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We study the long time behaviour of large systems of ordinary differential equations with
random data. Our main focus is a Hamiltonian system which describes a distinguished

particle attached to a large collection of heat bath particles by springs. In the limit where

the size of the heat bath tends to infinity the trajectory of the distinguished particle can
be weakly approximated, on finite time intervals, by a Langevin stochastic differential

equation. We examine the long term behaviour of these trajectories, both analytically

and numerically. We find ergodic behaviour manifest in both the long time empirical
measures and in the resulting auto-correlation functions.
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1. Introduction

In many applications of molecular dynamics the desired information is low di-
mensional, even when the governing model equations contain a large number of
degrees of freedom. An important example is the extraction of conformational dy-
namics for biomolecules. Conformational dynamics may be stochastic in nature,
even when the underlying model is deterministic [1]. Since numerical methods are
typically needed to study the equations of motion [2], it is clearly important to
be able to evaluate them by their ability to extract the correct macroscopic infor-
mation. This applies both to straightforward time-stepping methods, and to more
sophisticated methods such as those proposed in [3, 4]. In this context the de-
velopment of simple model problems is important: the equations of motion for a
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bio-molecule exhibiting conformational dynamics are extremely complex and not
always appropriate for thorough investigation of algorithmic capability.

In [5] a variant of the Ford-Kac model of a heat bath [6] was used to study
standard time-stepping algorithms by their ability to correctly predict macroscopic
quantities. It is of interest to use similar models to study the more sophisticated al-
gorithms in [3, 4]. However the set-up of the model problem in [5] is not appropriate
for the study of large-time dynamics because of a periodicity inherent in the con-
struction. The primary purpose of this paper is to propose and study a related class
of model problems which are suitable for the study of long-time dynamics. These
model problems have the form of deterministic differential equations with emergent
stochastic dynamics. Some of the models proposed here have already been used in
[7] to evaluate the algorithm in [3].

In Section 2 we introduce a Hamiltonian system which will be the primary fo-
cus of our study; it has the form of a distinguished particle attached by springs
to a large number of heat bath particles. By eliminating the heat bath variables
an integro-differential equation (IDE) is found for the distinguished particle. Sec-
tion 3 contains some basic analysis of Monte-Carlo approximations of integrals and
stochastic processes, enabling an understanding of the memory kernel and forcing
which appear in the IDE. In Section 4 we show that the distinguished particle in
the Hamiltonian system can be approximated by the solution of a Langevin SDE.
All the approximation results in sections 3 and 4 are weak convergence results on
finite time intervals. Section 5 contains some analysis of the large time behaviour of
the Monte Carlo approximation of an Ornstein-Uhlenbeck (OU) process introduced
in section 3. This analysis forms the motivation for the numerical experiments in
section 6 which elucidate the long-time behaviour of large Hamiltonian systems of
ODEs introduced in Section 2. The results show a close relationship between these
ODEs and their approximating SDEs, when comparisons are made for empirical
measures and autocovariance functions, and when the limiting SDE is ergodic.

The derivation of SDEs from ODEs has a long history [8, 9]. Because of the ex-
plicit nature of our problem this abstract machinery, which has been developed con-
siderably over the last few decades [10], is not required for the analysis under-taken
here; we make use of straightforward tools from weak convergence of probability
measures [11]. Our main contribution is to construct an explicit family of model
problems which are useful in the study of algorithms for macroscopic properties of
molecular systems. Through analysis and numerical experiments we establish the
properties of these model problems.

2. The Hamiltonian system

The model problem under investigation is a Hamiltonian system defined by the
Hamiltonian,

H(Qn, Pn, q, p) =
1
2
P 2

n + V (Qn) +
n∑

j=1

p2
j

2mj
+

n∑
j=1

kj

2
(qj −Qn)2, (2.1)

where Qn, Pn are the position and momentum of a distinguished particle of unit
mass in a potential field V (·). The vectors q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn)
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are the coordinates and momenta of n particles that are referred to as “heat bath”
particles. The j-th heat bath particle has mass mj and interacts with the distin-
guished particle via a linear spring with stiffness constant kj . If the distinguished
particle was held fixed it would be the anchor point of n independent oscillators
with frequencies ωj = (kj/mj)1/2. This model is a variant of the well-known Ford,
Kac, Mazur model [12, 6] (see also [13, 14]). The subscript n in Qn, Pn labels the
size of the heat bath (it should not be confused with the subscript n in (qn, pn)
which refers to the n-th heat bath particle); this subscript is introduced to have a
convenient notation when comparing systems of variable size.

Hamilton’s equations of motion are

Q̇n = Pn

Ṗn = −V ′(Qn) +
n∑

j=1

kj(qj −Qn)

q̇j = pj/mj

ṗj = −kj(qj −Qn),

(2.2)

supplemented with initial conditions Qn(0) = Q0, Pn(0) = P0, qj(0) = q0
j , and

pj(0) = p0
j . It is further assumed that the initial data for the heat bath particles

are randomly drawn from a Gibbs distribution with inverse temperature β. The
Gibbs measure is conditioned by the (non-random) initial data Q0 and P0. For
fixed Qn, Pn the Hamiltonian (2.1) is quadratic in q, p, and hence the corresponding
measure is Gaussian. It is easily verified that

q0
j = Q0 + (1/βkj)1/2ξj

p0
j = (mj/β)1/2ηj ,

where ξj , ηj ∼ N (0, 1) are mutually independent sequences of i.i.d. random vari-
ables.

System (2.2) is a model problem for the situation when a particle interacts
with a system of many degrees of freedom (a heat bath) having a broad and dense
spectrum. In this context it is natural to choose the parameters kj and mj such
that, as n increases, the set of ωj covers an increasingly large range of frequencies
in an increasingly dense manner. A simple choice that satisfies this requirement is
to take the frequencies ωj random and uniformly distributed in [0, na],

ωj = naνj , νj i.i.d., ν1 ∼ U [0, 1],

for some a ∈ (0, 1). Another alternative is to take the ωj non-random and equally
distributed in [0, na]. Both choices are considered below.

Initially we choose the spring constants kj as follows:

kj = f2(ωj) ∆ω, f2(ω) =
2α

πβ̃

1
α2 + ω2

, (2.3)

with α, β̃ > 0 and ∆ω = na/n being the mean spectral density. The reason for this
choice and notation will become apparent in the next section, where generalizations
of (2.3) are also considered.
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The probability space is induced by the three mutually independent sequences
of i.i.d. random variables νj , ξj , and ηj . In several instances below, we derive
properties of the system that hold almost surely with respect to certain variables
but are of statistical nature with respect to the remaining variables. As a result,
we need distinct notations for integration over the ν, ξ, and η components of the
probability space. For example, we will denote by Eν expected values with respect
to the ν variables only, by Eξη expected values with respect to the ξ and η variables,
and by Eνξη expected values with respect to the entire probability space; when no
confusion should arise we will use the shorter notation E. Similarly, Varν denotes
the variance with respect to the ν variables, Pν denotes probability with respect to
the ν variables and so on.

The variables qj ,pj in (2.2) can be integrated explicitly, giving rise to an in-
homogeneous integro-differential equation for the distinguished particle trajectory
Qn(t):

Q̈n(t) +
∫ t

0

Kn(t− s)Q̇n(s) ds + V ′(Qn(t)) = Zn(t), (2.4)

where

Kn(t) =
n∑

j=1

f2(ωj) cos(ωjt) ∆ω (2.5)

Zn(t) = β−1/2
n∑

j=1

f(ωj) [ξj cos(ωjt) + ηj sin(ωjt)] (∆ω)1/2. (2.6)

Eq. (2.4) is a projection of the (2n + 2)-dimensional system (2.2) onto the two-
dimensional subspace (Qn, Pn). It describes the rate of change of (Qn, Pn) as func-
tion of their present and past values. The history dependence is encapsulated by
the memory kernel Kn(t). The function Zn(t) is a forcing that depends, for fixed
νj , on the initial data ξj , ηj . It is a stationary zero-mean Gaussian process; its
autocovariance function satisfies the so-called fluctuation-dissipation relation

Eξη[Zn(t)Zn(s)] = β−1 Kn(t− s);

this holds for every choice of frequencies. Eq. (2.4) is an instance of the Mori-
Zwanzig projection formalism [15, 16, 17, 18], and is also known as a generalized
Langevin equation.

3. Weak convergence of the forcing

In this section we study the n → ∞ limit of the memory kernel Kn(t) and the
forcing Zn(t); see Corollary 3.1 and Corollary 3.2. Before undertaking a rigorous
analysis we note that Kn(t), given by (2.5) with f(ω) given by (2.3), can be viewed
as a Monte Carlo approximation of the integral,

2α

πβ̃

∫ na

0

cos(ωt)
α2 + ω2

dω,
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and this integral tends as n → ∞ to the Fourier cosine representation of β̃−1e−αt.
Similarly, Zn(t), given by (2.6), can be viewed as a Monte Carlo approximation of
the stochastic integral(

2α

πββ̃

)1/2
[∫ na

0

cos(ωt)
(α2 + ω2)1/2

dB1(ω) +
∫ na

0

sin(ωt)
(α2 + ω2)1/2

dB2(ω)

]
,

where B1(ω), B2(ω) are independent Brownian motions. (Note that the Itô and
Stratonovich interpretations of this integral are the same.) In view of the form of
the spectral density it follows that, as n → ∞, this stochastic integral tends to
the stationary Ornstein-Uhlenbeck process U(t) with covariance (ββ̃)−1 e−αt (e.g.
Grimmett and Stirzaker [19] p. 407). Recall that U(t) solves the stochastic differ-
ential equation

dU(t) = −αU(t) dt + (2α/ββ̃)1/2dB(t)

U(0) ∼ (ββ̃)−1/2N (0, 1),
(3.1)

where B(t) is standard Brownian motion independent of U(0). These heuristic
arguments are made rigorous in the remaining part of this section. Throughout
this section it will be assumed that ωj = naνj , a ∈ (0, 1), and ∆ω = na/n, with
νj ∼ U [0, 1] and ξj , ηj ∼ N (0, 1) being three mutually independent sequences of
i.i.d. random variables. We also make occasional references to the straightforward
alternative of choosing the frequencies nonrandom and equally distributed in [0, na].

We start with two useful lemmas:

Lemma 3.1 Suppose that g is a positive bounded real-valued function with bound
c1 such that g(ω) ≤ c2 ω−λ for some c2 > 0 and λ > 1/2. Define

Rn(t) =
n∑

j=1

g2(ωj) cos(ωjt) ∆ω

R(t) =
∫ ∞

0

g2(ω) cos(ωt) dω.

(3.2)

Then for any T ∈ [0,∞), ν-almost surely, Rn → R in L2[0, T ]. That is,

Pν

(
lim

n→∞
‖Rn −R‖L2[0,T ] = 0

)
= 1. (3.3)

Proof: First note that

EνRn(t) =
n∑

j=1

n−a∆ω

∫ na

0

g2(ωj) cos(ωjt)dωj =
∫ na

0

g2(ω) cos(ωt)dω,

so EνRn(t) → R(t) uniformly with respect to t ∈ [0, T ], and hence also in L2[0, T ].
So it is only necessary to show that ν-almost surely

Rn − EνRn → 0, in L2[0, T ]. (3.4)
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For this it is sufficient to show that there exists an integer b such that the sequence

σn = Eν‖Rn − EνRn‖2b
L2[0,T ] = Eν

(∫ T

0

|Rn(t)− EνRn(t)|2dt

)b

is summable: then, by the Borel-Cantelli lemma (Billingsley [20] p. 59),

P
(
‖Rn − EνRn‖2b

L2[0,T ] > ε i.o.
)

= 0

for any ε > 0 (i.o. = infinitely often), which in turn implies (3.4) and hence (3.3).
We rewrite σn as follows:

σn =
∫ T

0

· · ·
∫ T

0

Eν

{
|Rn(t1)− EνRn(t1)|2 · · · |Rn(tb)− EνRn(tb)|2

}
dt1 · · · dtb.

(3.5)
For any p = 1, 2, . . . , b,

Rn(tp)− EνRn(tp) = ∆ω

n∑
j=1

[h(ωj , tp)− µn(tp)] ,

where
h(ω, t) = g2(ω) cos(ωt),

and

µn(t) = n−a

∫ na

0

h(ω, t)dω.

Hence

σn = (∆ω)2b

∫ T

0

· · ·
∫ T

0

n∑
j1=1

· · ·
n∑

j2b=1

Vj1,...,j2b
(t1, . . . , , tb)dt1 · · · dtb, (3.6)

where

Vj1,j2,...,j2b
(t1, . . . , tb) = Eν {[h(ωj1 , t1)− µn(t1)] · · · [h(ωj2b

t2b)− µn(t2b)]}(3.7)

are the centered joint moments of degree 2b of h(ωj , tp).
Note that our assumptions on g imply

|h(ω, t)| ≤ min(c2
1, c

2
2ω

−2λ) ≡ h∗(ω), (3.8)

and
|µn(t)| ≤ [c2

1 + c2
2/(2λ− 1)]n−a ≡ µ∗n, (3.9)

for all t ∈ [0, T ].
Since h(ωj) and h(ωi) are independent for i 6= j, then many of the joint moments

vanish; specifically, every Vj1,j2,...,j2b
that contains an index which appears only once

vanishes. To estimate σn we regroup the 2b-tuple sum (3.6) by the number k of
distinct indices in (3.7); k assumes values from 1 to b because each index must
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occur at least twice, otherwise (3.7) is zero. The number of terms corresponding
to a given k can be bounded by c3 nk, where c3 > 0 is a constant that depends on
b, but not on n nor k (there are nk ways to “decode” a k-letter pattern with an
n-letter alphabet). Now, each of the Vj1,j2,...,j2b

(t1, . . . , tb) which correspond to a
given k is of the form,

Vj1,...,j2b
(t1, . . . , tb) =

k∏
r=1

1
na

∫ na

0

mr∏
s=1

[h(ω, tr,s)− µn(tr,s)]dω,

where m1,m2, . . . ,mk ≥ 2 and m1 + m2 + · · · + mk = 2b; the times tr,s belong to
the set (t1, . . . , tb). Now, using the bounds (3.9) and (3.8), Vj1,...jb

(t1, . . . , t2b) can
be bounded as follows:

|Vj1,...,j2b
(t1, . . . , tb)| ≤

k∏
r=1

(
1
na

∫ na

0

[h∗(ω) + µ∗n]mrdω

)

=
k∏

r=1

mr∑
`r=0

(
mr

`r

)
(µ∗n)mr−`rn−a

∫ na

0

[h∗(ω)]`rdω

≤
k∏

r=1

(
M

na

)
=
(

M

na

)k

.

(3.10)

Going to from the second to the third line is possible since when `r is zero, the
summand goes like (n−a)mr and mr ≥ 2. When `r > 0 the integral in the summand
is convergent, so the summand goes to zero at least as fast as n−a. Combining this
together we have

σn ≤ D(∆ω)2b
b∑

k=1

nkn−ak

≤ En2b(a−1)nb(1−a) = Enb(a−1)

which is summable if we take b > (1− a)−1. This completes the proof.

Lemma 3.2 Let g, R, Rn be defined as in Lemma 3.1. For any t ∈ [0,∞), ν-almost
surely Rn(t) converges to R(t).

Proof: The proof is nearly identical to that of the previous lemma. Since EνRn(t) →
R(t), it is sufficient to show that

Pν

(
lim

n→∞
|Rn(t)− EνR(t)| = 0

)
= 1.

As in Lemma 3.1, we do this by defining, for some integer b,

σn = Eν |Rn(t)− EνRn(t)|2b,

and then showing that this sequence is summable.
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Let h(ω, t) and µn(t) be defined as in Lemma 3.1. Then we can rewrite σn as
follows:

σn = Eν

∣∣∣∣∣∣∆ω
n∑

j=1

[h(ω, t)− µn(t)]

∣∣∣∣∣∣
2b

= ∆ω2b
n∑

j1=1

· · ·
n∑

j2b=1

Vj1,j2,...,j2b
(t, . . . , t),

where Vj1,j2,...,j2b
is defined by (3.7) as in Lemma 3.1. From here on the argu-

ment is identical to that in Lemma 3.1. The bounds obtained on Vj1,j2,...,j2b
were

independent of of t1, . . . , tb so the rest of the proof goes through.

Comments:

1. Convergence ν-almost surely in L2[0, T ] implies convergence ν-almost surely
in L1[0, T ], which is sufficient for establishing the weak convergence of the
trajectories Qn; see Section 4.

2. For ωj deterministic and equally spaced, ωj = j ∆ω, Rn(t) can be viewed as
an approximation to R(t) by quadrature. It is straightforward to show that
in this case Rn converges to R both pointwise and in L1[0, T ].

3. From the proofs given above it is difficult to estimate a rate of convergence
of Rn to R. To do so, we look at the mean squared convergence of Rn(t) to
R(t) for a fixed t. For any t ∈ [0,∞)

Eν |Rn(t)−R(t)|2 = Eν |Rn(t)− EνRn(t)|2 + |R(t)− EνRn(t)|2 ,

since the second term on the right is non-random. The first term on the right
hand side is the variance of Rn(t) which can be estimated by

VarνRn(t) = n∆ω2Varν [g2(ωj) cos(ωjt)] ≤
n2a

n

1
na

∫ na

0

g4(ω)dω ≤ C1∆ω,

where the boundedness of the integral C1 =
∫∞
0

g4(ω)dω follows from our
assumptions on g. To estimate the second term, we note that the expected
value of Rn(t) is

EνRn(t) =
∫ na

0

g2(ω) cos(ωt)dω,

thus

|R(t)− EνRn(t)| ≤
∫ ∞

na

g2(ω)dω ≤
∫ ∞

na

( c

ωλ

)2

dω =
c2

(2λ− 1)
1

na(2λ−1)
.

This gives

Eν |Rn(t)−R(t)|2 ≤ C1

n1−a
+

C2

n2a(2λ−1)
.

The rate of convergence should be optimal when a is chosen to balance the
two terms, which is when a = [1 + 2(2λ− 1)]−1].
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Verifying that f(ω) given by (2.3) satisfies the assumptions on g in Lemmas 3.1
and 3.2 with λ = 1, we conclude:

Corollary 3.1 Let Kn(t) be given by (2.5), then,

1. ν-almost surely, Kn → K in L2[0, T ].

2. For any t ≥ 0 ν-almost surely Kn(t) converges to

K(t) =
2α

πβ̃

∫ ∞

0

cos(ωt)
α2 + ω2

dω = β̃−1e−αt.

The rate of convergence is expected to be optimal if we take a = 1/3.

The next theorem establishes the weak convergence of random series of the form
(2.6). The convergence of Zn(t) to the stationary Ornstein-Uhlenbeck process U(t)
follows as an immediate consequence. Weak convergence, here, is in the probability
space induced by the random variables ξj and ηj , and holds for almost every choice
of frequencies (ν-almost surely). Thus ⇒ denotes weak convergence with respect to
the sequences ξj , ηj . (For a general reference on weak convergence see Billingsley
[11]).

Theorem 3.1 Suppose that g̃(t) is a bounded real-valued function with bound c1

such that g̃(ω) ≤ c2ω
−λ for some c2 > 0 and λ > 1/2. Let Rn(t) and R(t) given by

(3.2), but with g̃(ω) replacing g(ω). Define

Yn(t) =
n∑

j=1

g̃(ωj)[ξj cos(ωjt) + ηj sin(ωjt)](∆ω)1/2. (3.11)

Then, ν-almost surely, Yn ⇒ Y in C[0, T ] where Y is the stationary Gaussian
process with mean zero and autocovariance function R(t).

Proof: The proof relies on the following theorem: Let Yn be a collection of real-
valued almost-surely continuous stochastic processes on [0, T ], such that:

1. On some countable dense subset of [0, T ] the finite dimensional distributions
of Yn converge to those of an almost-surely continuous process Y .

2. Tightness: there exist positive constant b, γ, M1 such that for all n

E|Yn(t + u)− Yn(t)|b ≤ M1|u|1+γ ,

for all t, t + u ∈ [0, T ].

Then Yn ⇒ Y .
If in the first condition we replace convergence on a countable dense subset of

[0, T ] with convergence on all [0, T ], the result is proved in Gikhman and Skorohod
[21], p.450. However, their proof only uses convergence of the finite-dimensional
distributions on such a countable subset, and the above result can be obtained by
the same method as their proof with only slight modifications.

donat
Highlight
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Let Y be the stationary Gaussian process with autocovariance function R(t).
By Kolmogorov’s continuity condition ([22] p. 53) applied to Gaussian processes,
Y has a continuous version if its autocovariance function is Hölder continuous; the
Hölder continuity of R(t) follows from the assumed rate of decay of g.

Now, to establish that ν-almost surely Yn ⇒ Y it suffices to show that both
conditions above are satisfied ν-almost surely. We begin with the first criterion.
Let D be the set of all rationals in [0, T ]. For each t ∈ D Rn(t) converges to
R(t) ν-almost surely by Lemma 3.2, taking g(ω) = g̃(ω). Since D is countable, it
follows that ν-almost surely Rn(t) converges to R(t) for all t ∈ D. To show that
the finite-dimensional distributions of Yn on D converge weakly to those of Y it is
sufficient to show that for any collection of times in D, 0 ≤ t1 < t2 < · · · < tk ≤ T ,
the joint probability density functions of (Yn(t1), . . . , Yn(tk)) converge pointwise to
the joint probability density function of (Y (t1), . . . , Y (tk)). For Gaussian processes
this is guaranteed by the pointwise convergence of Rn(ti − tj) to R(ti − tj) for all
i, j = 1, . . . , n. Since for all such i, j, ti − tj ∈ D the result follows.

It remains to show that the second criterion, the tightness property, holds ν-
almost surely. Let θ ∈ (0, 2λ − 1] ∩ (0, 2], and let b be a sufficiently large integer
such that bθ = 1 + γ for some γ > 0. Then

Eν |Yn(t + u)− Yn(t)|2b = (2b− 1)!!
(
Eν |Yn(t + u)− Yn(t)|2

)b
= 2b(2b− 1)!! [Rn(u)−Rn(0)]b

= 22b(2b− 1)!!

 n∑
j=1

g̃2(ωj) sin2( 1
2ωju)∆ω

b

≤ 22b(2b− 1)!!

 n∑
j=1

g̃2(ωj)| 12ωju|θ ∆ω

b

= 2b(2−θ)(2b− 1)!! |u|bθ

 n∑
j=1

g̃2(ωj)ωθ
j ∆ω

b

≤
[
2b(2−θ)(2b− 1)!!M b

]
|u|1+γ ,

where (2b − 1)!! = 1 · 3 · 5 · · · (2b − 1). In the passage from the first to the second
line we used the Gaussian property of Yn and its stationarity. The third line was
obtained by substituting the expression (3.2) for Rn. To obtain the fourth line we
used the inequality sin2(x) ≤ |x|θ, valid for any θ ≤ 2. Finally, ν-almost surely
there exist a positive constant M such that for any n

n∑
j=1

g̃2(ωj)ωθ
j ∆ω ≤ M.

This follows from Lemma 3.2, with t = 0 and g(ω) = g̃(ω)ωθ/2, which implies that
the left hand side converges ν-almost surely to

∫∞
0

g̃2(ω)ωθ dω, which, in turn, is
finite by our assumptions on g̃ and θ.
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Since f(ω), given by (2.3), satisfies the assumptions on g̃ in Theorem 3.1, and
that β−1K(t) = (ββ̃)−1e−αt is the autocovariance of the stationary OU process, we
conclude:

Corollary 3.2 Let Zn(t) be given by (2.6) and let U(t) be the stationary OU process
defined by (3.1). Then ν-almost surely Zn ⇒ U in C[0, T ].

Comments:

1. It is straightforward to show weak convergence of Zn to U in C[0, T ] for the
case of deterministic, equally spaced frequencies.

2. Yn(t) can be made to approximate delta-correlated white noise by taking
β̃ = α−1 in (2.3). This corresponds to a memory kernel K(t) = α e−αt; a
limit to a delta function in the sense of distributions is obtained by letting
α →∞.

3. Theorem 3.1 can be easily extended to non-stationary processes. For example,

Yn(t) =
(

2
π

)1/2 n∑
j=1

ξj

ωj
sin(ωjt) (∆ω)1/2

can be shown, by similar techniques, to weakly approximate standard Brow-
nian motion in C[0, T ].

4. Convergence of Qn and the limiting SDE

In this section we show that the L1[0, T ] convergence of Kn to K and the weak
convergence of Zn to U in C[0, T ] implies the weak convergence in C2[0, T ] of the
distinguished particle trajectory Qn to a limiting process Q. Furthermore we derive
an SDE whose trajectories have the same distribution as Q. Recall that here weak
convergence is in the probability space induced by the variables ξj , ηj , and holds
almost surely with respect to the measure on the νj .

Theorem 4.1 Let Qn(t) be the solution to the randomly-driven IDE (2.4), with
Kn(t) and Zn(t) given by (2.3), (2.5) and (2.6). Assume that V ′(·) is globally
Lipschitz. Then ν-almost surely Qn converges weakly in C2[0, T ] to the solution Q
of the stochastic IDE

Q̈(t) +
∫ t

0

K(t− s)Q̇(s) ds + V ′(Q(t)) = U(t), Q(0) = Q0, Q̇(0) = P0, (4.1)

where U(t) is the OU process (3.1) and K(t) = β̃−1e−αt.
Moreover, Q solving (4.1) is equivalent to Q solving the SDE

dQ = P dt Q(0) = Q0

dP = [R− V ′(Q)] dt P (0) = P0

dR = (−αR− β̃−1P ) dt + (2α/ββ̃)1/2 dB R(0) ∼ (ββ̃)−1/2N (0, 1),

(4.2)

where B(t) is standard Brownian motion.
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Proof: Corollaries 3.1 and 3.2 imply that ν-almost surely

Kn → K in L1[0, T ], Zn ⇒ U in C[0, T ].

Theorem 4.4 in Billingsley [11] shows that

(Kn, Zn) ⇒ (K, U) in L1[0, T ]× C[0, T ].

Thus the required result follows if we can prove that the mapping (K, U) 7→ Q
defined by

Q̈(t) +
∫ t

0

K(t− s)Q̇(s) ds + V ′(Q(t)) = U(t) (4.3)

is a continuous mapping from L1[0, T ] × C[0, T ] to C2[0, T ] (weak convergence is
preserved under continuous mappings). Integrating the convolution term by parts,
introducing a new kernel K(t) =

∫ t

0
K(s) ds, equation (4.3) becomes

Q̈(t) +
∫ t

0

K(t− s)Q̈(s) ds + V ′(Q(t)) = U(t)− P0K(t), (4.4)

which is a nonlinear equation of Volterra type for Q̈(t) with continuous kernel
K(t) and continuous forcing U(t) − P0K(t). Since V ′(·) is globally Lipschitz a
straightforward Picard argument gives the existence and uniqueness of Q̈ ∈ C[0, T ]
solving (4.4), or equivalently, the existence and uniqueness of Q ∈ C2[0, T ] solving
(4.1). The continuity of Q̈ on K ∈ L1[0, T ] and U − P0K ∈ C[0, T ] is a standard
result (see, for example, [24, 25] and Section 12 in [26]).

The equivalence between the stochastic differential system (4.2) and the stochas-
tic integro-differential equation (4.1) follows from a straightforward integration of
the first. Here, again, the Itô and Stratonovich interpretations are equivalent.

Comments:

1. The set-up here is very similar to that used by Nakazawa [14] who also con-
siders approximating an integro-differential stochastic equation via the same
Hamiltonian system. The results there are comparable, though the techniques
used to obtain them are different.

2. Variants of this model have also been studied in [5, 27, 28, 26]. There the
forcing functions were approximations to distribution-valued processes, such
as white noise, in which case the limiting solution is less regular than in the
present case, and Qn converges in C1[0, T ].

3. In the present model a problem with nonlocal memory can be turned into a
Markov process by the introduction of one extra variable R(t). In the con-
text of constructing deterministic model problems with emergent stochastic
behaviour this fact is of practical importance: problems whose memory can
be described by only a few additional variables constitute an important class
where effective dimension reduction can be achieved.
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4. For general memory kernels K(t) it is not possible to convert the integro-
differential equation into a Markovian system by the introduction of a finite
number of extra variables. Nevertheless, in many problems of interest, the
memory kernel can be well approximated by a finite number of decay modes,
each corresponding to a characteristic relaxation time of the system. (For an
example of such construction in the context of polymeric fluids see Bird et al.
[29] p. 262). For a memory kernel of the form

K(t) =
r∑

i=1

aie
−αit,

the integro-differential equation (4.1) can be converted into a Markovian sys-
tem by the introduction of r extra variables.

5. Setting β̃ = (αγ)−1 and letting α → ∞ shows that (Q, P ) solving (4.2)
converges to (Q,P ) solving the standard Langevin equation without memory:

dQ = P dt Q(0) = Q0

dP = −[γP + V ′(Q)] dt + (2γ/β)1/2 dB P (0) = P0

Recall that in this limit the memory kernel approaches a delta function which
is why the memory variable R drops out. Analysis justifying this limiting
procedure may be found in [31] for weak convergence and [30] for strong
convergence.

5. Long term behaviour

In this section we study analytically the long-term behaviour of the processes
(3.11) described in Section 3; in the next section the validity of our results are
extended to the solution of the integro-differential equation (2.4) by means of nu-
merical experiments.

To illustrate the problem under consideration, consider again the stationary OU
process defined as the solution to the SDE

dU(t) = −αU(t) dt + (2α/β)1/2 dB(t), U(0) ∼ β−1/2N (0, 1),

where B(t) is standard Brownian motion; here and below we take β̃ = 1. In Section 3
it was shown that U(t) was weakly approximated on any finite time interval by the
following sum

Un(t) =
(

2α

πβ

)1/2 n∑
j=1

ξj cos(ωjt) + ηj sin(ωjt)
(α2 + ω2

j )1/2
(∆ω)1/2, (5.1)

with ωj , ξj , ηj and ∆ω defined as in Section 3. It is well-known that U(t), t ∈ [0,∞)
is an ergodic process that has a Gaussian distribution for its invariant measure (see
Has’minskii [32] p. 121). Specifically, for any bounded, continuous function h

h(U(t)) ≡ lim
T→∞

1
T

∫ T

0

h(U(t)) dt = E[h(ζ)], ζ ∼ β−1/2N (0, 1) (5.2)
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on almost every trajectory; the overline is a short-hand notation for long time
averages.

This result can be extended to more general functions of the stochastic process
U , specifically functions that depend on U at more than one point of time. Let
h : Rr → R be a bounded continuous function. Let {sp}r

p=1 be a sequence in [0,∞).
Then it is known that

h(U(s1 + t), U(s2 + t), . . . , U(sr + t))

≡ lim
T→∞

1
T

∫ T

0

h(U(s1 + t), U(s2 + t), . . . , U(sr + t)) dt = E[h(ζ)], (5.3)

on almost every trajectory, where ζ is a mean-zero Gaussian vector in Rr with
covariance given by

E[ζpζq] = β−1/2e−α|sq−sp|.

The latter expression is the autocovariance for the OU process sampled at times sq

and sp.
We can now ask whether the approximate process Un(t) satisfies properties

analogous to (5.2), (5.3). For both univariate and multivariate h, it will be shown
below that:

1. The T → ∞ limit of time averages exists for the approximate process Un(t),
for any n.

2. This limit converges to that of the OU process as n →∞.

We will establish such ergodic properties for a more general family of stochastic
processes. Our methods rely on the explicit trigonometric form of (3.11). In the next
section, we extend our observations to the integro-differential equation of Section 2
by means of numerical experiments.

It is worth emphasizing that these results do not follow from the analyses of
previous sections. Here we consider the behaviour of a single realization over long
time intervals whilst previous results concern statistical properties with respect to
a large set of realizations and are confined to fixed time intervals. In particular,
previous sections do not give convergence uniformly in [0,∞). Thus, for any given
n, the results of previous sections give no guarantee that the sample paths will
resemble those of the limiting process for large times.

We investigate the family of random processes (3.11):

Yn(t) =
n∑

j=1

g(ωj) [ξj cos(ωjt) + ηj sin(ωjt)] (∆ω)1/2,

where g satisfies the assumptions of Lemma 3.2. We have shown that Yn converges
weakly in C[0, T ] to the stationary zero-mean Gaussian process Y with autocovari-
ance

E[Y (t)Y (s)] =
∫ ∞

0

g2(ω) cos[ω(t− s)] dω.
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The weak convergence is in the probability space induced by the ξ and η variables,
and holds ν-almost surely, i.e., for almost every collection of frequencies.

Let h : Rr → R be a bounded, continuous, real-valued function, and let s1, . . . , sr

be a sequence in [0,∞). The univariate case can be obtained by setting r = 1 and
s1 = 0. Our first theorem establishes, for every n ≥ 1, the almost-sure existence
of the long time average of h(Yn(s1 + t), . . . , Yn(sr + t)). We denote this long time
average by h({Yn(sp + t)}r

p=1). The result relies on the following classical result
due to Weyl [33] (see Arnold [34], p. 286):

Lemma 5.1 Let H : Tn 7→ R be a continuous function defined on the n-dimensional
torus. Let {ωj}n

j=1 be a set of independent numbers, in the sense that
∑n

j=1 kjωj = 0
for integer kj implies kj ≡ 0. Finally, let θj(t) = ωjt mod 2π. Then

H(θ1(t), . . . , θn(t)) =
1

(2π)n

∫ 2π

0

. . .

∫ 2π

0

H(ϕ1, . . . , ϕn) dϕ1 . . . , dϕn.

Theorem 5.1 Let Yn(t) be defined by (3.11) where g satisfies the assumptions of
Lemma 3.2. Let h be continuous. Let {sp}r

p=1 be a strictly increasing sequence in
[0,∞). Then {ν, ξ, η}-almost surely:

h({Yn(sp + t)}r
p=1) =

1
(2π)n

∫ 2π

0

. . .

∫ 2π

0

h


n∑

j=1

g(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj))(∆ω)1/2


r

p=1


dϕ1 . . . dϕn. (5.4)

Proof: The ωj are ν-almost surely independent by the properties of Lebesgue
measure. Since cos(ωj(sp + t)) and sin(ωj(sp + t)) are functions of θj(t) = ωjt
mod 2π, (5.4) is an immediate consequence of Lemma 5.1 with

H(ϕ1, . . . , ϕn) =

h


n∑

j=1

g(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj))(∆ω)1/2


r

p=1

 . (5.5)

We now rewrite equation (5.4) in a slightly different form, appropriate for the
subsequent analysis. Let the variables νj , ξj , and ηj be defined as before, and
introduce, in addition, the i.i.d. auxiliary random variables ϕj ∼ U [0, 2π]. Then,
define the vector Xn = (Xn,1, . . . , Xn,r) ∈ Rr by

Xn,p =
n∑

j=1

g(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj)) (∆ω)1/2. (5.6)

Eq. (5.4) may be written as follows:

h({Yn(sp + t)}r
p=1) = Eϕh (Xn) , (5.7)
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where Eϕ denotes averaging with respect to the ϕ variables only. We retain the
notations Eν , Eξη, etc., for averaging with respect to the ν, ξ and η variables.

The next theorem asserts that {ν, ξ, η}-almost surely, Xn converges weakly (in
the probability space induced by the ϕ variables) to a Gaussian random vector. Note
the difference with Theorem 3.1 where weak convergence occurs in the probability
space induced by the variables ξ and η.

Theorem 5.2 Let Xn be defined by (5.6). Then {ν, ξ, η}-almost surely Xn con-
verges weakly, as n → ∞, to a Gaussian random vector, ζ ∈ Rr, with mean zero
and covariance

E[ζpζq] =
∫ ∞

0

g2(ω) cos[ω(sp − sq)] dω. (5.8)

Proof: The random vectors (5.6) are of the form:

Xn =
n∑

j=1

x
(n)
j , (5.9)

where the vectors x
(n)
j have components x

(n)
j,p defined by

x
(n)
j,p = g(ωj) [ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj)] (∆ω)1/2. (5.10)

Thus the x
(n)
j are are mutually independent random vectors. Contrary to Lemma 3.2,

here we consider the ξ and η variables as fixed (in addition to the ν that were the
only fixed variables in Lemma 3.2), and weak convergence is sought in the probabil-
ity space induced by the auxiliary variables ϕj . Thus, in the current setup, (5.9) is
a sum of non-Gaussian vectors, and we therefore resort to the central limit theorem.

Specifically, we use the multivariate Lindeberg-Feller theorem (see Dvoretzky
[35]):
Theorem (Lindeberg-Feller) For n = 1, 2, . . . , let z

(n)
j , j = 1, 2, . . . , n be inde-

pendent real-valued random vectors with Ez
(n)
j = 0, and let Zn =

∑n
j=1 z

(n)
j . Let

Σ be an r × r matrix. For a vector X, denote its Euclidean norm by |X| and its
transpose by XT . Suppose that

1.

lim
n→∞

EZnZT
n = lim

n→∞

n∑
j=1

Ez
(n)
j z

(n)T
j = Σ.

2. For all ε > 0

lim
n→∞

n∑
j=1

E(|z(n)
j |2; |z(n)

j | > ε) = 0,

where E(x;A) denotes the integral of x over the set A.

Then, Zn converges weakly to a Gaussian random vector with mean zero and co-
variance Σ.
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It remains to verify that the two conditions of the Lindeberg-Feller theorem are
satisfied for z

(n)
j = x

(n)
j , with Σp,q given by the right hand side of (5.8). These

conditions need to be fulfilled {ν, ξ, η}-almost surely, while integration as referred
to in the Lindeberg-Feller theorem is only over the ϕ variables. This verification is
carried out in Lemmas 5.2 and 5.3 below.

Lemma 5.2 Let Xn be given by (5.9) with x
(n)
j given by (5.10). Then {ν, ξ, η}-

almost surely

lim
n→∞

EϕXn,pXn,q =
∫ ∞

0

g2(ω) cos[ω(sp − sq)] dω,

for p, q = 1, . . . , r.

Proof: Integrating explicitly over the ϕj we get

EϕXn,pXn,q =
n∑

j=1

Eϕx
(n)
j,p x

(n)
j,q

=
n∑

j=1

g2(ωj)
(

1
2
ξ2
j cos[ωj(sp − sq)] +

1
2
η2

j cos[ωj(sp − sq)]
)

∆ω.

We then make the following three observations:

1. The expected value (with respect to ν, ξ and η) of EϕXn,pXn,q is

Eνξη (EϕXn,pXn,q) =
∫ na

0

g2(ω) cos[ω(sp − sq)] dω,

which converges, as n →∞, to
∫∞
0

g2(ω) cos[ω(sp − sp)] dω.

2. The variance (with respect to ν, ξ and η) of EϕXn,pXn,q tends, as n →∞, to
zero:

Varνξη (EϕXn,pXn,q) = n Varνξη Eϕx
(n)
1,px

(n)
1,q

≤ n Eνξη

(
Eϕx

(n)
1,px

(n)
1,q

)2

≤ n Eν

(
g4(ω1)

)
Eξη

(
1
2
ξ2
1 +

1
2
η2
1

)2

(∆ω)2

= n

(
1
na

∫ na

0

g4(ω) dω

)
1
4

(3 + 2 + 3) (∆ω)2

≤ C ∆ω → 0,

where we have used the mutual independence of the random variables ν, ξ
and η, and the boundedness of the integral of g4(ω), which follows from our
assumptions on g.
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3. EϕXn,pXn,q − Eνξη(EϕXn,pXn,q) tends {ν, ξ, η}-almost surely to zero. The
proof is similar to the proof of Lemma 3.1. It is sufficiently to find an integer
b such that

σn = Eνξη|EϕXn,pXn,q − EνξηEϕXn,pXn,q|2b

is summable, which we write as

σn = Eνξη

∣∣∣∣∣∣n
a

2n

n∑
j=1

{
g2(ωj)

[
ξ2 cos[ωj(sp − sq)] + η2 cos[ωj(sp − sq)]

]
− µn

}∣∣∣∣∣∣
2b

,

where

µn = Eνξη

{
g2(ωj)

[
ξ2 cos[ωj(sp − sq)] + η2 cos[ωj(sp − sq)]

]}
.

The rest of the proof follows arguments very similar to those in Lemma 3.1
and so we omit the details.

Thus EϕXn,pXn,q converges almost surely, and the limit has a vanishing vari-
ance, from which we conclude that EϕXn,pXn,q converges almost surely to its mean
value, which in turn converges to

∫∞
0

g2(ω) cos(ω(sp − sq)) dω.

Lemma 5.3 Let Xn be given by (5.9) with x
(n)
j given by (5.10). Then {ν, ξ, η}-

almost surely

lim
n→∞

n∑
j=1

Eϕ

(
|x(n)

j |2; |x(n)
j | > ε

)
= 0

for all ε > 0.

Proof: Let g be bounded by the constant M . Then,

|x(n)
j |2 =

r∑
p=1

g2(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕ))2∆ω

≤ rM2∆ω(|ξj |+ |ηj |)2,

and

Eϕ(|x(n)
j |2; |x(n)

j | > ε) ≤ rM2∆ω(|ξj |+ |ηj |)2Pϕ

(
r1/2M(|ξj |+ |ηj |)(∆ω)1/2 > ε

)
,

and the last expression, which is the probability of an event independent of the
variables ϕ, is simply the indicator function

χ
{

r1/2M(|ξj |+ |ηj |)(∆ω)1/2 > ε
}

.

Thus,
Eϕ(|x(n)

j |2; |x(n)
j | > ε) ≤ zj ,

where
zj = rM2∆ω(|ξj |+ |ηj |)2 χ

{
r1/2M(|ξj |+ |ηj |)(∆ω)1/2 > ε

}
.
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It is sufficient to show that
∑n

j=1 zj tends to zero {ξ, η}-almost surely, and this
is guaranteed if it decays sufficiently fast in the mean square. Indeed, using the
independence of the zj ,

Eξη

∣∣∣ n∑
j=1

zj

∣∣∣2 = Eξη

∣∣∣ n∑
j=1

(zj − Eξηzj) + n Eξηzj

∣∣∣2
≤ n Eξη|z1|2 + n2 (Eξηz1)2

= n r2M4(∆ω)2Eξη

(
[|ξ1|+ |η1|]4; |ξ1|+ |η1| > ε/r1/2M(∆ω)1/2

)
+ n2 r2M4(∆ω)2

{
Eξη

(
[|ξ1|+ |η1|]2; |ξ1|+ |η1| > ε/r1/2M(∆ω)1/2

)}2

.

By noting that |ξ1|+ |η1| has an exponentially decaying tail, we can estimate

Eξη

(
[|ξ1|+ |η1|]2p; |ξ1|+ |η1| > C

)
≤ Eξη

(
[ξ2

1 + η2
1 ]p; ξ2

1 + η2
1 > C2/2

)
=
∫ ∞

C/
√

2

s2p+1e−s2/2 ds

= 2pΓ(1 + p, C2/4),

where Γ(n, x) is the incomplete Γ-function. Thus,

Eξη

∣∣∣ n∑
j=1

zj

∣∣∣2 ≤ 4nr2M4(∆ω)2
[
Γ
(

3,
ε2

4rM2∆ω

)
+ n Γ2

(
2,

ε2

4rM2∆ω

)]
,

which tends to zero exponentially fast as n →∞.
The ergodic property of the long term empirical averages of h(Yn({sp}r

p=1)), as
n →∞, is a direct consequence of Theorems 5.1 and 5.2:

Corollary 5.1 Let Yn(t) and h be defined as in Theorem 5.1. Then {ν, ξ, η}-almost
surely:

lim
n→∞

h({Yn(sp + t)}r
p=1) = Eh(ζ),

where ζ is a Gaussian random vector with mean zero and covariance

Eζpζq =
∫ ∞

0

g2(ω) cos[ω(sp − sq)] dw.

Proof: This follows from (5.7) and from the fact that {ν, ξ, η}-almost surely the
random vectors Xn converge weakly to ζ, hence

lim
n→∞

Eϕh(Xn) = Eh(ζ).

Comments:
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1. Applying our theorems to the particular case of the OU process, we have
shown the following: for Un(t) given by (5.1), for all bounded continuous
functions h : Rr → R, and all sequences {sp}r

p=1, the long time average

h({Un(sp + t)}r
p=1) = lim

T→∞

1
T

∫ T

0

h(Un(s1 + t), . . . , Un(sr + t)) dt

exists. Furthermore it tends, as n → ∞, to E[h(ζ)], where ζ is a Gaussian
random vector with mean zero and covariance given by

Eζpζq =
∫ ∞

0

g2(ω) cos[ω(sp − sq)] dw

=
2α

πβ

∫ ∞

0

cos[ω(sp − sq)]
α2 + ω2

dω

= β−1e−α|sp−sq|.

(5.11)

That is, the long time average of bounded continuous functions of the approx-
imate process Un(t) are, for large n, close to those obtained with U(t), the
stationary Gaussian process with covariance β−1 exp(−α|sp − sq|).
For the case of univariate h and s1 = 0, we obtain that

lim
n→∞

h(Un(t)) = Eh(ξ)

where ξ ∼ β−1N (0, 1). This tells us that for large n, the empirical distribution
function for Un(t) will approximate that of U(t).

2. Though the above corollary only directly applies to bounded continuous func-
tions h, the result holds true in some other interesting cases.

If we define h : R2 → R by h(x1, x2) = x1x2, then the long term empirical
autocovariances of the process Un(t) can be expressed as

h(Un(0), Un(s)) = lim
T→∞

1
T

∫ T

0

h(Un(t))h(Un(s + t)) dt.

As h is an unbounded functions, Corollary 5.1 does not apply directly, how-
ever the basic result can be extended to cover this case as well. Since h is
continuous, Lemma 5.1 shows that the long time limit exists for each n and
is equal to EϕXn,1Xn,2, where Xn is defined by (5.6). Lemma 5.2 shows that
as n →∞ this quantity converges to∫ ∞

0

g2(ω) cos(ωs) dω = β−1e−α|s|,

which is the autocovariance of the OU process. So the empirical autocovari-
ance of Un(t) converges pointwise to that of U(t) as n →∞.

Another application of our results is to the case of empirical transition prob-
abilities. Let A and B be subintervals of R such that A has positive length.
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The empirical transition probability of the process Un from A to B is given
by

limT→∞
1
T

∫ T

0
χ{Un(t) ∈ A,Un(t + s) ∈ B} dt

limT→∞
1
T

∫ T

0
χ{Un(t) ∈ A} dt

.

This can be shown to converge, as n → ∞, to the transition probability for
the OU process to go from A to B in time s. See [23] for details.

3. Although Corollary 5.1 applies to averages in continuous time, it can be ex-
tended to discrete time-averages. In the context of the approximation of the
OU process, this implies weak convergence of empirical measures of (3.11)
to the invariant measure of the limiting SDE. In the next section we study
this question in the Hamiltonian context: for the process Qn(t) in Section
4 we study the relationship between its empirical measure and the invariant
measure of the SDE it approximates.

4. The question of studying long-term behaviour of processes which are weakly
approximated by SDEs over finite time intervals was initiated in [36]. The
subject has subsequently been systematized and developed further in [10]. In
future work we will study the application of these more general techniques to
substantiate the numerical experiments of the next section. Our analysis in
this section has relied heavily on the trigonometric form of (5.6).

5. For skew-product maps which, when projected onto the fiber, approximate
SDEs on a finite time interval, a numerical study of long-time dynamics of the
skew-product, and comparisons with the approximating SDE, is undertaken
by Beck et al. [37].

6. Numerical experiments

In this section we describe some numerical experiments which investigate the
long-term statistics induced by ordinary differential equations with random initial
data. We compute empirical time averages for single trajectories of the process and
compare them with the equilibrium ensemble average associated with the approx-
imating stochastic differential system. We do this in the cases where the SDE is
known to be ergodic.

Recall that our weak approximation results of sections 3 and 4 hold only on finite
time intervals; they do not automatically imply anything for long-term behaviour.
The analysis in Section 5 does concern long-term behaviour, but provides rigorous
results only for a limited range of problems. Thus, the numerical experiments
considerably extend our understanding.

We will present the results from two sets of experiments. The first are of the
forcing process Zn(t), defined by (2.6), which weakly approximates the OU process.
We have established the convergence of long term averages of this process to those
of the OU process in the previous section. However, we will show the results of
experiments with this process for illustration. The second set of experiments concern
the fully coupled Hamiltonian system (2.2). Here we do not have any results for
long time statistics, so the experiments can provide useful insight.
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Figure 6.1: Solid lines: empirical distribution of OU process. Dashed lines: empiri-
cal distribution obtained from five realizations of the approximate OU process with
n = 500 and n = 5000.

6.1. The Ornstein-Uhlenbeck process

In Section 5 we showed that the empirical measures of finite-dimensional distri-
butions of the approximate OU process (2.6) converge to those of the limiting OU
process. Here we illustrate this numerically. We compare the long-term statistics
induced by the OU process U(t), defined by (3.1), and the (weakly) approximating
process Zn(t), defined by (2.6). We use fixed parameters α = 1 and β = 2. Unless
explicitly stated otherwise, we take a = 1/3, thus maximizing the bound on the
rate of convergence according to the comments after Lemma 3.2.

First we consider the empirical (univariate) distribution of the process Zn. We
choose an n, and then randomly generate appropriately distributed νj , ξj , ηj for
j = 1, . . . , n. Then, rather than generating the sample path induced by these
variables, we construct the empirical distribution directly. Eq. (5.7) shows that the
empirical distribution of Zn is the same as that of the random variable

Xn =
n∑

j=1

g(ωj)(ξj cos ϕj + ηj sinϕj)(∆ω)1/2.

So to sample from the distribution for fixed νj , ξj , ηj , we simply randomly generate
i.i.d. ϕj , j = 1, . . . , n each uniformly distributed on [0, 2π] and then compute the
resultant Xn. By sampling sufficiently many Xn and storing them in a histogram,
we will be able to generate a close approximation to the empirical measure of Zn.
In Fig. 6.1 we plot the empirical measures for five different realizations of Zn, for
n = 500 and for n = 5000. For comparison, we also plot the empirical density for
the limiting OU process.

We perform similar calculations for the empirical autocovariance functions of
Zn. We can compute explicitly

Zn(t)Zn(t + s) =
1
2π

∆ω
n∑

j=1

(η2
j + ξ2

j )
cos(ωjs)
1 + ω2

j

. (6.1)
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Figure 6.2: Solid lines: autocovariance of OU process. Dashed lines: empirical
autocovariances obtained from five realizations of the approximate OU process with
n = 500 and n = 5000.

In Fig. 6.2 we plot the empirical autocovariances for five different realizations of
Zn, for n = 500 and n = 5000. For comparison, we have plotted the autocovariance
for the OU process, exp(−s)/2.

Figures 6.1 and 6.2 show the close relationship between the large time properties
of the OU process and its approximation; they also show how this relationship
improves as n increases. As proven earlier, for any fixed s, the autocovariance
function at s converges to that of the OU process as n → ∞. However if we fix n
and consider autocovariance over longer periods of time, we do not see the same
decay to zero as we do for the OU process. Fig. 6.3 shows the empirical covariance
function for one realization of Zn(t), with n = 500, over the time interval [0, 100].
The autocovariance appears to oscillate indefinitely. Indeed, this is to be expected
from the expression for the autocovariance (6.1). It is a quasiperiodic function with
respect to s, and will thus not decay to zero, but in fact return arbitrarily close to
its maximum value infinitely often. This, in turn, is due to the quasiperiodic nature
of the approximate process, Zn(t), which is the sum of finitely many sinusoids.

Finally, Fig. 6.4 shows the sensitivity of the convergence rate on the parameter
a. Both graphs show the empirical autocovariance for increasingly many oscillators.
The figure on the left is for the optimal value a = 1/3 whereas the figure on the
right is for a = 1/2. Clearly the choice a = 1/3 yields closer approximation of
the limiting statistics for each n. This is what we would anticipate in view of the
comments after Lemma 3.2.

6.2. The Hamiltonian system

We now turn to study the Hamiltonian system (2.2). We use fixed parameters
α = 1, β = 2, β̃ = 1, and a = 1/3. Unless stated otherwise we use a sam-
pling/averaging time of T = 50000 to calculate empirical measures/autocovariance
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Figure 6.3: Solid line: autocovariance of OU process. Dashed line: empirical auto-
covariance obtained from approximate OU process with n = 500.
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Figure 6.4: Comparison between the equilibrium autocovariance function of U(t)
and the empirical functions for a single path of Zn(t) for n = 10000, n = 5000,
and n = 2500. The left figure is for a = 1/3, which is expected to yield an optimal
convergence rate, whereas the right figure is for a = 1/2.
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functions. We test the long term behaviour of the system for three different poten-
tials V (·),

V ′(Q) = Q (6.2)

V ′(Q) = Q3 −Q (6.3)

V ′(Q) = Q(1−Q2)(1.98−Q)(2.02 + Q), (6.4)

which correspond to single-, double-, and triple-well potentials, respectively. For
these potentials the Langevin SDE which approximates the motion of the distin-
guished particle is ergodic [38].

Fig. 6.5 shows the empirical distribution and autocovariance function for the
single-well case, for n = 500 and n = 5000 oscillators; the sampling time is T =
50000. Similarly to the approximate OU process, we see a significant deviation of
the empirical distribution from the asymptotic equilibrium distribution when the
number of oscillators is too small. The autocovariance function decays initially, but
then exhibits a seemingly quasi-periodic behaviour, which persists irrespectively
of the averaging time. This is similar to what it proven for the approximate OU
process.

Similar data are presented in Fig. 6.6 for the double-well potential, again using
sampling time T = 50000. It is interesting to note that even for a number of os-
cillators as small as n = 500 there is a very good agreement between the empirical
distribution and the equilibrium distribution. On the other hand, there is no ap-
parent improvement as the number of oscillators is increased to n = 5000 (for fixed
averaging time). The autocovariance function exhibits much smoother behaviour
than in the single-well case, and the persistent quasi-periodic behaviour is weaker
the larger the number of oscillators. This smoother behaviour in the autocovari-
ance is presumably caused by the extra mixing introduced by nonlinearity, and in
particular by trajectory separation near the saddle point in the Langevin equation.

Finally we discuss the triple-well case shown in Fig. 6.7, where a sampling time
of T = 50000 is again used. For n = 500 oscillators the empirical distribution
agrees remarkably well with the equilibrium curve. This agreement deteriorates as
we increase the number of oscillators. The reason for this surprising fact may be
understood by considering the autocovariance function which decays very slowly,
reflecting the very long time that the distinguished particle spends in each of the
two outermost wells.

More insight is gained by examining in Fig. 6.8 the long term behaviour of a
single path Q(t) of the limiting SDE (4.2). This graphs shows that the particle
remains in each of the main potential wells during characteristic times of the order
of many hundreds of time units. Thus, an averaging time of T = 50000, as was
used above, may not be sufficient for obtaining equilibrium values. The empirical
distribution and autocovariance function for the limiting SDE are shown in Figs 6.9
and 6.10 for averaging times of T = 10000 and T = 50000. In both cases there
is a large discrepancy with the equilibrium curve. Interestingly, then, it appears
that the large ODE systems with random data equilibrate considerably faster than
the SDE itself when n is not too large. However, we expect that as n → ∞ the
equilibration time will approach that of the SDE.
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Figure 6.5: Empirical distribution (left, open circles) and empirical autocovariance
(right) for the Hamiltonian system (2.2) for a single-well, quadratic potential (6.2).
The solid line in the left graphs is the equilibrium distribution. All figures corre-
spond to a sampling time T = 50000. The top row corresponds to a calculation
with n = 500 heat bath particles; the bottom row corresponds to n = 5000 heat
bath particles.
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Figure 6.6: Same as Fig. 6.5 but for V (·) given by the double-well potential (6.3).
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Figure 6.7: Same as Fig. 6.5 but for V (·) given by the triple-well potential (6.4).
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Figure 6.8: A sample path Q(t) solving the stochastic differential system (4.2) for
the triple-well potential (6.4).
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Figure 6.9: Open circles: empirical distribution for a single trajectory Q(t) is the
stochastic system (4.2) for a sampling time of T = 10000 (left) and T = 50000
(right). Solid line: the equilibrium Boltzmann measure.
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Figure 6.10: Empirical autocovariance function for a single trajectory Q(t) is the
stochastic system (4.2) for a sampling time of T = 10000 (left) and T = 50000
(right).

6.3. Summary of Long-Time Behaviour

The primary conclusion of these numerical results is that the long-time behaviour
of certain large systems of ordinary differential equations with random data can be
understood in terms of ergodic SDEs which approximate projections of the ODEs
into low dimensional subspaces. This is manifest in the behaviour of both empirical
distributions and autocovariance functions.

However, the observation does need to be qualified somewhat. There is a del-
icate interplay between the sampling time and the size of n. Our analytical and
numerical results show that, for a fixed n, the empirical autocovariance functions
for our processes do not decay to zero in the long time limit, but contain persis-
tent oscillations. For the case of the approximate OU process, this is due to the
sample trajectories being quasiperiodic. We conjecture that we observe the same
for the Hamiltonian system because it inherits some of the recurrence properties
of its quasiperiodic forcing. (The model problem in [39] suffers considerably less
from this problem, presumably because of the strong nonlinear effects present in
that model). Furthermore the equilibration times of the large Hamiltonian system
can differ substantially from those of the corresponding SDE, even for quite large
values of n; this is manifest in the triple-well problem where the correlation time
for the SDE is particularly large.

Nonetheless the numerical experiments with the large Hamiltonian system sug-
gest attempting to prove generalizations of theorems analogous to those proven in
section 5 for the approximate OU process. Different techniques, however, will be
required.
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7. W. Huisinga, C. Schütte, and A.M. Stuart. Extracting macroscopic stochastic dynam-
ics: oscillator-driven model problems. Comm. Pure Appl. Math, in press.

8. G.C. Papanicolaou and S.R.S. Varadhan. A limit theorem with strong mixing in
Banach space and two applications to stochastic differential equations. Comm. Pure
Appl. Math., XXVI:497–524, 1973.

9. G.C. Papanicolaou and W. Kohler. Asymptotic theory of mixing stochastic ordinary
differential equations. Comm. Pure Appl. Math, XXVII:641–668, 1974.

10. H. Kushner. Approximation and weak convergence methods for random processes, with
applications to stochastic systems theory. MIT Press, Cambridge MA, 1984.

11. P. Billingsley. Convergence of probability measures. John Wiley & Sons, New York,
1968.

12. G.W. Ford, M. Kac, and P. Mazur. Statistical mechanics of assemblies of coupled
oscillators. J. Math. Phys., 6:504–515, 1965.
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