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Abstract

The key to molecular conformation dynamics is the direct identification of metastable
conformations, which are almost invariant sets of molecular dynamical systems. Once some
reversible Markov operator has been discretized, a generalized symmetric stochastic matrix
arises. This matrix can be treated by Perron cluster analysis, a rather recent method involving
a Perron cluster eigenproblem. The paper presents an improved Perron cluster analysis algo-
rithm, which is more robust than earlier suggestions. Numerical examples are included.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the past few years, Deuflhard and Schütte together with their research group
have created the conformation dynamics approach based on concepts of nonlin-
ear dynamics—see [2,7,20] for recent survey papers. The key to the conformation
dynamics approach is the direct identification of metastable conformations together
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with their life times and their transition patterns. This approach, based on first ideas
of Deuflhard et al. [3], performs the task of cluster analysis by analyzing a stochastic
eigenproblem corresponding to a cluster of eigenvalues around the Perron eigenvalue
λ = 1, therefore named Perron cluster. The whole approach is called Perron cluster
analysis, its algorithmic realization is abbreviated as PCCA (from Perron Cluster
Cluster Analysis). An alternative discrete approach has been suggested by Froyland
et al. [9,10], which tackle more general problems, but in a different context and
lower fixed dimensions. The PCCA as derived by Deuflhard et al. [6] has been based
on the concept of characteristic functions for almost invariant sets (or aggregates).
With more and more computational experience, that algorithm has appeared to be
not robust enough. That is why the present paper suggests a new improved variant to
be called PCCA+ here.

The present paper is organized as follows. In Section 2, we revisit the stochastic
generalized symmetric eigenproblem corresponding to the Perron cluster of eigen-
values, which can be viewed as being generated from a multiple Perron eigenvalue
by perturbation. Motivated by a perturbation analysis, which is a slight improvement
over [6], we derive the concept of our new algorithm introducing almost charac-
teristic functions to describe almost invariant sets (or aggregates)—see Section 3. In
Section 4, the Perron cluster analysis problem is formulated as a constrained maximi-
zation problem with metastability as the objective function. In Section 5, the problem
is reformulated as an unconstrained maximization problem, which is the basis for our
improved, more robust Perron cluster algorithm PCCA+. A predecessor of this algo-
rithm has originally been suggested by Weber [21,22]; our derivation here, however,
differs substantially from the earlier reports and establishes a new frame. Finally,
in Section 6, numerical experiments are given to document the improvement by our
new algorithm over the former one.

2. Perron cluster eigenproblem

In order to present our new Perron cluster analysis algorithm, we first need to col-
lect some (partly new) results about the Perron cluster eigenproblem. The stochastic
matrices treated in this paper are proper discretizations of the self-adjoint transfer
operator constructed by Schütte [18,19]. For the theoretical part of this paper we
only need to keep in mind that the arising matrices are stochastic and generalized
symmetric in a sense to be described below.

Given a stochastic matrix T of dimension N , say. Then the eigenproblem for the
Perron eigenvalue λ1 = 1 has the form

πT T = πT , T e = e, πT e = 1. (2.1)

In terms of the underlying Markov chain, the left eigenvector πT = (π1, . . . , πN)

can be interpreted as the discrete invariant measure, while the right eigenvector eT =
(1, . . . , 1) represents the characteristic function of the discrete invariant set. Given
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u, v ∈ RN and the diagonal scaling matrix D2 = diag(π1, . . . , πN), we may intro-
duce a special inner product and its induced norm by

〈u, v〉π =
N∑

l=1

ulπlvl = uT D2v, ‖v‖π = 〈v, v〉1/2
π ,

to be called π-product and π-norm further on. The self-adjointness of the underlying
transfer operator is inherited by the symmetry of the matrix T with respect to the
π-product.

2.1. Uncoupled Markov chains

Let S = {1, 2, . . . , N} = S1 ⊕ · · · ⊕ Sk denote the total index set decomposed
into k disjoint index subsets, each of which represents a state subspace wherein a
Markov subchain is running over “infinitely long time”, i.e. each of which repre-
sents an invariant subset. Then, after appropriate permutation, the total transition
matrix T is strictly block diagonal with submatrices {T1, . . . , Tk}—see, e.g., [15].
Each of these submatrices is stochastic and gives rise to a single Perron eigenvalue
λ(Ti) = 1, i = 1, . . . , k. Assume the submatrices to be primitive. Then, due to the
Perron-Frobenius theorem, each block Ti possesses a unique right eigenvector hav-
ing unit entries over the index subset Si . In terms of the total (N, N)-matrix T , the
Perron eigenvalue is k-fold, i.e.

λ1 = · · · = λk = 1,

and the corresponding eigenspace is spanned by the extended vectors

χT
i = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

Si

, 0, . . . , 0), i = 1, . . . , k.

Note that these eigenvectors can be interpreted as characteristic functions of the
discrete invariant subsets—compare Fig. 1, left. To simplify language, we call k

the Perron index. Any Perron eigenvector basis X = [X1, . . . , Xk] can be written
as a linear combination of the characteristic functions and vice versa. With χ =
[χ1, . . . , χk] and a non-singular (k, k)-matrix A we may write

χ = XA, X = χA−1. (2.2)

with A−1 = (aij ) we obtain componentwise

Xi(l) =
k∑

j=1

ajiχj (l), i = 1, . . . , k, l = 1, . . . , N, (2.3)

which is an overdetermined system of kN equations for the k2 unknowns aji . Sys-
tems (2.2) or (2.3), respectively, are consistent by construction: The Perron eigen-
vectors are constant on each index subset Sm—see Fig. 1, right. For this reason we
may represent each subset by just one index lm ∈ Sm, m = 1, . . . , k and arrive at
the system of k2 equations
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Fig. 1. Uncoupled Markov chain over k = 3 disjoint index subsets. The state space S = {s1, . . . , s90}
divides into the index subsets S1 = {s1, . . . , s29}, S2 = {s30, . . . , s49}, and S3 = {s50, . . . , s90}. Left:
characteristic function χ2. Right: eigenbasis {X1, X2, X3} corresponding to 3-fold eigenvalue λ = 1.

Xi(lm) =
k∑

j=1

ajiχj (lm), i = 1, . . . , k, m = 1, . . . , k. (2.4)

Since χj (lm) = δm,j , this system can be directly solved to yield

ami = Xi(lm), i = 1, . . . , k, m = 1, . . . , k, (2.5)

or, in matrix notation

A−1 =
X1(l1) . . . Xk(l1)

...
...

X1(lk) . . . Xk(lk)

 . (2.6)

2.2. Nearly uncoupled Markov chains

Suppose now we have k nearly uncoupled Markov chains, each of which is run-
ning “for a long time” in one of the subsets Si , which are therefore called almost
invariant subsets. In this case the transition matrix T̃ will be block diagonally domi-
nant after suitable permutation. As a perturbation of the k-fold Perron root λ = 1, a
Perron cluster of eigenvalues

λ̃1 = 1, λ̃2 = 1 − O(ε), . . . , λ̃k = 1 − O(ε),

will arise, where ε > 0 denotes some perturbation parameter, which we here scale as

ε = 1 − λ̃2. (2.7)

Let formal ε-expansions be introduced for the stochastic matrix as

T̃ (ε) = T + εT (1) + O(ε2), (2.8)

and for the Perron cluster eigenvectors X̃ = [X̃1, . . . , X̃k] ∈ RN×k as

X̃i(ε) = Xi + εX
(1)
i + O(ε2). (2.9)
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In [6], the result

X
(1)
i =

k∑
j=1

bjiχj︸ ︷︷ ︸
(I)

+
N∑

j=k+1

1

1 − λj

�j T
(1)Xi︸ ︷︷ ︸

(II)

(2.10)

has been obtained using projections �j as defined in the book of Kato [14]. Obvi-
ously, the term (I) represents just shifts of the locally constant levels to be associated
with the almost invariant sets—see Fig. 1, right. As a slight improvement over [6],
we now show that the term (II) vanishes.

Lemma 2.1. With B = (bij ) the expansion (2.10) can be simplified to

X
(1)
i =

k∑
j=1

bji χj , i = 1, . . . , k or X(1) = χB. (2.11)

Proof. First, we additionally expand the perturbed eigenvalues as

λ̃i (ε) = λi − ε δλi + O(ε2) � 1, i = 1, . . . , N. (2.12)

With the help of the π-product we may write the projections �j as

N∑
j=k+1

1

1 − λj

�j T
(1)Xi =

N∑
j=k+1

1

1 − λj

〈Xj , T
(1)Xi〉πXj , i = 1, . . . , k.

For further treatment of these terms we need to find an expression for the first order
term T (1). Following the usual procedure, we start from

T̃ (ε)X̃i(ε) = λ̃i (ε)X̃i(ε), i = 1, . . . , N.

Upon inserting the above ε-expansions, the zero order comparison yields

T Xi = Xi for i = 1, . . . , k, (2.13)

while the first order comparison leads to

T (1)Xj = (I − T )X
(1)
j − Xjδλj , j = 2, . . . , N. (2.14)

The stochastic matrix T̃ (ε) is symmetric with respect to the π-product and so are the
expansion matrices T and T (1). Hence, for j = k + 1, . . . , N and i = 2, . . . , k, the
individual terms in the above sum are

〈Xj , T
(1)Xi〉π = 〈Xi, T

(1)Xj 〉π = 〈Xi, (I − T )X
(1)
j − δλjXj 〉π

= 〈(I − T )Xi, X
(1)
j 〉π − δλj 〈Xi, Xj 〉π = 0.

The first term above vanishes due to (2.13), the second one due to the π-orthogo-
nality of the unperturbed eigenvectors, which verifies (2.11) and thus completes the
proof. �
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In Fig. 4, left, we show an example of the Perron cluster eigenvectors at a simple
illustrative molecule for Perron index k = 3.

PCCA approach. The first algorithm for Perron cluster analysis has been the PCCA
method, as worked out in detail in [6]; for a rather elementary introduction see also
Section 5.5 of the latest edition of the textbook [5].

Least squares formulation. In PCCA, the generally inconsistent overdetermined
system (2.2) is replaced by the linear least squares system

‖χ − X̃A‖π = min . (2.15)

The unknowns herein are the k2 entries of the matrix A.
Sign pattern. Algorithmically speaking, PCCA exploits the fact that, for ε = 0,

each cluster is clearly associated with the set of signs of the components of the eigen-
vectors X1, . . . , Xk—compare Fig. 1, right. It is tacitly assumed that this sign pattern
is only slightly changed under perturbation—an assumption which is certainly not
unreasonable, since the sign of a component is the leading binary digit. However,
as shown in Lemma 2.1, the signs of the components of X̃ are perturbed in O(ε) as
opposed to the constant level pattern of the eigenvectors, which is perturbed in O(ε2)

only.
We may also look at the sign pattern from a combinatorial point of view. In the

case ε = 0 the eigenbasis X selects k sign patterns out of 2k−1 possible ones (note
that the positive sign from X1 is fixed)—or even 3k−1 possible ones, if we include
the sign function value 0 to be implemented as some “dirty zero” not easy to han-
dle. Perturbations ε /= 0 may give rise to additional possibilities, i.e. to more than k

patterns, part of which will not have a correspondence for ε = 0.
The generic occurrence of so-called transition sets, where the sign structures dif-

fer from the ones in the case ε = 0, see Huisinga et al. [12], shows that the “dirty
zero” problem is also generic for conformation dynamics.

Summarizing, the PCCA algorithm, even though looking intriguing at first glance,
exhibits certain structural discontinuities, which, in turn, induce some lack of robust-
ness. This insight is in agreement with numerical experience in more complex bio-
molecular computations. As a consequence, we were eventually led to abandon this
algorithmic approach, but not the concept of Perron cluster analysis as a whole.

3. Almost characteristic functions

In the new algorithmic approach to be presented here, the inconsistency of the
overdetermined system (2.2) for ε /= 0 is treated in a way different from (2.15).
Given the perturbed eigenvectors X̃ = [X̃1, . . . , X̃k] as input data, the main idea
of the new approach is to describe almost invariant sets by almost characteristic
functions χ̃(ε) = [χ̃1, . . . , χ̃k] such that

χ̃(ε) = X̃(ε)Ã(ε)
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Fig. 2. Simplex σ2 with vertices {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

or componentwise, in terms of the k2 coefficients Ã = (αij ),

χ̃i =
k∑

j=1

αjiX̃j . (3.1)

These almost characteristic functions are assumed to satisfy the positivity property

χ̃i(l) � 0, i = 1, . . . , k, l = 1, 2, . . . , N, (3.2)

and the partition of unity property

k∑
i=1

χ̃i(l) = 1, l = 1, 2, . . . , N. (3.3)

These conditions define a (k − 1)-simplex, say σk−1 ⊂ Rk . The k vertices of this
simplex are the coordinate unit vectors—see Fig. 2.

Assume that Ã as defined in (3.1) is non-singular and let Ã
−1

(ε) = (aij ). Then

X̃ = χ̃Ã
−1

or, componentwise,

X̃i(l) =
k∑

j=1

aji χ̃j (l), i = 1, . . . , k, l = 1, . . . , N. (3.4)

Consider the k-simplex having the k vertices of σk−1 plus the origin in Rk as its
k + 1 vertices (compare Fig. 2 for the special case k = 3). By the above linear map-
ping, this k-simplex transforms into a k-simplex. Whenever a solution of our cluster
problem exists, then this simplex should contain all input data (X̃1(l), . . . , X̃k(l))

for l = 1, . . . , N . Since X̃1(l) = 1 holds trivially, we may restrict our interest to the
(k − 1)-simplex σ̃k−1, which then should contain the data (X̃2(l), . . . , X̃k(l)).

Example: Butane molecule. In Figs. 3 and 4 we exemplify the geometrical ideas
behind our concept. The presented results have been obtained from the algorithm
PCCA+ to be described in Section 5. The occurrence of ‘dirty zero’ data indicates
that the previous algorithmic approach PCCA would have required some extra treat-
ment of these data, even though they obviously do not play any extra role.
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Fig. 3. Butane molecule (k = 3): left: simplex σ̃2 containing (X̃2(l), X̃3(l)), l = 1, . . . , N . Observe the
occurrence of ‘dirty zero’ data in the left corner. Right: simplex σ2 for almost characteristic functions
(χ̃1, χ̃2, χ̃3).
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Fig. 4. Butane molecule (k = 3): left: Perron cluster eigenvectors X̃1 = e, X̃2, X̃3 to Perron cluster
eigenvalues λ̃ = 1, 0.99, 0.98. Observe the occurrence of ‘dirty zero’ data in the range {16, . . . , 26}.
Right: perturbed characteristic functions χ̃1, χ̃2, χ̃3.

In the strictly uncoupled case ε = 0, we already know that the overdetermined
system (3.4) is uniquely solvable by χ̃(0) = χ . Geometrically speaking, this means
that all data points lie in the k vertices of the simplex σk−1. Vice versa, if all data
points lie in the vertices, then the underlying Markov chains are uncoupled. In the
coupled case ε /= 0, we expect our cluster problem to be solvable, if all data points

(χ̃1(l), . . . , χ̃k(l)), l = 1, . . . , N,

lie in σk−1 and satisfy (3.4) in addition. This is confirmed by the following theorem.

Theorem 3.1. Notation as just introduced. For a solution of the cluster problem in
terms of almost characteristic functions χ̃1, . . . , χ̃k always three out of the following
four conditions are satisfiable:

(i)
∑k

i=1 χ̃i = e,

(ii) for all i = 1, . . . , k and l = 1, . . . , N : χ̃i(l) � 0,
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(iii) χ̃ = X̃Ã with Ã regular,
(iv) for all i = 1, . . . , k there exists l ∈ {1, . . . , N} with χ̃i(l) = 1.

If all four of the conditions hold, the solution is unique up to permutation of the index
set {1, . . . , k}.

Proof. We select the condition triples one after the other.
“(i), (ii), (iv)” is trivial: For each l = 1, . . . , N choose an arbitrary i = 1, . . . , k

with χ̃i(l) := 1 and χ̃j (l) := 0 for j /= i.
“(i), (iii) , (iv)”: Choose an index subset {l1, . . . , lk} ⊂ {1, . . . , N} such that

B :=
X̃1(l1) . . . X̃k(l1)

...
...

X̃1(lk) . . . X̃k(lk)

 (3.5)

is regular. A solution satisfying (i), (iii) and (iv) is given by Ã := B−1, since by
construction χ̃i(li) = 1 and therefore (iv) holds. The first column of the equation
χB = X̃ with X̃1 = e and B1i = 1 gives us (i).

“(i), (ii), (iii)”: Since X̃1(l) ≡ 1, the points (X̃1(l), . . . , X̃k(l)) ∈ Rk, l = 1, . . . ,

N , are included in a big enough (k − 1)-simplex spanned by the vertices{
(1, b12, . . . , b1k), . . . , (1, bk2, . . . , bkk)

}
.

With b1i := 1 and Bij := bij one defines a regular (k, k)-matrix B and Ã := B−1.
Condition (ii) holds by construction of the simplex. Condition (i) can be proved as
above.

“(ii), (iii), (iv)”: Take the solution satisfying (i), (ii) and (iii) and scale each χi

such that (iv) is met.
“Uniqueness”: If there exists a solution satisfying (i), (ii) and (iv), then there

exists an index subset {l1, . . . , lk} ⊂ {1, . . . , N} such that χ̃i(lj ) = δi,j . If, in addi-
tion, condition (iii) holds, then the points (X̃1(l), . . . , X̃k(l)) ∈ Rk, l = 1, . . . , N lie
inside a regular (k − 1)-simplex spanned by the vertices{

(1, X̃2(l1), . . . , X̃k(l1)), . . . , (1, X̃2(lk), . . . , X̃k(lk))
}

and Ã = B−1 with B defined in (3.5). As the choice of the vertices among the
data points is unique up to index permutation within {1, . . . , k}, Ã and therefore the
solution is unique. �

Available information. Any algorithm on the described basis will supply k meta-
stable conformations (typically as visual objects) together with

• the probabilities π̃i for the system to be within state i as

π̃i =
N∑

l=1

πlχ̃i(l) = 〈χ̃i , e〉π , (3.6)
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• the probabilities wii for the system to stay in state i,

wii = 〈χ̃i , T̃ χ̃i〉π
〈χ̃i , e〉π = 〈χ̃i , T̃ χ̃i〉π

π̃i

, (3.7)

• the probabilities wij , i /= j , for the system to move from state i to j ,

wij = 〈χ̃i , T̃ χ̃j 〉π
〈χ̃i , e〉π = 〈χ̃i , T̃ χ̃j 〉π

π̃i

. (3.8)

With D̃2 = diag(π̃1, . . . , π̃k) the coupling matrix W̃ = (wij ) reads

W̃ = D̃−2〈χ̃ , T̃ χ̃〉π . (3.9)

Following a suggestion of Huisinga in his thesis [11], we characterize metastability
by the term

k∑
i=1

wii = tr(W̃ ).

Of course, this definition makes only sense as long as the (stochastic) coupling
matrix is diagonally dominant, which means that wii > 0.5, i = 1, . . . , k.

Huisinga and Schmidt [13] have shown an O(ε) lower bound for the measure of
metastability in the case of a strict {0,1}-clustering. Further insight into our new
framework, where we use almost characteristic functions, can be gained by an per-
turbation analysis, which provides an O(ε2) result for the estimation of metastability.

Theorem 3.2. In terms of the perturbation parameter ε, the following approxima-
tion results hold:

χ̃ = χ + O(ε2), π̃ = π + O(ε2). (3.10)

Let �̃ = diag(̃λ1, . . . , λ̃k). Assume that for a feasible set of almost characteristic
functions χ̃ = X̃Ã the inequality

� = ‖Ã−1
�̃Ã − Ik‖1 < 1 (3.11)

is satisfied. Then metastability can be bounded via

k∑
i=1

λ̃i − O(ε2) �
k∑

i=1

wii <

k∑
i=1

λ̃i . (3.12)

Proof. We introduce the formal expansions

χ̃ = χ + εχ(1) + O(ε2), Ã = A + εA(1) + O(ε2).

Insertion into the defining equation χ̃ = X̃Ã then yields the zero order result χ =
XA and the first order result
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χ(1) = χ(A−1A(1) + BA)

with B from Lemma 2.1. As already mentioned, the first order correction X(1) = χB

represents just a shift of the constant levels within each of the invariant subsets—see
Fig. 1, right. In our new frame of almost characteristic functions this means that all
data X̃(l), l = 1, . . . , N , are still condensed in the k vertices of the simplex σ̃k−1;
this is expressed in the transformation result Ã = B−1 given in (3.5). Consequently,
the relations

A(1) = −ABA, χ(1) = 0

must hold. From this, we then see that

π̃i = 〈χ̃i , e〉π = 〈χi + O(ε2), e〉π = πi + O(ε2),

which confirms (3.10) and completes the first part of the proof.
For the second part of the theorem, we return to the representation (3.9) for W̃ .

Upon reformulating

〈χ̃ , T̃ χ̃〉π = Ã
T 〈X̃, T̃ X̃〉πÃ = Ã

T 〈X̃, X̃�̃〉πÃ = Ã
T 〈X̃, X̃〉π �̃Ã

and using π-orthogonality of the eigenvectors X̃ we arrive at

W̃ = D̃−2Ã
T
�̃Ã. (3.13)

Moreover, based on the relation

〈χ̃ , χ̃〉π = Ã
T 〈X̃, X̃〉πÃ = Ã

T
Ã,

we may derive the alternative expression

W̃ = D̃−2〈χ̃ , χ̃〉π︸ ︷︷ ︸
S

Ã
−1

�̃Ã︸ ︷︷ ︸
M

. (3.14)

By a short calculation, the above matrix S = (Sij ) can be shown to be stochastic,
which implies that

∑k
j=1 Sij = 1. The matrix M = (Mij ) is obviously spectrally

similar to the eigenvalue matrix �̃. By assumption, M satisfies the condition � =
‖M − Ik‖1 < 1, where ‖ · ‖1 denotes the maximum column sum norm; this implies
that Mii > Mji for j /= i.

With these properties, the upper bound in (3.12) can be directly verified as fol-
lows:

k∑
i=1

wii =
k∑

i=1

k∑
j=1

SijMji <

k∑
i=1

 k∑
j=1

Sij

Mii =
k∑

i=1

Mii =
k∑

i=1

λ̃i .

In order to verify the lower bound in (3.12), let D2 = diag(π1, . . . , πk) and observe
that D2 = 〈χ, χ〉π . With this preparation and the help of the just proven results
(3.10), we derive the perturbation pattern of the matrix S as

S = D̃−2〈χ̃ , χ̃〉π = (D2 + O(ε2))−1(〈χ, χ〉π + O(ε2)) = Ik + O(ε2).
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Insertion into the expression (3.14) then immediately yields

tr(W̃ ) = tr(SM) = tr(M) + O(ε2) = tr(�̃) + O(ε2).

This result applies for both the upper and the lower bound of the metastability and
therefore confirms (3.12) in particular, which completes the proof. �

Note that �̃(ε)|ε=0 = Ik so that for sufficiently small perturbation parameter the
above inequality (3.11) will be satisfied.

Remark. We have implicitly assumed that

k∑
i=1

(1 − λ̃i ) = O(ε),

which implies, in particular, that the Perron index k must be chosen small enough
such that 1 − λ̃k = O(

√
ε) does not occur. Otherwise, the O(ε2)-terms would degen-

erate to O(ε)-terms that would interfere with the O(ε)-terms in �̃(ε)—thus making
our analysis meaningless.

Interpretation. Before finishing the section, we want to discuss certain interpreta-
tions of the here introduced concept of almost characteristic functions. Recall that the
formerly used exact characteristic functions χ represented the geometrical objects of
almost invariant sets. Consequently, we might interpret almost characteristic func-
tions χ̃ as characterizing almost invariant ‘fuzzy’ sets. Such a definition is certainly
all but clear. However, in our former conformation analysis in terms of exact charac-
teristic functions, metastable conformations have been naturally visualized (typically
in volume rendering or isosurface representation) via the probabilities

(π1χi(1), . . . , πNχi(N)).

Therefore, in our new conformation analysis in terms of almost characteristic func-
tions, we will visualize metastable conformations via the probabilities

(π1χ̃i(1), . . . , πN χ̃i(N)).

4. Constrained optimization problems

Throughout this section, we will drop all tildas, which means that we write X̃ =
X, χ̃ = χ , Ã = A, unless explicitly stated otherwise. From Theorem 3.1 we know
that in general the solution of the cluster problem in terms of almost characteristic
functions is not unique. Therefore, in order to obtain a solution, we cannot impose
all of the four conditions simultaneously. In the earlier papers [21,22], the positivity
condition (ii) had been abandoned. Here, however, we stick to the stochastic inter-
pretation of χ , which means that we keep the three conditions (i), (ii), and (iii), but
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drop the maximal scaling condition (iv). Instead we make either the metastability or
the scaling a possible objective function to be maximized subject to constraints. The
k2 unknown coefficients αij enter as variables into this optimization problem.

4.1. Feasible set

Let F denote the feasible set defined by the linear constraints (i)–(iii) of Theorem
3.1. Insertion of (i) into (ii) yields the positivity constraints

0 �
k∑

j=1

αjiXj (l) = α1i +
k∑

j=2

αjiXj (l), i = 1, . . . , k, l = 1, . . . , N.

(4.15)
Upon inserting (iii) into (i) we get

k∑
i=1

k∑
j=1

αjiXj =
k∑

j=1

(
k∑

i=1

αji

)
Xj = e. (4.16)

As X1 = e and X is linear independent, we can further reduce this equation to
k∑

i=1

αji = δj1, j = 1, . . . , k, (4.17)

with the canonical Kronecker δ. Setting i = 1 in (4.15) we may proceed as

0 �
k∑

j=1

αj1Xj(l)

= α11 +
k∑

j=2

αj1Xj(l)

= α11 +
k∑

j=2

(
−

k∑
i=2

αji

)
Xj(l).

Thus we arrive at the following representation of F :

αj1 = δj1 −
k∑

i=2

αji, j = 1, . . . , k,

α11 �
k∑

j=2

(
k∑

i=2

αji

)
Xj(l), l = 1, . . . , N, (4.18)

α1i � −
k∑

j=2

αjiXj (l), i = 2, . . . , k, l = 1, . . . , N.

This set has at least the interior point α∗
ji = δj1k

−1 and is therefore not empty.
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4.2. Objective functions

There is a variety of objective functions to model the given problem of cluster
identification. We select two intuitive options. The first one directly takes the dropped
scaling condition (iv) as the objective function

I1[α] =
k∑

j=1

max
l=1,...,N

χj (l) � k (4.19)

to be maximized. The above upper bound arises trivially and is actually reached at a
unique solution—compare Theorem 3.1. The second choice of objective function is
the metastability

I2[α] =
k∑

j=1

wjj =
k∑

j=1

〈χj , T χj 〉π
〈χj , e〉π <

k∑
i=1

λi, (4.20)

which also is to be maximized; the above upper bound has been shown in Theorem
3.2. Upon inserting the coefficients αij into I1,2 and using (4.17), we obtain

I1[α] = 1 +
k∑

j=1

max
l=1,...,N

k∑
i=2

αijXi(l) � k (4.21)

and

I2[α] =
k∑

j=1

k∑
i=1

λi

α2
ij

α1j

= 1 +
k∑

i=2

λi

k∑
j=1

α2
ij

α1j

< 1 +
k∑

i=2

λi. (4.22)

Over the feasible set F, both objective functions are positive, convex, and bounded
from above. Therefore, any solution of the associated maximization problem will
have to lie on one of the vertices of the feasible set F (in the non-degenerate case).

4.3. Reduced feasible set

We assume that there are no linear dependencies in (4.18). In this case, k(k − 1)

out of the kN inequalities in (4.18) must be active. These inequalities represent the
fact that each of the k almost characteristic functions is non-negative; equality means
that the corresponding data directly lie on one of the k facets of the simplex σk−1.
Under the assumption of linear independence made, we can satisfy a maximum of
k − 1 equalities per facet. As a consequence, each type of inequality in (4.18) will
arise at most (k − 1) times. There are

(
N
k

)
possibilities to choose these equations.

Among them are certainly the following 2k necessary conditions for optimality: k

conditions for the first column of A,
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αj1 = δj1 −
k∑

i=2

αji, j = 1, . . . , k, (4.23)

and k conditions for the first row of A,

α1i = − min
l=1,...,N

k∑
j=2

αjiXj (l), i = 1, . . . , k. (4.24)

Obviously, these conditions define a subset F′ of the feasible set F. Note that we
have dropped the equation corresponding to the second inequality in (4.18), which
may be verified via (4.23) to be identical to (4.24) for i = 1. By construction the opti-
mal solution lies in F′. Eqs. (4.23) and (4.24) can be used to reduce the dimension
of the objective function from k2 to (k − 1)2 by eliminating the 2k − 1 coefficients
αij with either i = 1 or j = 1 from the problem. Observe that the case i = j = 1
occurs both in (4.23) and in (4.24), which implies the hidden side condition

(α11 =) 1 −
k∑

i=2

α1i = − min
l=1,...,N

k∑
j=2

αj1Xj(l). (4.25)

4.4. Solution for k = 2

In this special case, the sums in system (4.23) and (4.24) degenerate to just one
term yielding

α11 = 1 − α12, α21 = −α22,

α11 = max
l=1,...,N

α22X2(l), α12 = − min
1,...,N

α22X2(l).
(4.26)

This system has exactly 2 solutions for α22 > 0 and α22 < 0 each. From the first
line of (4.26) we may readily observe that the second solution can be obtained by
mere permutation of columns 1 and 2 in A, i.e. by mere index permutation, so that
it represents the identical set of almost characteristic functions. Let α22 > 0 and
introduce the convenient notation

X+
2 = max

l=1,...,N
X2(l), X−

2 := − min
1,...,N

X2(l).

By orthogonality of X we know that X+
2 , X−

2 are both positive. The above system of
equations may now be rewritten as

α11 = 1 − α12, α21 = −α22,

α11 = α22X
+
2 , α12 = α22X

−
2 .

(4.27)

In this special case, the vertex conditions alone already fix the maximal solution for
both objective functions as

α21 = − 1
X+

2 +X−
2
, α11 = X+

2
X+

2 +X−
2
,

α22 = 1
X+

2 +X−
2
, α12 = X−

2
X+

2 +X−
2
.

(4.28)
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The optimal choice of almost characteristic functions therefore comes out to be

χ1(l) = X+
2 − X2(l)

X+
2 + X−

2

, χ2(l) = X2(l) + X−
2

X+
2 + X−

2

. (4.29)

For the scaling objective function we obtain

I1(αopt ) = 1 − α21X
−
2 + α22X

+
2 = 2, (4.30)

which is the upper bound in (4.19). As a consequence, this solution must be unique
due to Theorem 3.1. For the metastability we get

I2(αopt) = 1 + 1

X+
2 X−

2

λ2. (4.31)

Upon combining the upper bound in (3.12) and the above special result, we see that
X+

2 X−
2 > 1 must hold.

5. Unconstrained optimization

In this section we treat the constrained optimization problem for k > 2 as derived
in Section 4 above and reformulate it as an unconstrained optimization problem.
Appropriate splitting of terms in the scaling objective function yields

I1[α] = 1 + max
l=1,...,N

k∑
j=2

αj1Xj(l) +
k∑

i=2

max
l=1,...,N

k∑
j=2

αjiXj (l). (5.32)

Next, we apply (3.1) to express the metastability objective function by means of the
k2 coefficients αij so that

I2[α] = 1 +
k∑

i=2

λi

 α2
i1

α11
+

k∑
j=2

α2
ij

α1j

 . (5.33)

It is certainly worth mentioning that, in comparison with (3.6), the above denomina-
tors can be rewritten as

α1j = 〈X1, χj 〉π = 〈χj , e〉π = π̃j ,

i.e. these coefficients are the probabilities for the system to be in metastable confor-
mation j and should be positive—so that the functional I2 as a whole is well-defined.

For both of the objective functions, the above deliberate splitting of terms indi-
cates that the 2k − 1 coefficients

α11, . . . , α1k, α21, . . . , αk1

must be inserted from the equality constraints (4.23) and (4.24). With this decoupling
we have arrived at an unconstrained optimization problem in terms of the reduced
set of (k − 1)2 coefficients αij with i /= 1, j /= 1. Indeed, once the optimal reduced
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coefficient set has been computed, we may use (4.23) for j = 2, . . . , k and (4.24)
for i = 1, . . . , k.

Thus we are only left with the treatment of the hidden condition (4.25), which
means we have to simultaneously satisfy (4.23) for j = 1. For this purpose, a small
detour is necessary: Careful examination of the analytic form of the two objective
functions shows homogeneity of order 1, which means that

I1,2[γα] = 1 + γ (I1,2[α] − 1), γ > 0. (5.34)

In view of (4.23) for j = 1, we may just evaluate the arising sum for precomputed
coefficients ᾱij and rescale them by the factor

γ̄ =
(

k∑
i=1

ᾱ1i

)−1

according to

ᾱij −→ αij = γ̄ ᾱij for all i, j = 1, . . . , k. (5.35)

By insertion of γ̄ into (5.34) we arrive at an unconstrained optimization problem for
the functionals

J1,2[ᾱ] = I1,2[γ̄ ᾱ] (5.36)

in terms of the (k − 1)2 unknowns ᾱij .
In order to keep our interpretation of metastable clusters, we will select the func-

tional J2 for maximization. Once a computational scheme has generated an optimal
or suboptimal solution, we may monitor the defect

δ = 1 − J1/k � 0,

which measures the difference of the maxima of the almost characteristic functions
from unity. If the defect vanishes, then the solution is unique. Otherwise, any positive
defect is certainly tolerable within the interpretation of almost characteristic func-
tions as given in (3.6), (3.7), and (3.8).

Note that both of the above functionals J1,2 as defined in (5.36) are homogeneous
of order 0, i.e.

J1,2[γ ᾱ] = J1,2[ᾱ], γ > 0.

In passing we mention that for ᾱij = 0 with i, j /= 1 the functionals J1 and J2 are not
defined—a degenerate case which is not relevant, since it would mean that χ1 = e

and χi = 0 for i /= 1, i.e. the only cluster would be the whole invariant set (k = 1
only).

Algorithm PCCA+. As derived so far, we achieve a solution of our original con-
strained maximization problem by solving the unconstrained maximization problem
with respect to J2, which supplies optimal coefficients ᾱij for i, j /= 1. From these
coefficients we then compute the actual coefficients αij = γ̄ ᾱij via (5.35).
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The above unconstrained optimization problem is continuous, but not differentia-
ble. Therefore any BFGS type algorithm would not be expected to be efficient here.
As a first choice, we selected the classical nonlinear simplex method of Nelder and
Mead [16], which turned out to require only few iterations in all examples tested
so far. Strictly speaking, this algorithm will only find a local maximum close to the
starting guess, not a guaranteed global one.

In order to construct a reasonable starting guess for this iteration we recur to

Theorem 3.1. In the unperturbed case, Eq. (2.5) gives us the inverse Ã
−1 = A−1 =

(aji) with

aji = Xi(lj ), i = 1, . . . , k, j = 1, . . . , k,

for a selection of indices lj ∈ Sj . In this case, all data can be transformed into the k

vertices of the simplex σk−1. In the perturbed case, the problem is to find a simplex
σ̃k−1 which approximates the convex hull of the input data (X̃2(l), . . . , X̃k(l)) ∈ Rk

for l = 1, . . . , N—compare also Fig. 3, left. In order to construct this simplex, we
start from the barycenter X of all data, defined via the π-product as

X = 1

N
〈X̃, e〉π =

(
1

N
, 0, . . . , 0

)T

.

Therefore the origin X
′ = (0, . . . , 0) ∈ Rk−1 can be taken as starting point for the

construction of σ̃k−1. With this geometry in mind, an algorithm in the spirit of sug-
gestions of [21] can be stated as follows:

A. Subalgorithm for starting simplex �̃k−1:
I. Determine the input point X̃(l1) as the one that has the maximum distance to X

′
,

i.e. the one with maximum ‖X̃(l)‖2. This is an O(N) computational process. Let
X1 = X̃(l1).

II. For i = 2, . . . , k determine an index li such that ‖X̃(li) − Xi−1‖ is maximal.
Again, this is an O(N) computational process. Let the projection plane spanned
by the data points selected so far be denoted as Xi = span{X̃(l1), . . . , X̃(li)}.

From this algorithm we obtain the k vertices (X̃(l1), . . . , X̃(lk)) of an initial guess
for σ̃k−1. In view of (3.5) we can then compute the (k, k)-matrix

A =
X̃1(l1) . . . X̃k(l1)

...
...

X̃1(lk) . . . X̃k(lk)


−1

.

Dropping the first row and the first column of A we arrive at some reduced
(k − 1, k − 1)-matrix A

′ = (ᾱij ).

B. Subalgorithm for computing A:
Given any reduced matrix A′, the matrix A is computed as follows:

I. For j = 2, . . . , k set ᾱj1 := − ∑k
i=2 ᾱj i .
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For i = 1, . . . , k set ᾱ1i := − minl=1,...,N

∑k
j=2 ᾱj iXj (l).

II. Compute the sum of the elements of the first row of A,

γ :=
k∑

i=1

ᾱ1i .

The elements of the feasible matrix A are computed as follows:

αji := ᾱj i

γ
, i, j = 1, . . . , k.

Complete constrained minimization algorithm:
I. Apply subalgorithm A to compute a starting guess for the unconstrained opti-

mization variables, i.e. the elements of A′.
II. Compute all constrained optimization variables via subalgorithm B. Evaluate

the functional J2.
III. If convergence is achieved: STOP. Else do a Nelder/Mead update of the uncon-

strained variables and goto II.

6. Numerical illustrations

In Figs. 3 and 4 we had already given results for the simple butane molecule; in
that case, a unique solution had existed. In the present section we exemplify our new
algorithm PCCA+ at two more illustrative examples, where non-uniqueness plays a
role.

Generally speaking, in nearly all our molecular examples, the initial guess of the
coefficient matrix Ã has turned out to be already rather accurate so that only few
Nelder/Mead iterations were required to find an optimal solution. In order to be able
to demonstrate a visible difference between initial and final iterate, we start with an
artificial example especially constructed for the purpose of illustration.

6.1. Artificial example (k = 3)

In Fig. 5 the iterative behavior of PCCA+ in the case of a non-unique solution
is shown. For the simplices σ̃2 and σ2, we compare the initial guesses, the rescaled
initial simplices, and the final iterates, i.e. the computed solutions.

For the functional I1 as defined in (4.19) together with its upper bound we get

I1[α∗] = 2.57 < 3 ⇔ δ = 0.14.

Since δ /= 0, the solution is seen to be not unique. The final functional value I2 as
defined in (4.20) compared with its upper bound is

I2[α∗] = 1.67 < 2.68.
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0

0

Fig. 5. Artificial example. Left: input data (∗) in simplex σ̃2. Initial simplex guess (- - -), rescaled initial
guess (· · ·), and final iterate (—). Right: almost characteristic function values in simplex σ2. Initial guess
(+), rescaled initial guess (�), and final iterate (∗).

6.2. Example: HIV protease inhibitor VX-478

This moderate size molecule is the basis for the anti-AIDS drug Agenerase dis-
tributed by Glaxo Wellcome. Generally speaking, the HIV is hard to attack directly
by drugs, since it is a so-called retrovirus that mutates faster than any molecular rec-
ognition can take place. As a consequence, any HIV pharmaceutical will attack the
supporting enzymes. One of them is the HIV protease, which regulates the passage
of HIV through the cell membrane. The here selected molecule has been exactly
designed (by Vertex) to inhibit this passage. The molecular data were taken from the
public domain Protein Data Bank (PDB).

As shown in Cordes et al. [1], the present PCCA+ is a frequently called subroutine
in the spatial box discretization of the underlying transfer operator in biomolecules;
that discretization device would not have worked with the less robust former version
PCCA.

Typically, a hierarchical series of runs for successively decreasing temperature is
realized—see, e.g., Fischer et al. [8]. The selected example has been simulated at a
temperature of 900 K, where a first separation of different conformations is visible.
The conformational changes according to the most relevant dihedral angle have been
examined. The corresponding transition matrix has the spectrum

λ̃1 = 1.0, λ̃2 = 0.997, λ̃3 = 0.985, λ̃4 = 0.815, . . .

with a small gap after the second eigenvalue and a significant gap after the third one;
hence, we chose k = 3 for the Perron index, but compared it with k = 2 and k = 4,
too, for the purpose of illustration.

6.3. Perron index k = 3

In Fig. 6, the three almost characteristic functions χ̃1, χ̃2, χ̃3 are visualized by
volume rendering according to their weighted probabilities
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Fig. 6. HIV protease inhibitor. Top: conformation 1. Bottom left: conformation 2. Bottom right: confor-
mation 3.(

π1χ̃i(1), . . . , πN χ̃i(N)
)
.

The probabilities (3.6) to be in conformation 1, 2, or 3, came out as

π̃1 = 〈χ̃1, e〉π = 0.51, π̃2 = 〈χ̃2, e〉π = 0.37, π̃3 = 〈χ̃3, e〉π = 0.12.

The coupling matrix W̃ = (wij ), reflecting the probabilities wij for transitions
between conformations i and j , is

W̃ =
(

〈χ̃i , T̃ χ̃j 〉π
〈χ̃i , e〉π

)
=

0.93 0.02 0.05
0.03 0.95 0.02
0.20 0.06 0.74

 .

As for assumption (3.11) in Theorem 3.2, we here obtain � = 0.0165 < 1 so that all
O(ε2) results apply. For the sake of illustration of our new method, Fig. 7 shows the
simplices for the corresponding eigenvector components and the almost character-
istic function values. Again ‘dirty zero’ data occur, which would have caused extra
treatment and, as a consequence, possible non-robustness in the former algorithmic
version PCCA.

Finally, the functionals I1, I2 were obtained as

I1[α∗] = 2.89 < 3 ⇔ δ = 0.04, I2[α∗] = 2.62 < 2.98.

Obviously, since δ /= 0, the solution is not unique. Nevertheless it is extremely useful
for the purpose of cluster analysis. In fact, Fig. 7 gives is a clear indication of three
clusters which condense close to the corners of the simplices.
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0

0

Fig. 7. HIV protease inhibitor: eigenvectors and almost characteristic function values. Left: input data
and final iterate simplex σ̃2. Observe the occurrence of ‘dirty zero’ data. Right: almost characteristic
function values in simplex σ2.

Fig. 8. HIV protease inhibitor: almost characteristic function values in simplex σ1.

6.4. Comparison case k = 2

From the final paragraph in Section 4 we know that in this case I1[α∗] = 2, δ = 0,
which means that a unique solution for the two almost characteristic functions is
guaranteed. From (4.31) we obtain

I2[α] = 1.9 < 1.997

for the metastability. The coupling matrix arises as

W̃ =
(

0.94 0.06
0.04 0.96

)
As for (3.11) , we here obtain � = 0.0027 < 1. In Fig. 8, the corresponding data
distribution is represented. Note that the intervals σ̃1 and σ1 differ only by some shift
and some scaling. This representation clearly reveals the fact that the data contain
three clusters rather than just two ones.

6.5. Comparison case k = 4

In this case we obtain the objective function values

I1[α∗] = 2.99 < 4 ⇔ δ = 0.25, I2[α∗] = 2.75 < 3.797.

For the coupling matrix PCCA+ supplies

W̃ =


0.84 0.03 0.06 0.07
0.02 0.25 0.02 0.71
0.02 0.01 0.95 0.02
0.02 0.25 0.02 0.71

 .
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Note that the second row is no longer diagonally dominant (w22 = 0.25 < 0.5) so
that the definition of metastability no longer makes any sense. Moreover, we here get
� = 10.776 > 1, which means that assumption (3.11) in Theorem 3.2 is violated.

7. Conclusion

We have suggested and worked out in detail a new Perron cluster analysis algo-
rithm PCCA+. The main idea behind the new method is to describe almost invariant
sets by almost characteristic functions, understood to be generated by perturbation of
characteristic functions describing exact invariant sets. On the basis of perturbation
theory, the new algorithm can be seen to be clearly more robust than the former
version PCCA. This is also confirmed by numerical examples.
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