Diffusion over barriers

“The solution to this problem — the Greens function of eq. (2) — is rather compli-

cated. Fortunately, as an equation for [ePT D pss(q)), eq. (2) is self-adjoint ...”
Onsager, J. Chem. Phys. (1938)

At this point in the book, we have learned several strategies for computing rate constants.
Whether we look back to collision theory, transition state theory, RRKM theory, reactive flux,
Kramers theory, Grote-Hynes theory, etc., the velocity at the barrier top, in some guise, was
always a part of the final rate expression. The theories in this chapter are completely differ-
ent. Trajectories from an overdamped (diffusion) process are continuous, but not differentiable,
so there are no well-defined velocities. For irreversible phenomena like nucleation, we cannot
even use spectral theories. Therefore we must start from entirely different assumptions in deriv-
ing the rate. This chapter outlines two general approaches: mean first passage times (MFPTs)
and expressions based on committors (splitting probabilities). These closely related approaches
yield a flux-over-population rate [ 1] from the steady-state population density with “rescue and
replace” boundary conditions. These boundary conditions create a non-equilibrium steady-state
current leading from the source (the reactant basin) to the sink (the product state). A similar
construct was used in the discussions of classical nucleation theory (Chapter 14) and Kramers
theory (Chapter 16). The steady-state rescue and replace construct at first seems to be rather ar-
tificial, but when the boundary conditions are imposed appropriately it has a strong theoretical
foundation (vide infra).

In the modern literature, the overdamped limit where barrier crossing occurs by diffusion is
often called the Kramers regime [2]. Theories for overdamped barrier crossings actually orig-
inated earlier, e.g. the mean first passage time (MFPT) expression of Pontryagin et al. [3] and
Onsager’s theory for the splitting probability [4]. The earlier frameworks are, in fact, more gen-
eral than the rather prescriptive parabolic barrier and constant friction assumed in the Kramers
theory. Theories based on MFPTs and committors are readily generalized to higher dimensions,
anharmonic barriers, and coordinate dependent diffusivities.

This chapter begins with some mathematical results on forward and backward Fokker-Planck
(Kolmogorov) equations that will be indispensable in what follows. Later sections present the
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MFPT expression for a barrier in one dimension, Langer’s multidimensional MFPT calcula-
tion, results on committors (splitting probabilities), and the close formal relationship between
committors and MFPTs. This chapter concludes with a discussion of committors and related
results for discrete master equations.

18.1 The forward and backward equations

The forward and backward Fokker-Planck equations, also known as forward and backward
Kolmogorov equations, are integral to the calculations of committors and rates in the following
sections. The forward and backward equations are differential statements of the Chapman-
Kolmogorov equation. The forward equation describes the Green’s function for forward time
evolution. The backward equation describes the dependence on initial conditions in the Green’s
function. The forward equation is obtained from the Chapman-Kolmogorov equation with the
intermediate timeslice positioned infinitesimally after the final time. The backward equation is
obtained from the Chapman-Kolmogorov equation with the intermediate timeslice positioned
infinitesimally after the initial time [5]. The starting point for the forward equation is

p(q, t + At]qo, to) =/qup(q, t+At|lg+ Aq, t)p(g + Agq, t|qo, 1)

and for the backward equation,

p(q, t]q0, 1) =fqu p(q. tlqo+ Agq, to+ At)p(qo + Aq, to + At|qo, to)

The endpoints and intermediate timeslices for each case are shown in Figure 18.1.1. As At
becomes small, the probability density on the intermediate timeslice becomes focused near the
endpoint, i.e. near g for the forward equation and near g for the backward equation.

In the limit A# — 0, the construction depicted in Figure 18.1.1(a) gives the “forward” Kol-
mogorov equation, i.e. an equation for p(q, | qo, to) with fixed go and ty3. The construction
depicted in Figure 18.1.1(b) gives the “backward” equation [6], i.e. a Fokker-Planck equation
for p(q, t|qo, to) with fixed ¢ and ¢ [5,7,8].

Chapter 15 showed that, for temporally homogeneous Markov processes with continuous vari-
ables, the transition probabilities are defined by a drift velocity vp(g) and a diffusivity D(g). If
the system at time ¢ is known to be at location ¢, then an infinitesimal time later its position will
be a Gaussian with center ¢ + vp(¢)dt and standard deviation /2D (g)dt. The corresponding
forward equation is just the regular nonlinear Fokker-Planck equation

ap 2

d 9
Ez—a{vD(cz)pHW{D(q)p} (18.1.1)
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Figure 18.1.1: The forward and backward Kolmogorov equations are derived by considering the
Chapman-Kolmogorov equation for timeslices that are infinitesimally close to the (a) final and (b)
initial times, respectively.

but in this context p is a Green’s function p(q, t|qo, ty), i.e. p(q, t) with initial conditions given
by p(g,0) =68[g — qo]. The backward equation is

op ap 3%p
—o - =p(qo)7— + D(q0)—— (18.1.2)
919 dq0 99;

where p is again the Green’s function p(q, f|qo, ty), but now the equation describes its depen-
dence on the initial conditions with fixed ¢ and ¢.

Equations (18.1.1) and (18.1.2) are quite general. However, the remainder of our discussion
focuses on dynamics that obey detailed balance, like those of the overdamped Langevin equa-
tion. As shown in Chapter 15, imposing detailed balance on the forward equation yields the
Smoluchowski equation.

dp(q, tlqo, to)

T = Lp(q, 190, t0) (18.1.3)

Here the operator L is defined by
i 0 BF@) D) oPF@
L()=_—e D(g)—e ) (18.1.4)
dq dq

and it is understood that operators act on everything to their right. Solving the forward equation
gives the transition probabilities, i.e. the Green’s functions for the dynamics in forward time.
The interpretation is straightforward and now familiar from many earlier applications. The
backward equation for overdamped Langevin dynamics is [9,10]

_9p(q, tlq0, 10)

=L p(q. tIqo, to) (18.1.5)
a1
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where

A 8 B 8
LiP(q,ﬂqO,to) zeﬁF(‘/O)—D(qO)e BF(q0) _“

r(q.,1tlqo,t0) (18.1.6)
990 990

Note that LT is the adjoint [11] operator to L.

The backward equation is almost the answer to the question “where did you come from given
that you’re here now?” The answer to that question now just requires another appeal to detailed
balance.

0(q. t1q0,10)peq(qo) ={p(qo, t01q.1)} Peq(q) (18.1.7)

The object in curly brackets indeed describes the distribution of original locations given the
current location.

{p(qo, to1q, 1)} = p(q, 1190, 10) Peq(q0)/ Peq(q) (18.1.8)

So we cannot travel back in time, but we can solve the backward equation to see what the past
might have been like. In retrospect (pardon the pun), this is not so surprising. We have essen-
tially confirmed the stochastic time reversibility property for overdamped Langevin dynamics.

Now comes a fact that will be extremely important. For temporally homogeneous processes,
i.e. for any physical process not driven by an external time-dependent stimuli, only the time
difference ¢t — f¢p matters in the Green’s function. Therefore [5],

p(q.tlqo,t0) = p(q,t —1olq0,0) (18.1.9)

which implies a relationship between derivatives in final and initial time: dp/dt = —dp/d1g.
Thus we can equally write the backward equation for temporally homogeneous and over-
damped Langevin dynamics as

ap(q, tlqo, to)

” =L"p(q. 190, 10) (18.1.10)

This equation is an interesting hybrid between the backward and forward equations: it relates
the backward operation on gg-dependence in p(q, t|qo, tp) to the forward time derivative of
p(q,t|qo, to). As the following sections will show, the hybrid equation is extremely useful.

18.2 Mean first passage times

Consider a swarm of stochastic trajectories initiated at a common point Xy with random initial
momenta and independent random force realizations. Suppose that trajectories are terminated
at the moment when they first reach some region B. Along each trajectory the route and time
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to reach B is different. The mean first passage time (MFPT) is the average time required to
reach B. It depends, sometimes quite strongly, on the initial location x.

MFPTs can be obtained numerically by following thousands of trajectories and averaging the
times to reach B [12]. This “brute force” approach to obtain the MFPT, illustrated in Fig-
ure 18.2.1, has been widely used in simulations. For the brute force MFPT calculation, the
process must be fast so that thousands of spontaneous escape trajectories can be simulated.
Thus MFPTs from direct simulations are limited to simple models, to processes with small bar-
riers, and (all too often) to simulations at unrealistically high temperatures, supersaturations, or
pulling forces where the process is extremely fast relative to the real process of interest. Beyond
efficiency considerations, Jungblut and Dellago noted that non-Markovian dynamics and im-
perfect progress coordinates can cause accuracy issues in brute force MFPT calculations [13].

94

3
|
i
i

o Ik

Mm d’ i

0 t vre(9190)

Figure 18.2.1: (Schematic) The left panel depicts a swarm of trajectories initiated from ¢g( crossing
through the transition state at g; and going on to a product state at random times. The right
panel depicts the mean first passage time 7)/rp(q|qo) as a function of g that would result from a
numerical average over many trajectories.

This section shows that MFPTs can instead be computed from equilibrium properties and
relatively simple results from non-equilibrium statistical mechanics. The MFPT derivation is
conceptually challenging [3], but important for two reasons. First, the MFPT calculation for
diffusion over a barrier in one-dimension is a blueprint for building theories of diffusion over
barriers in higher dimensional landscapes [14.15]. Second, the free energies and coordinate
diffusivities that enter an MFPT calculation are relatively easy to compute with standard rare
events methods. !

The Green’s function p(g,t|qo,0) for overdamped dynamics (diffusion) on a potential
of mean force is given by a Smoluchowski equation: dp/dt = Lp where L acts on the

1 Perhaps the main challenge is identifying a suitable reaction coordinate q.
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g-dependence of p. Section 18.1 showed that p(q, f|qo, 0) also satisfies the hybrid equation
3p(q.1lqo,0)/3t = LT p(q, t|qo, 0) where LT acts on the go-dependence of p. Here we use the
hybrid equation to obtain the MFPT between two points along a reaction coordinate.

The MFPT depends on the shape of the free energy surface F'(g), the mobility/diffusivity on
the free energy surface, the starting point (go), and the final location. Usually the final location
of interest is the barrier top or a point on the opposite side of the barrier from ¢gg. The analysis
below is valid for any two configurations. After obtaining a general MFPT formula, we will
adapt it to the problem of barrier crossing rates. For now, let the final location be g = gF.
Without loss of generality, let gog be located to the left of g and let A be the set of all states
to the left of gr, i.e. A ={q|q < qr}. To focus on first passage times, we impose an absorbing
boundary condition at g r,

p(qrF.tlqo) =0. (18.2.1)

The absorbing boundary condition removes from consideration those trajectories which have
already reached g in the past.

If we could solve for p(q, t|qo), we would integrate over all g € A to obtain the fraction of
trajectories remaining in A after a time ¢:

qF
¢ (t1q0) E[ dq p(q.1lq0)
—o0
For gy € A the initial condition on ¢ is

¢(Olgo) =1

and because all trajectories eventually reach gr, ¢ decays to zero for t — oo as depicted in
Figure 18.2.2.

1
Figure 18.2.2: Schematic behavior of ¢ (¢|qo), i.e. the prob-
) . . &(tlqo)
ability to remain in a metastable state A for a time ¢ after
initiation at position gp. ¢ (¢|gop) may exhibit more complex
transient decay behavior if g is near the boundary of state
A or if state A is not metastable. ! "
Ture (90)

The differential change in ¢ from time ¢ to ¢ 4 dt is the probability that the first passage from A
occurs between ¢ and 7 + dt, i.e. the probability density of first passage times is —d¢ (¢|qo) /9.
Therefore, the MFPT from gg to gF is

I
™mrpr(qrlqo) E/ r- [%] dt
0 t
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Integrate by parts to obtain

mrp(Grlgo) = [0 ¢ (t1g0)dt (182.2)

from which the boundary terms —(# - ¢(t|q0))8° have vanished. This equation cannot yet be
evaluated because solving for p(q, t|qgo) is usually a difficult task, and therefore we also do not

know ¢ (/o).

To avoid solving for p(q, t|qo), integrate dp(q, t|qo) /0t = iTp(q, t|qo) over all positions in A
at time ¢,

0 qr - qF
— dqp(q,tho)=L/ dq p(q,tlqo0)

at J_o —00

Recall that LT only acts upon the go-dependence in p(q, f|qo), so the integration over g has
been moved inside the LT operator. Each of the integrals can now be replaced by ¢ (¢|qp) to
give

99 (t1q0)

ot

The g-dependence has been eliminated, and the equation that remains (18.2.3) describes how
the probability to remain in A depends on ¢ and gg. It can be used to find the MFPT and also
higher moments of the first passage time distribution. Let’s proceed with the MFPT calculation
by integrating over time

=LY (t1q0). (18.2.3)

o0
¢ (00lqo) — ¢ (Olgo) = L / ¢ (t]qo)dt
0
Using the limits ¢ (co|gqo) = 0 and ¢ (0]gp) = 1, as well as jboo ¢ (tlqo)dt =ty rp(qFlqo) gives

—1 =L tyrp(qriqo)

Again recall that LT acts via derivatives of the go-dependence in Ty rp(gFr|qo), and that
qr was just the final destination at which we imposed the absorbing boundary condition
0(q,t190)|g=gr = 0. The corresponding boundary condition on ty rp(qr|qo) is

™mrp(qrlqr) =0 (18.2.4)

i.e. the MFPT from gg = gF to gr must be zero. Thus the MFPT calculation has been reduced
to an ordinary differential equation [3,16,17],

d _ d
1 zeﬂF(QO)—D(qo)e ﬂF(qO)—TMFP(QF|q0) (18.2.5)
d dqo

q0



480 Chapter 18

Formally, equation (18.2.5) is second order, so it would seem to require a second boundary
condition. Typically, the nature of the free energy profile naturally prevents trajectories from
wandering to —oo along the g-axis, and therefore no left boundary condition is needed. Some-
times, an additional reflecting boundary condition is needed at some leftmost value of ¢g. For
example, in nucleation we are often interested in the first passage time to reach the critical nu-
cleus size ng = ny, but also no nucleus can become smaller than zero. Therefore an MFPT for
nucleation would require an additional reflecting boundary condition at n = 0.

Equation (18.2.5) for the MFPT is easily solved in two stages of integration for any initial
position gg < g . First,

d 490 ,
D(qo)e PF9) — vk pr(gFlqo) = —f dq'e PF@)
dé]o —00

then

ar  oBF") 4"

TMFP(QFICIO)=/ dq"”
q0 D(q,/) —00

dg'e Pr@) (18.2.6)

For overdamped Langevin dynamics, equation (18.2.6) provides the MFPT from any point gg
to any other point gz as long as g > ¢g. Figure 18.2.3 shows how the MFPT changes as a
function of the reaction coordinate for a simple double well potential.

1
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Figure 18.2.3: Showing F(q) and the MFPT with con- X I\

stant D from ¢ to various final locations q. The MFPT / § i\

is very small for all ¢ deep within state A. The MFPT A y S A

increases rapidly with g near the transition state, and "':1:;2_ /;5’ é": Y B

then becomes approximately constant with value k;1_> B N : : %:}i:»\_

throughout state B. 0 | / ! N/ q
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However, when the barrier is much higher than kT some simplifying approximations can be
made because the predominant contributions to the integral containing exp[—fS F (¢)] are near
the minimum, and the predominant contributions to the integral containing exp[+ B F (g)] are
near the barrier top. Specifically, note that

1. The integral over et#F(@) contributes negligibly until ¢” is near qi.
2. For ¢q” near g; the integral over e PF(@ gpans the entire minimum near .
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3. The MFPT to any point g near the minimum in state B is approximately constant for all gg
near the minimum in state A.

Based on these arguments, the MFPT fo reach the product basin from the reactant basin is
approximately

rMprque‘ﬁF“f)/dq D(q) letPr@ (18.2.7)
@] n

where subscript “U” indicates integration over the reactant well and subscript “N” indicates in-
tegration over the barrier top. Approximation (18.2.7) becomes increasingly accurate for high
barriers, and it is equally valid for high barriers of any shape: parabolic barrier, asymmetric
cusp, square top, etc. Note that the quantity dg D(q) ~'exp[—BF(q)] is invariant to transfor-
mations that stretch or compress the coordinate g [18]. This invariance property can be used
to obtain coordinates for which the diffusivity D is a constant at each point along the reaction
pathway.

For examples of the MFPT calculation in high dimensions, see work by Adam and Delbruck
[22] as well as models of protein folding by Bicout and Szabo [23]. Here we consider a simple
example starting with the free energy profile and diffusivity along a reaction coordinate q.

B Example: MFPT for parabolic approximation to barrier top

Consider a case where diffusivity is approximately constant near the top of a high barrier.
Near the minimum the free energy resembles F'(g) = 111(1)%6]2/2 and in the transition state
region, it resembles F'(q) = AF; — ma)i(q — qi)z/Z.

F(q)

TN
N/

~ mo3q*2 qs

With these approximations, the MFPT formula becomes a product of two Gaussian inte-
grals:

wrp =D [ dqe PR [ agertioneta ot
U N
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Doing the integrals and inverting the MFPT to obtain the rate constant gives

2 2
D‘/mwima)A

ksl exp [—/SAFi]

kmrpr =

Now use D =kpgT /my to recover the Kramers high friction result [19]

w

w
kyppr = Ay*exp [-BAF:] (18.2.8)

2w
y and w; are in the prefactor because they determine the mobility across the transition
region and the width of the transition region, respectively. w4 appears in the prefactor
to account for entropy of the reactant well. For an application of this formula, see the
example on pulling experiments [20,21] in Chapter 22.

When using these formulas, remember that a one dimensional Smoluchowski equation is a
model for the multidimensional dynamics along a reaction coordinate in a high dimensional
space. The results of this section are not valid for multidimensional dynamics unless one has
chosen an accurate reaction coordinate g (x) [24]. To ensure accurate results, one should care-
fully identify the reaction coordinate g or use multiple coordinates. Section 18.3 outlines the
multidimensional MFPT calculation.

18.3 Langer’s multidimensional theory

Most one-dimensional Langevin equations and Fokker-Planck equations are models of pro-
cesses that involve many degrees of freedom. These models provide an accurate description
of the dynamics only when constructed around an accurate reaction coordinate, and in many
cases the correct reaction coordinate is not known. Sometimes, even when the correct reaction
coordinate is known, it remains interesting to investigate multiple coordinates. Finally, there
are problems like polymorph selection during nucleation which require analysis of at least two
or more important coordinates [25,26]. Each of these situations requires analysis of diffusion
over barriers in multiple dimensions.

The one-dimensional MFPT calculation required both a free energy profile and a mobility (or
diffusivity) along the reaction coordinate. The multidimensional rate calculation requires a free
energy surface and a mobility (or diffusion) tensor. Suppose that the dynamics of an activated
process are thoroughly described by the free energy and mobility as functions of a multidimen-
sional coordinate vector q. Let the saddle point on the free energy surface be q; and let the



