicates
that the probability of a particle being at x at the starting point will
be in the region Bs for the entire duration τ of the observation. It
decreases at a certain rate, namely, the exit rate rexits . With increasing
duration of the observation, the holding probability decreases. The
membership function contains the spatial dependency. For example,
if the particle is completely outside the region Bs from the outset,
the holding probability is 0. However, if the particle starts in the
middle of Bs, then ps is higher. If the particle starts closer to the
edge of Bs, then ps is again smaller. With the algorithm described
in Ref. 7, the exit rates can only be determined if the slope is less
than 1 and the intercept is greater than 0. Both apply to the three
determined regression lines. The exit rate is assumed to be the nega-
tive logarithm of the slope of the linear regressions divided by the
lag-time of the simulation. The closer the slope is to 1, the rarer
the transitions are between the different areas. Using proportion-
ality (27), the role of ∇χ̃ becomes evident as the “spatial direc-
tion of the transition.” It provides information about the reaction
coordinates.

D. ISOKANN learns important transitions
Compared to the direct calculation, the ISOKANN method has

the crucial advantage that with each new iteration step of the power
method, the distribution of the starting points of the particles in
space again corresponds to a statistically uniform distribution. The
end points of the trajectories from the last iteration step are mostly
located at places where the potential has low values. If the dynamics
would be continued at these end points, then much more would be
learned about the behavior of the particles at the minima and little
about the behavior at places with high potential values (the tran-
sient regions). The behavior of the system is especially interesting in
transient regions. For example, if a particle frequently leaves a cer-
tain area, then the ANN learns that, probably, there is a transient
region to be found and how “quick” transitions take place. How-
ever, learning the behavior of the particles in the region of the min-
ima hardly leads to a new insight because the particles move there
mainly according to statistical noise and remain at the minimum.
The computational effort required to simulate longer trajectories of
molecular motion is not of any use if the trajectory arrived at minima
since for the direct calculation approach, during most of the calcu-
lation time, only the dynamics at the minima are simulated and thus
learned. This means that the structure of the dynamics in the entire
space is not captured in the direct calculation, whereas the ANN
method captures much more. Hence, the primary disadvantage of
the direct calculation is that an even distribution occurs only once
at the beginning. Accordingly, the result from the ANN method is
closer to the theoretical exact membership function. Furthermore,
optimal placements (χ ≈ 0.5) of starting points are possible within

the iterative procedure of the power method based on the iteratively
trained functions.

E. Influence of the initial ANN configuration
The reason behind configuring the ISOKANN methodology

with a small number of steps n_steps is that the trajectories start
more often from equally distributed points, and thus, the structure
of the dynamics is learned more evenly and extensively. However,
with a small number of steps applied, the number of iteration steps
required increases proportionally. The configuration of the simula-
tion with a higher number of steps n_steps leads to a transition
from the ANN method to direct calculation, with the disadvantages
already mentioned.

The indirect increase in the temperature in BETA leads to mem-
bership functions that show larger transitions between the ranges of
constant values. This is due to the larger steps and due to the asso-
ciated possibility of leaving metastable states more easily. Increas-
ing n_trajectories_per_point results in the arithmetic expec-
tation value being closer to the exact expectation value, and as a
result, the membership function is also closer to the theoretical
exact membership function. Similarly, increasing n_train_points
leads to a larger amount of training data and thus also to a bet-
ter result. Furthermore, increasing the number of hidden layers of
the ANN n_hidden_layers, and the number of neurons per layer
n_neurons_per_layer, leads to a more accurate approximation
and therefore to a better result, provided that the amount of training
data is also increased at the same time. Otherwise, there is a risk of
overfitting and obtaining a worse result.

V. DISCUSSION OF A HIGH-DIMENSIONAL EXAMPLE
In contrast to the procedures in Refs. 4 and 7, ISOKANN avoids

any discretization of the state space. The main challenge in the
transition from a toy example to a problem of relevance, in prac-
tice, is the large computational cost involved. In the toy example
shown here, the state space of the particle has only two dimensions.
However, 1-ethylpiperidin, the central building block of the opioid
fentanyl, consists of 23 atoms with (theoretically) three degrees of
freedom each. Hence, the state space of this molecule has 69 dimen-
sions. The application of methods that require the discretization of
this high-dimensional space becomes too expensive due to the curse
of dimensionality. Already, the rough discretization in ten subsets
per dimension would lead, with the molecule mentioned before, to
the enormous number of 1069 subsets of the state space. ISOKANN
allows for the determination of the membership functions and the
corresponding output rates, without the need to discretize the state
space even once. Nevertheless, the generation of the training data
and the training itself in a high-dimensional space involves a high
computational cost. Therefore, only trajectories from a suitable sub-
set of the state space should be generated. It is also possible that the
number of degrees of freedom for molecules is reduced if the move-
ment of some atoms is restricted due to the bonds. Then, the state
of the whole molecule is effectively dependent only on the state of a
certain number of atoms. This is another advantage of ISOKANN.
Each dimension of the state space corresponds to an input of the
first layer of ISOANN. During training, the weights of exactly those
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inputs are automatically reduced, which correspond to degrees of
freedom in which there is effectively no or only little movement. In
such cases, the whole ANN can be designed smaller from the outset
and can then be trained with less effort.

It would be advantageous to have software that calculates the
optimal settings for a given problem, taking into account the desired
accuracy. This includes, on the one hand, the number of training
points, trajectories, and steps, and on the other hand, the num-
ber of hidden layers and neurons per layer. Suitable values of these
parameters were determined only by manual frequent testing and
estimation. Before training the network, the determination of the
optimal number of epochs could also be done. Furthermore, alterna-
tive ANN learning methods could be used, which are more suitable
for the underlying problem. Notably, with regard to the applica-
tion to high-dimensional spaces, the approach from Ref. 19 appears
promising. Since the generation of trajectories is particularly suitable
for concurrent execution, parallel programming should be consid-
ered here. Although we have only shown our results for a small-
dimensional example so far, we want to present in this section how
high-dimensional molecular systems can be investigated with our
proposed ISOKANN method.

A. A 243-dimensional model
Molecular dynamics (MD) simulations of the interaction of

the μ-opioid receptor at pH 7, embedded in 1-palmitoyl-2-oleoyl-sn
glycerol-3-phosphatidyl choline (POPC) bilayer,20 with the proto-
nated fentanyl was used to generate the data required to test the
ISOKANN algorithm for a more complex system (Fig. 7). More
specifically, the interaction of the opioid ligand with the crucial ASP
147 and HIS 297 residues of the receptor21 was analyzed in detail
in terms of three-dimensional coordinate positions of the corre-
sponding 83 atoms (a 249-dimensional example). In order to get rid
of three rotational and three translational degrees of freedom, the
molecular structures have been aligned to the first frame of the simu-
lation, which reduces the degrees of freedom from 249 to 243. These
degrees of freedom are the input layer of the ANN. More details
about the modeling and simulation aspect of this binding process
can be found in the supplementary material.

FIG. 7. Protonated fentanyl opioid in complex with the μ-opioid receptor at pH 7,
embedded in a POPC bilayer, with ASP 147 and HIS 297 residues depicted in red
and brown, respectively.

B. Algorithmic details for using long-term trajectories
The algorithm ISOKANN on p. 5 is based on two major ideas:

1. The training points, which are also the starting points of many
short-term trajectories, should be distributed uniformly in the
configurational space of the molecular system. Thus, trajec-
tories that overcome free-energy barriers are not necessarily
required, and the simulation can be started from high-energy
levels of the barriers. The result of the first training cycle also
provides information about the location of these barriers in
space [for transient states x, χ(x) ≈ 0.5]. This idea is not com-
patible with long-term MD trajectories (having many inte-
gration steps). In general, straight forward MD-simulations
depend on barrier-crossings, and they rarely reach the “top of
these barriers.”

2. In order to evaluate (Kτf )(x), many short-time simulations
starting at x are needed. This is also not compatible with
straight forward MD. In a long-term trajectory, only consec-
utive steps are sampled. Thus, only one point xτ is generated
out of x0 = x. Using only this one point, the calculation of the
expectation value would be based on very bad statistics.

Although it is recommended to exploit these two basic ideas,
the described ISOKANN method can be applied to long-term tra-
jectories. Point 1 can be solved by running extensive MD simula-
tions, by restricting rate computations only to very localized events
of molecular processes, or by running MD trajectories from many
different starting points in space (including transition regions). For
point 2, there exists a mathematical solution. The advantage of ana-
lyzing invariant subspaces of an operator Kτ (instead of singular
value decompositions) is that multiples and sums of multiples of Kτ ,
have the same invariant subspace. The operator K = 1

w ∑
w
i=1 Kwτ has

the same invariant subspaces like Kτ whenever the Koopman opera-
tor Kτ meets the Chapman–Kolmogorov property (which is the case
if Kτ has an infinitesimal generator, like in OLD or stochastic MD).
Thus, instead of generating many trajectories from a starting point
x, one can also generate one long-term trajectory and take w consec-
utive points for the mean value computation. It should be noted that
the eigenvalues of K are of the form 1

w ∑
w
i=1 λ

w if λ is an eigenvalue
of Kτ . This relation can be used to correlate the characteristic time
scales of K with those of Kτ .

C. Results of ISOKANN
In Fig. 8, it is shown how a trained function χ looks like

for the high-dimensional example. After the first iteration of the
power method, the correlation coefficient is 0.6847. A clear sepa-
ration of molecular macrostates is not visible in the corresponding
plot (top). After seven iterations (bottom), the convergence crite-
rion is reached. The correlation coefficient is 0.9991. The piecewise
constant-level pattern of membership functions is clearly visible.
Rare transitions between these levels are also obvious. Transition
regions can be identified (values “between the levels”). Furthermore,
as expected, the χ-values show more fluctuations in less attracting or
less stable regions than in stable regions. This illustrates again that
the fluctuations of the χ-values include the relevant information for
the exit rate computation. We also expect that the gradient of the
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FIG. 8. Values of the ANN after the first iteration step (top, correlation coefficient
is 0.6847) and after convergence in the seventh iteration step (bottom, correlation
coefficient is 0.9991).

χ-function includes information about the reaction path of the bind-
ing event between the opioid molecule and the μ-opioid receptor.

VI. CONCLUSION
The novel ISOKANN method is able to automatically generate

basis functions of an invariant subspace of the Koopman opera-
tor of an OLD. The power method reliably ensures that only the
rare transitions between the system states are captured. The values
of the correlation coefficients confirm that the method converges.
Graphically, this is manifested by the fact that the plotted points are
closer to the regression lines with each further step of the power
method. The program also generates the slopes and intercepts of
the lines as results. From this, the output rates and holding proba-
bilities can be calculated. The methodology can be implemented in
such a way that the problematic discretizations of high-dimensional
spaces are always avoided. This approach is novel and offers the great

advantage that invariant subspaces can be calculated efficiently even
on high-dimensional state spaces. Furthermore, with this efficient
method, the structure of the dynamics is better captured with fur-
ther iteration steps by an optimal distribution of all starting points
of the trajectory: Due to the high computational cost involved in MD
simulations, any increase in efficiency is of great value. Up until now,
MD simulations have not focused enough on questioning the bene-
fit of each individual calculation. In contrast, this method shows how
calculation steps that are not useful can be avoided (starting trajec-
tories in regions with χ ≈ 0.5). This article provides a basis for the
application of the ISOKANN method to practical problems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the setup of the molec-
ular dynamics simulations of fentanyl inside the opiod receptor
binding pocket and also for a complete python script showing the
implementation details of the ISOKANN algorithm.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request. It can
also be generated with the aid of the python-script present in our
supplementary material.
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