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I. INTRODUCTION

Macroscopic physics deals with macroscopic quantities g,, such as the
positions and velocities of bodies, electrical charges and currents, amounts
or concentrations of chemical compounds, temperatures at various points in
a material, or local density and velocity of a fluid. They obey macroscopic
laws

qv = va(qls qas .- ) (1‘1)
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which on a macroscopic level can be derived from general principles such as
conservation laws, together with some specific assumptions of phenomeno-
logical nature, for example, those of Fourier and Fick. On the one hand
this macroscopic picture is incomplete, because it has to introduce pheno-
menological coefficients, as many as there are phenomena, but this is of no
concern to us here. On the other hand the macroscopic laws (1.1) are merely
an approximation, valid when so many particles are involved that fluctua-
tions are negligible. The present work is concerned with improving on this
macroscopic approximation by taking into account the fluctuations. Of
course the quantities that characterize the discreteness are essential: Boltz-
mann’s constant, the elementary charge, and the masses of individual
particles.

In order to study the corrections to (1.1) caused by the discrete nature of
matter one must view the macroscopic phenomena as the outcome of the
collective behavior of many particles. This does not merely require an
investigation of the phenomenological assumptions mentioned above,
but a reappraisal of the very definitions of the g, is needed.

In principle all information is contained in the microscopic equations of
motion of all particles, but it hardly needs saying that an exact solution of
these equations is beyond human means, excepting a small number of simple
models.! Even the macroscopic laws (1.1) can only be derived from them with
the help of simplifications and assumptions, which are no more reliable than
the phenomenological assumptions used in the purely macroscopic approach.
It is therefore sensible to embark upon a less ambitious program and to
develop a theory which goes beyond the macroscopic description in that it
includes fluctuations, but short-cuts the connection with the microscopic
equations by an appeal to some suitably chosen semiphenomenological
assumptions. This is the customary approach in noise theory; we propose
to call it the mesoscopic level of description.

One popular mesoscopic approach consists in adding to (1.1) a fluctuating
term

4y = Fug1, 42, .. ) + 1,(1) (1.2)

and making suitable assumptions concerning the statistical properties of the
random functions [,(¢) (see Section XI). It should be clear that this device
changes the nature of the g,; they are now also stochastic quantities. The
macroscopic values that enter into (1.1) are identified with the averages of
the ¢, in (1.2). This approach was first used by Langevin in his treatment of
the Brownian movement, and his success has led many authors to apply the
same device to other systems.? However, we shall show in Section XI that in
many cases it leads to wrong results.

A second approach starts out by introducing the probability distribution
P(q,, g3, ...;t) defined as follows: P(qy, q5,...;t)dg, dq,... = the joint
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probability that at time ¢ the first quantity has a value between ¢, and ¢, +

dy,, and the second one between ¢, and ¢, + dg,, etc. Note that the g’s have

changed their nature again and are merely coordinates in some g-space on

which the probability density P is defined. One then assumes that P obeys the

Fokker-Planck equation
P ¢

Frint ;@:Fv(fﬂp + ég

The F, are the same as in (1.1), and the new coefficients D, are found from the
fluctuation-dissipation theorem. Although this looks quite different from the
Langevin approach, it is actually equivalent to it, and therefore subject to
the same criticism (Section XXII).

A third mesoscopic approach is the basis of this article. It also starts out
from the probability density P, but merely assumes that it obeys an equation
of type

52
o D,,P (1.3)

vy

P = WP (1.4)

where W is a linear operator acting on the g-dependence. Let Wig|g') be
the integral kernel of W; then the requirement that the total probability
must remain equal to unity tells

fW(qm')dq:o

(Each g stands for the whole set of g,, and dg is a volume element in g-space.)
Hence one may write (1.4) in the physically more transparent form

Pg.t) = f{W(qlq')P(q’, 1) — W(d'|g)P(q, 1)} dg’ (1.5)

The kernel W(g|q') for g # ¢’ represents the transition probability per unit
time from ¢’ to ¢ and must be nonnegative. The second term represents the
decrease of P(q, t) due to transitions to other values g'. Equation (1.4) or (1.5)
is called the “master equation™.*

The assumption (1.4) implies that the stochastic process described by ¢
is a Markov process. This is a strong assumption, which in most applications
is only approximately true and with the conditions that a suitable coarse-
grained time scale is used, and that the correct set of variablesg = {g,, g,...}
is chosen. On the other hand, it is weaker than the assumptions needed in the
two previously mentioned mesoscopic approaches. Moreover it is easier to
assess on physical grounds. The transition probabilities W(g|q') usually
have a direct physical interpretation in terms of the microscopic quantities

* Throughout this article the term is used in its original sense:* an cquation of the type (1.4)
for a probability distribution.
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P (4,90)

P(q,t)

q

Fig. 1. The evolution of the probability density towards equilibrium.

describing the system, for instance, collision cross-sections or quantum
mechanical matrix elements. We shall meet cases where the master equation
(1.5) obviously holds, but neither the Langevin approach, nor the Fokker-
Planck equation (1.3) leads to correct results.

The master equation purports to describe the entire behavior of the ¢
and hence also the macroscopic equation (1.1) should follow from it. How
is it possible for an equation governing the probability density in g-space
to give rise to a deterministic set of equations for the q,? The idea is that
P(q, 1) is a sharp peak located at a rather well-defined point in g-space
(Fig. 1). If the width of the peak may be neglected it is possible to consider its
position in g-space as the macroscopic value of g,. While P varies in time
according to (1.5) the peak moves through g-space according to (1.1). Note
that there is no contradiction between the fact that (1.5) is linear whereas (1.1)
may well be nonlinear. The situation is analogous to the way in which a
linear Schroedinger equation gives rise to a nonlinear classical equation of
motion in the approximation in which the particle is heavy enough to neglect
the spreading of the wave function.

The mathematical scheme describing this state of affairs was developed
some time ago.*~® The present review is confined to the special but fre-
quently occurring class of master equations in which the variable g takes only
integral values. We therefore write n rather than g and the master equation is

P(n, t) = Y {Wn|n)P(', ©) — W(n'|n)P(n, 1) (1.6)

It may happen that » runs from — oo to + oo, or from 0 to oo, or only takes
values in some finite range. The transition probabilities W(n|n') need only be
defined for n # n’ and are nonnegative. They are properties of the system
and, of course, independent of the P(n, t), which describe the special meso-
scopic state considered.” It is possible to include the case that W depends on
time (nonautonomous systems), but we shall not do so. Equation (1.6) may
also be written by means of a matrix W

Pn,t) =Y W, P, t)
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The master equation is “solved” if one can find the P(n, ) that obey (1.6)
and take arbitrarily prescribed initials values at ¢t = 0. Obviously it suffices
to consider the initial condition

P(1,0) = 6, (17)
for each m. The corresponding solution is
P(n, t|m, 0) = (€")pm (1.8)

In order to evaluate this formal expression one has to diagonalize W, but
only in rare cases can that be done exactly. Hence it is necessary to have a
systematic approximation scheme in the form of a power series expansion in
some physical parameter. It appeared that the appropriate quantity is Q™ 172
where Q is a measure for the size of the system or the total number of particles
involved. This scheme is demonstrated on a simple example in Section III,
formulated in general in Sections IV and V, and subsequently applied to
various problems.

It will appear that most of the problems treated in the literature can be
readily handled with the Q-expansion method. Many of the existing contro-
versies and paradoxes® are caused by unsystematic approximations, in which
terms are neglected according to the taste of the author. In addition it will
be shown that the popular Langevin approach may lead to wrong results
even in simple cases (Section XI), and the limitations of the Fokker-Planck
equation are discussed in Section XXII. On the other hand, it must be
stressed that the expansion is essentially based on the smallness of fluctua-
tions and has only limited validity in unstable situations (Section XVIII)
or phase transitions (Section XX).

II. PRELIMINARIES
The jump moments or derivate moments® are defined by
ayn) = Z (n' — nfPW(n'|n) rp=12..) (2.1
Multiply (1.6) with » and sum

%<n> = ) {(nW(n{n)P(') — nW(n'|n)P(n)}

nn’

= ). (0" — n)W(n'|n)P(n)

= Cay(n)y 22)



250 N. G. VAN KAMPEN

If a,(n) is a linear function this is identical with

& iy = i) @3)

which permits us to determine (s} as a function of ¢. If, however, a;(n) is not
linear, (2.3) is at best an approximation, which amounts to neglecting all
fluctuations. We shall see that (2.3) is, indeed, the zeroth approximation in
the Q-expansion scheme, and is therefore to be identified with the macro-
scopic equation (1.1).* The exact identity (2.2) is not a closed equation for
{n) but involves higher moments of n as well. To improve on the approxi-
mation (2.3) we expand in (2.2) the function a,(n) in n — {n) and break off
after the second derivative:

&> = ay(nd) + daicmygo,? 24)

where 6,2 = {(n — {(n))*>. As this equation involves (#*> we also multiply
(1.6) with n? and sum

2y = T (0~ Wl ImPle

= {ay(n)> + 2{na,(n)) (2.5)

Combination with (2.2) yields the exact identity

& 6,2 = Caxn)y + 2<nay)y ~ nd<ayfn} 26)

Making somewhat loose approximations similar to (2.3) we write for this

46,2 = ax((n) + 2((nY)a,? )
In Section V it will be shown that the pair of equations (2.4) and (2.7) together
actually constitute a consistent approximation.®19

The upshot is that in order to improve on (2.3) two coupled equations
[(2.4) and (2.7)] are needed (unless a,(n) happens to be linear). That means
that it is no longer possible to determine {n) from its initial value; one also
needs to know the initial value of 5,2 All this is subject to the condition that
o,” remains finite (of order n), otherwise there is no justification for omitting
higher moments. This condition amounts to aj({n)) < 0, that is, the system
must be stable (compare Section V).

* This statement requires a minor modification, see Section IV.
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A special but important class of discrete Markov processes are the one-step
or birth-and-death processes. They are defined by W(njn') = 0 unless
n=n"+ 1, that is,

W(l’l I n,) = r(n/)én,n’ -1 + g(n’)én, n+1

r(n) and g(n) may be any two nonnegative functions, usually analytic; their
names stem from recombination and generation of charge carriers in semi-
conductors.*!

The master equation of a one-step process has the following form:

P(n,ty = rin + DP(n + 1,1) 4+ gin — DP(n — 1, 1) — {r(n) + g(n)}P(n, 1)
(2.8)

It is convenient to define the difference operator E by!?
Efn) = fn + 1),  E ()= fln—1) (2.9)
With its aid the master equation (2.8) may be written
P =(E— Ur(mP + (E"! — l)gn)P (2.10)
The jump moments are
a,(n) = (—1¥r(n) + g(n) (2.11)

The macroscopic rate equation (2.3) takes the form

d
g S = —rm) + gllm) (2.12)

and the coupled equations [(2.4) and (2.7)] are

%(n) = g((m) — r{m) + Hg"Km)) — r"Km)}e,’

%an = g({m) + rl{my) + 2{g'Km)) — r'(Km)}a,?

Some general properties of one-step processes are listed in Section VI.

III. FIRST EXAMPLE: SPREADING OF AN EPIDEMIC

As a first example for demonstrating the expansion we choose a simple
nonlinear one-step process, which describes the spreading of an epidemic
in a population of Q individuals.®*? If n is the number of infected individuals,
the probability per unit time for a new infection to occur is proportional to n,
and to the number Q — n of uninfected. Thus g(n) = fn(Q2 — n) with constant
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B. Furthermore we take r(n) = 0, that is, no cure is possible. Hence
Wn|n) = o, ns1n'(Q — 1) (3.0
The master equation is
Pn,t) = f(n — )(Q — n + )P + 1,1) — Bn(Q — n)P(n, t)
= BE™! — Dn(Q — n)P (3.2

The more general problem with arbitrary g(n) and r(n) = O has been treated
by Weiss as a model for superradiance.!* Actually such problems can be
solved without approximations in a more or less closed form, but the result
is too involved to be of much use, unless g(n) is sufficiently simple.

P(n,O]

P(n,t)
P(n, o) = Py

t t t n
N¢(o) N g(t) L¢(w)= 0%

Fig. 2. The definition of the macroscopic part of a variable n.

One expects n to consist of a macroscopic part Qe¢(t) plus fluctuations of
order QY2 That is, P(n, t) will be a sharp peak located roughly at Qe(t)
with a width of order Q!/2 (see Fig. 2). Hence we set

n = Qeo(t) + Q%x (3.3)

where x is the new variable and ¢(t) will be chosen presently. We shall call
Qg(t) the “macroscopic part” and Q2?x the “fluctuating part” of »n, and
refer to the new variables as the “(Q language.” Accordingly the probability
distribution of n now becomes a probability distribution IT of x,

P(n, t)An = TI(x, t)Ax
I{x, t) = QY2 PQoe(t) + Q'3x, 1) (34)

The following transformation formulas apply

a_n = Q12 (_35 @ = Qllz{Q

dt 6n+a

doop , op
Ox on’ ot
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Hence*
oP oIl dop OI1
[0 T il el Y o ¥ 17 Rt i
ot ot 0 dt dx (3.5)
Moreover one has
G, 1 o2
E=1+Q 12 - 4+_-Q° 1. }
+ o + 5 Q e + (3.6)

Substitute the new variables in the master equation (3.2) and cancel an
overall factor Q /2,

Tl de oT1 ., 0 1 22
__Ql/z__: QZ —Q. 1/27—+;Q_1—

p { ox 2 ze}
(@ +Q (1 —9—Q 9 (37)

We absorb one factor Q into the time variable (and for convenience also
the f) by setting

Then the largest terms are
de oI1 oT1
_Qu2t¥ T —
dt 0x ol —¢) O0x

They can be made to cancel by subjecting ¢ to the equation

do _

I o(l — ¢) (3.9)

This equation determines how the macroscopic part of n varies with time.
Translating back to the original variables it takes the form

dn

— = fn{Q — 3.10

= @ — n) (3.10)
which appears to be identical with the macroscopic rate equation (2.12).

The terms of order Q° in (3.7) yield an equation for I1,
oI oM

0 1
- —(1_2‘0)5)61_[-&-5({)(1—47)5)(—2

= (3.11)

This is a Fokker—Planck equation whose coefficients involve ¢ and therefore
depend on time. Observe, however, that the coefficient of the first term is

* It is possible to arrive at (3.5) without the intervention of the dubious symbol 6P/on. Let ¢
in (3.4) vary by d¢ and simultaneously x by —Q!2¢(r)dz; this leads immediately to (3.5).
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linear in x, and that the second term does not depend on x; we shall indicate
these features of a Fokker-Planck equation by calling it linear. (Of course, all
Fokker-Planck equations are linear in the unknown function—in this case I'l.)
Equation (3.11) governs the fluctuations in » of order Q'/? about the macro-
scopic part.

The strategy for solving the master equation (3.2) with initial condition
(1.7) now emerges. First solve (3.9) with initial value ¢(0) = m/Q. Then solve
(3.11) with initial I(x, 0) = 3(x). Then

-Q
P(n, t|m, 0) = Q—l/ln(f——"@, ‘c)

In this solution terms of relative order Q~ /2 have been neglected.

IV. THE GENERAL EXPANSION METHOD

The basic idea is that there is a parameter Q measuring the size of the
system, such that for large Q the fluctuations are relatively small. It is then
possible to expand in descending powers of Q, as will be outlined in five
steps.*

First step: specifying the dependence of the transition probabilities on Q.
It is assumed that the way in which W(n|r') depends on Q has the following
form:

Wn|n') = f(Q)[d)O(g TR — n’) + Q”(IJI(Z—; in— n’) + :l 4.1)

Each function ®; has a Taylor expansion with respect to its first argument,
but is of course a discrete function of its second argument, which is the jump
size. The factor f{(€2), usually some power of Q, is innocuous because it can be
absorbed in the time variable. The jump moments (2.1) are transformed
accordingly, ‘

a(n) = f(Q)ap(g%) 4.2)

In the following we suppose for simplicity that ®,, @,, ... vanish. They
are not hard to include when they occur, as in Section IX, but cumbersome in
the general treatment. When they do not vanish it is not strictly true that (2.3)
is identical with the macroscopic law, inasmuch as a, involves higher orders
in 1/Q, which do not belong to a macroscopic description. The macroscopic
law is determined by the first jump moment of @, alone,'® but in the next
approximation (2.4) both @, and ®, have to be used for a,.

* Previously we have used the Kramers—Moyal expansion as a convenient intermediate
step,*° but we shall avoid it here, since its role has been misconstrued.$
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Substituting (4.1) in (1.6) and changing the summation variable from »’ to
v = n — n’ one obtains for the master equation

OP(n, t) n

o= @Y {(DO(%Y; v)P(n ) — <1>0(%; - v)P(n, z)} 4.3)

Second step: postulating the way in which P depends on Q. One expects
P(n, 1) to be a sharp peak located at some point Qq(¢) with a width of order
Q12 Hence one transforms the variable n to a new variable x as in (3.3). This
transforms P(n, 1) into Il(x, t) according to (3.4). Substitute this in the
master equation:

oI 2 dedll —-1/2 —1j2.,.
o~ QTG G = @ T e + @ — a7 )

x I(x — Q12,1 = ¥ Oy(e(r) + Q@ V2x; —w(x, r)]

v

4.4)

The factor [ ] vanishes to lowest order in Q™ !/2, To obtain the next order
it is convenient to write it in the form

1, © ooy, & —1/2
=Z -Q ’V'a—x-i'ig v 536—2—(1)0((P+Q X;V)H(X,t)

v

(4.5)

Third step: extracting the largest terms to obtain the macroscopic equation.
The lowest order in [ ]is Q~/2; it can be combined with the term of order
Q' on the left if we define a scaled time 7 by*

fQ)r =Qr (4.6)

Then the largest terms are of order Q!/2 on both sides,

I

¥

Since both terms involve IT only through the factor 0I1/0x, it is possible to
satisfy this equation by choosing for ¢ a solution of

2 - ¥ v0(p. ) = 2,(0) 47

* In many of our examples we shall find f(Q) = Qsothat 7 = 1.
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This is the equation for the macroscopic part of n, that is, the macroscopic
rate equation.

Fourth step: the next order determines the fluctuations. The terms of
order Q° in (4.4) are

on ERE: Lfe o
E = - {Z V(DO((P, V)}‘a';xn + E{gv (DO(CP: V)}EXT

G, 1 82
= —uy(p) x xIT + 3 dz() e (4.8)

The prime indicates differentiation with respect to ¢. This is again a linear
Fokker-Planck equation with time-dependent coefficients, which governs
the fluctuations in n of order Q'/? about the macroscopic part Q.

Final step: collecting the results in order to solve (1.6) with initial condition
(1.7). First solve (4.7) with initial condition

Qo(0) = m 4.9)
and call the solution ¢(t|m/Q). Next solve (4.8) with initial condition
TI(x, 0) = d(x) 4.10)
and call the solution IT(x, |0, 0). Then

P(n, t|m, 0) = Q-lﬂn("_—gi;”ffz'—m@, th, 0) (4.11)
Note that one has to the same order
—Q _ ~0l/2
P(n, t|m,0) = Q-1/2n<" "’(T'g{ﬁ A e, o) (4.12)

where ¢ is an arbitrary number of order 1.

Thisprogram can be carried out by a number of integrations (see Appendix).
It is simpler, however, and in many cases sufficient to determine only {n)
and 0,2 = (n*> — {(n)D? as functions of t. The relevant formulas are derived
in the next section.

Higher orders can be added and have the effect of modifying the equation
for I(x, t) (see Section VIII). However, we shall be mainly concerned with the
approximation to order Q° as given here. This will be called the linear noise
approximation since to this order the fluctuations are governed by the
linear Fokker—Planck equation (4.8). It is the approximation on which the
familiar theory of noise in electrical networks'! is based.
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V. THE EQUATIONS FOR THE MOMENTS

Without actually solving (4.8) one may deduce directly from it (by multi-
plying with x and integrating)

d
gz X2 = (@) (5.1)

Observe that this is identical with the “variational equation” belonging to
(4.7), that is, the equation for the difference between two neighboring solu-
tions of (4.7). The fact that this must be so can be gleaned from (4.12); a slight
variation (of order Q™ '/?) in the initial value of ¢ can be compensated by the
initial value of {x». An important consequence is the following: Since the
variational equation of (4.7) determines the stability of the macroscopic
solution ¢(t), it follows that the macroscopic stability also determines
whether or not the average {x) of the fluctuations grows with time.
One also deduces directly from (4.8)

d
o (x?) = 2u)(@Kx*) + aa(e) (5.2)

In both (5.1) and (5.2) terms of order Q '/* have been neglected. With the
choice of (4.9) or (4.10) for the initial values one has att = 0

(xpe=0,  (xe=0 (5.3)
Hence {x) remains zero at all t > 0, so that
{ny, = Qolt) + G(1) (5.4)

To the present order, therefore, the macroscopic part of n is also its average.

Furthermore, if the macroscopic solution ¢(7) is stable, and therefore also
(5.1), it follows from (5.2) that (x2) remains finite as well. Consequently x
remains of order unity at all times, which constitutes the a posteriori justifica-
tion of the Ansatz (3.3). Note that the stability is crucial for our approxima-
tion scheme: if (x?> grows exponentially in time, the separation of powers of
Q) becomes invalid after a time of order long Q. In Section XVIII we shall
meet an example where (x?) grows linearly with time.

It is possible to improve the equation for {n)> by one order without going
beyond the linear noise approximation. To this end we rewrite the exact
equation (2.2) in the Q language in order to display the powers of Q,

d ,
dt (p + Q V2(x)) = Loyl + Q M2x))

= () + @ V() + 407 H(OKN) + 0@ )
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Since ¢ obeys (4.7) by definition,
d
4z 0 = ai(eKxo + Q7 (e x?) + 0Q7) (5.5

Although this equation for {x) involves {x2) there is a factor Q~'/?; hence
the approximation (5.2) for (x>} suffices. Rewriting the result in the original
variables we see that the two coupled equations (2.4) and (2.7) determine
{n) to order Q° and o, to order Q'

The conclusion reached here in a slightly devious manner can also be
obtained by simply adding the next order correction to (4.8) and then
computing the first and second moments to the desired order (compare
Section VIII).

VI. ONE-STEP PROCESSES

One-step processes have been defined by processes that obey the master
equation (2.8) or (2.10). However, it is necessary to specify in addition the
range of n. There are three possibilities: (a) all integers, —cc < n < o0;
{b) half-infinite range, n = 0, 1, 2, ... ; (c) finite range, n =0, 1, 2, ..., N. If
the range consists of several intervals with gaps between them, a one-step
process cannot have transitions between them, so that the process de-
composes into several independent processes.

If #(n) and g(n) are constants and » ranges from — o0 to + o0, the one-step
process is identical with the (unsymmetric) random walk. The master equa-
tion can then easily be solved explicitly and no € expansion is needed. If r
and g are constant and n has a limited range, for example,n = 0,1, 2,..., o,
then (2.8) cannot be valid for all n. It can at best hold forn = 1, 2, ..., whereas
for n = 0 it must have a slightly different form. We shall then call the bound-
ary at n = Q artificial. The random walk with one or two artificial boundaries
can still be solved explicitly and will therefore not be considered.

If r(n) and g(n) are linear functions of n, there must be at least one boundary
to prevent them from becoming negative. Again this makes a modification
of (2.8) necessary. The following particular case is of special interest and will
be called a natural boundary. Suppose again n =0, 1, 2, .... Then n =
0 is a natural boundary if (Fig. 3)

(a) H0) =0 (6.1a)
(b) the modified equation at n = 0 is
PO, 1) = r(1)P(1, 1) — g(O)P(0, 1) (6.1b)

Note that this is identical with (2.8) for n = 0if one knows that P(—1,1) = 0.
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Fig. 3. The one-step process with an absorbing boundary. The boundary is “natural” when
H0) = 0.

Although artificial boundaries often create considerable difficulties for
solving the master equation,’” natural boundaries do not—for the following
reason. Consider the master equation (2.8) with natural boundary (6.1b).
Now solve (2.8) for —o0 < n < w0, paying no attention to the boundary.
Then take an initial state in which P(n, 0) = Oforn < 0, for instance (1.7) with
some nonnegative m. It will now be true that P(n, ¢) for n < 0 remains zero
at all t > 0; owing to (6.1a) no probability spills over to negative n. Hence
(6.1b)isautomatically satisfied,sinceitisimplied in(2.8)ifonehas P(—1,1) = 0.

An upper boundary n = N is called natural if g(N) = 0 and the modified
equation for P(N,t) is obtained from (2.8) by setting P(N + 1,1) = 0.
(In a way infinity might also be considered as a natural boundary.) The one-
step process with linear or constant r(n) and g(n) and no other than natural
boundaries can be solved explicitly, for example with the aid of generating
functions.

If r(n) or g(n) or both are nonlinear functions, for instance polynomials,
the definition (6.1) of a natural boundary remains valid. Explicit solutions
of such master equations are rare, but it is always possible to find the station-
ary, that is, time-independent solution. For this purpose write (2.10) in the
form

0 = (E ~ D{r(mP*(n) — E~'g(n)P"(n)} (6.2)
It follows that { } must be constant
HmP(ny — gin — DP'n — 1)y =J (6.3)

J is the net probability flow from »n to n — 1. Using (6.3) one can construct
the successive P*'(n), starting from a single one, for instance P*(0), which then
serves as a normalizing factor.

If there is a natural boundary, for instance at n = 0, one finds on substi-
tuting n = 0 in (6.3) that J must vanish:

Hn)P*(n) = g(n — HP(n — 1) (6.4)
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It then follows directly that

(n — Dg(n — 2)---¢(0)
rimr(n — 1) ---r(1)

The normalizing factor P*(0) is subsequently found from

o1 — & 9 = gln = 2) - 40)
N = ™ vt — D) o1

When the upper bound N is infinite it may happen that the sum does not
converge. In that case every solution P(n,t) continues to spread out in-
definitely, in the same way as in the familiar random walk.

It should be emphasized that (6.4) is simply a mathematical identity for
one-step processes. It has to be distinguished from detailed balance, which for
one-step processes reads

r(m)P(n) = g(n — DP*(n — 1) 6.7

Here P9 is the thermal equilibrium distribution and is known a priori
from the familiar phase space argument of equilibrium statistical mechanics.
On the one hand, detailed balance is not restricted to one-step processes;
on the other hand it only applies to closed physical systems, without magnetic
field or overall rotation.!® The identity (6.4) also holds for open systems,
for example, the photoconductor mentioned in the next section, and for
population problems.

Pm) = ¢ P*(0) 6.5)

(6.6)

VII. SEMICONDUCTOR

As a second example of a nonlinear one-step process consider the following
model of an intrinsic semiconductor. A crystal has a nearly empty conduction
band and a nearly full valence band. Let n denote the number of electrons
that by thermal fluctuations have been excited into the conduction band.
The probability per unit time for an excitation to occur is g(n) = fQ, where Q
is the volume of the crystal and f§ a constant (see Fig. 4). The probability for a
recombination is proportional to the number of excited electrons and to the
density n/Q of the available holes: r(n) = yn?/Q. Thus the macroscopic rate
equation is

dn Y o,
i pQ — a" (7.1

On the mesoscopic level the process is specified by the transition prob-
abilities:

Wanln) = fQywss + 4500w (12)



