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Abstract Recent progress in large-volume microscopy, tissue-staining, as well as
in image processing methods and 3D anatomy reconstruction allow neuroscientists
to extract previously inaccessible anatomical data with high precision. For instance,
determination of neuron numbers, 3D distributions and 3D axonal and dendritic
branching patterns support recently started efforts to reconstruct anatomically real-
istic network models of many thousand neurons. Such models aid in understanding
neural network structure, and, by numerically simulating electro-physiological sig-
naling, also to reveal their function.

We illustrate the impact of visual computing on neurobiology at the example of
important steps that are required for the reconstruction of large neural networks. In
our case, the network to be reconstructed represents a single cortical column in the
rat brain, which processes sensory information from its associated facial whisker
hair. We demonstrate how analysis and reconstruction tasks, such as neuron somata
counting and tracing of neuronal branches, have been incrementally accelerated –
�nally leading to ef�ciency gains of orders of magnitude. We also show how steps
that are dif�cult to automatize can now be solved interactively with visual support.
Additionally, we illustrate how visualization techniques have aided computer scien-
tists during algorithm development. Finally, we present visual analysis techniques
allowing neuroscientists to explore morphology and function of 3D neural networks.

Altogether, we demonstrate that visual computing techniques make an essential
difference in terms of scienti�c output, both qualitatively, i.e., whether particular
goals can be achieved at all, and quantitatively in terms of higher accuracy, faster
work-�ow and larger scale processing. Such techniques have therefore become es-
sential in the daily work of neuroscientists.
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1 Introduction

One fundamental challenge in neuroscience is to understand how brains process
sensory information about their environment and how this can be related to the an-
imal's behavior. A widely used model system to study these relationships, from
the molecular up to the behavioral level, is the somatosensory whisker system in
rats. Like most nocturnal rodents, rats use their facial whiskers as complex tac-
tile sensory organs to explore their environment. Such sensory input from single
whiskers is processed by corresponding segregated neuronal networks in the pri-
mary somatosensory cortex (S1). Functional as well as anatomical evidence sug-
gests that these networks resemble cylindric shapes [17, 22], hence being called
cortical columns(Fig. 1(e)).

To shed light on how single whisker information is processed by a cortical col-
umn, recent attempts [12] aim to reconstruct its detailed anatomy and synaptic con-
nectivity. Numerical simulations upon such high-resolution neural networks, with
measured electrical input, caused by the de�ection of a single whisker in the living
animal (in vivo), will help to gain mechanistic understanding of sensory information
processing in the mammalian brain.

As derived by [8, 6, 12], anatomical prerequisites to build realistic circuits com-
prise the number of neurons and neuron-types, their 3D distributions and character-
istic dendrite and axon morphologies. Being composed of more than 17.000 neu-
rons [10] of various anatomical as well as functional types, each type displaying
complex axonal projection patterns (up to multiple centimeters per neuron), these
prerequisites will hardly be satis�ed by manual reconstruction approaches. Auto-
mated tools that extract the desired anatomical data from microscopic images are
hence necessary and were recently described [14, 15].

Interactive visualization proved to be essential during the development of these
methods, for validation of the results as well as for integrating the resulting data
into neural networks. In this work, we illustrate how visual computing aids neuro-
scientists to extract and determine previously inaccessible anatomical data, how it
facilitates the network reconstruction process and ultimately, how this might result
in new scienti�c insights.

2 Biophysical Concepts of Neural Network Simulations

This section provides background for non-neuroscientists to better understand the
anatomy and function of neurons and neuronal networks, as well as the modeling of
electro-physiological signaling.

Functionally, neurons (or nerve cells) are the elementary signaling units of the
nervous sytem, including the brain. These basic building blocks can mediate com-
plex behavior, as potentially large numbers of them are interconnected to form
neuronal networks. In general, neuronal networks are composed of chemically
(synapses) or electrically (gap junctions) coupled local and long-range microcircuits
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Fig. 1 (a) Ion channels provide a conductance through the membrane (Figure adopted from [7],
courtesy of Sinauer Associates Inc., Publishers). (b) Associated passive electrical RC-circuit. (c)
Spatial discretization of the cable equation results in multiple coupled compartments, each one
locally equivalent to a uniform cable (Figure adapted from [3]). (d) Realistic full-compartmental
model of a cerebral Purkinje neuron (Figure adopted from [19]). (e): Illustration of one-to-one cor-
respondence between a whisker and a cortical column in the somatosensory cortex (3). A stimulus
from a whisker is conveyed to its associated cortical column (schematically depicted on the left)
via the brain stem (1) and the thalamus (2). Cells in the VPM nucleus of the thalamus project into
the column and innervate cells in different layers (Figure adapted from [6]).

of anatomically and physiologically classi�ed neuron types. Speci�cally, each neu-
ron is composed of a cell body (soma), multiple dendritic branches and one axonal
tree, which receive electrical input from and transfer output towards other neurons,
respectively. Hence, as found by the pioneer Ramón y Cajal about a century ago,
neurons are usually grouped anatomically with respect to their soma shape, dendrite
morphology and/or axonal branching pattern.

Neurons maintain a potential difference across their cell membrane, induced by
deviating ion concentrations inside and outside the cell. This resultant resting po-
tential (Vrest) is cell-type speci�c, but typically around -70mV. Neuronal signaling
involves changes in this potential.

The electro-physiological membrane properties can be described by electrical
circuits containing a capacitance and resistance (RC-circuit, Fig.1(b)). The mem-
brane itself acts as a capacitance (C), which contains small pores (ion channels,
Fig.1(a)) with channel-type speci�c resistances (Ri). These pores mediate ionic cur-
rents across the membrane. Some channels are continuously open (passive or leaky)
and others open and close actively with respect to voltage or chemical ligand con-
centration. Such active (e.g., voltage-dependent) conductances were �rst described
in a neuron model by Hodgkin and Huxley (HH) in 1952:

C
dV
dt

= � (å
i

Ii + Ileak); (1)

where
Ii =

V � Ei

Ri(V;t)
; (2)
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represents voltage-dependent channel kinetics.Ei is the reversal potential of each
ion channel type, i.e., the membrane potential at which there is no net �ow of ions
across the membrane. This model successfully explains a fast membrane depolariza-
tion, called action potential (AP) or spike, which is believed to be the fundamental
electrophysiological unit in information processing.

Further development of electrical neuron models by Wilfred Rall, who believed
that the complexity of the dendrites and axonal arborization would affect the neu-
ronal processing, resulted in a cable theory for neurons. The cable equation

rm

r l

¶2V
¶x2 = cmrm

¶V
¶t

+ V (3)

describes the �ow of electric current (and change in potential) along passive one-
dimensional neuronal �bers [18]. Hererm = Rm

pd andcm = Cmpd are the membrane
resistance and capacitance per unit length, respectively, de�ned in terms of mem-
brane resistanceRm and membrane capacitanceCm per unit area. The cable diameter
is denoted byd; r l is the (uniform) intracellular resistance per unit length along the
cable.

Numerous bifurcations as well as variations in diameter and electrical proper-
ties along the neuronal branches, however, diminish the possibility to �nd analyti-
cal solutions for the cable equations. This leads to numerical solutions of spatially
discrete, anatomy-based neuron models composed of multiple coupled HH-typed
compartments (Fig.1(d)), each locally resembling a uniform cable (Fig.1(c)). Proper
boundary conditions for the cable endings have to be speci�ed. In particular at
branching points, the voltage at the ends of the meeting cables is the same and
the sum of all currents is 0. Input obtained from other cells at chemical synapses
can be modeled electrically by adding appropriate currents to Eq. (3).

Initiated by Roger Traub and colleagues, many of these full-compartmental neu-
ron models with active HH-type properties were synaptically interconnected, re-
sembling realistic microcircuits and carrying out realistic neuronal operations. Fol-
lowing this tradition, attempts to reengineer the 3D anatomy and connectivity of
functional networks of many thousand full-compartmental neurons were started
[8, 6, 12]. Such goals became feasible with continuously increasing computing
power and recently available large scale imaging, image processing and visualiza-
tion techniques.

Hence, the reconstruction of a functionally well de�ned network, the `cortical
(barrel) column' in the rat's primary somatosensory cortex (S1) was started. Sensory
information acquired by a single facial whisker is conveyed to dedicated regions in
the brain stem, further to the ventral posterior medial nucleus of the thalamus (VPM)
and �nally to its corresponding cortical column (Fig. 1(e)). Excitatory thalamocor-
tical input from this pathway into the column network, based on single whisker
information, is essential to trigger simple behaviors, such as the decision to cross
a gap. Hence, simulation of a realistically reengineered cortical column with single
whisker input, measuredin vivo, will potentially yield new insights and understand-
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(a) (b) (c)

Fig. 2 (a) Small region of a maximum intensity projection of an inverted 3D TLB image of a single
brain section. The bright �lamentous structures are the axon fragments to be traced. However,
the image contains a lot of background structures in the same intensity range. (b) Result of the
automatic tracing algorithm, slightly shifted to show the correspondence with the image. To aid
in the interactive post-processing, the fragments are colored according to their position within the
section: touching top of the section (blue), bottom (green), both (red) or none (yellow). The round
structure is a blood vessel cross-section. (c) Final tracing after post-processing.

ing of principle mechanisms that explain how the brain translates environmental
input into behavioral responses.

Summarizing, the information processing of a neural network is simulated by
modeling the propagation of electro-chemical signals through connected compart-
ments representing the neuron geometry. The numerical solution of the resulting
large system of ordinary differential equations consists of a potential value at each
compartment at each time step. These time-dependent potentials de�ned on 3D
graph structures are the input data for subsequent visual analysis.

A realistic and detailed anatomical model is a very important prerequisite to
meaningfully simulate neural network activity. The 3D neuron morphology includ-
ing neurite lengths, diameters and branching pattern is an important input parameter
for the system of coupled cable equations. The number and distribution of nerve
cells is important for de�ning the network and its connections. In the following, we
focus on how this anatomical information can be obtained, and the role of image
processing and visualization tools therein.

3 3D Reconstruction of Neuron Morphology from Microscopic
Image Data

An important step in modeling neural networks is the reconstruction of three-
dimensional morphology, particularly 3D axon and dendrite trajectories of an ap-
propriate number of neurons. For modeling the thalamocortical part of the single
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whisker pathway, morphologies of all cell types within the cortical column as well
as from its input region (VPM) are required.

As it is currently impossible to reconstruct all nerve cells from a single animal,
a statistically representative number of cells of different anatomical types are re-
constructed one by one from different animals and combined into a single network.
Thus, for� 10 different cell types and a minimum of� 10 morphologies per type, at
least� 100 cells have to be reconstructed. To make this feasible, an ef�cient recon-
struction pipeline is required.

Typically, cells are �lledin vivo with a tracer. A common choice is biocytin. As
it is non-�uorescent, it does not bleach (making a re-scan possible) and causes no
outshining of weakly stained axons by strongly stained dendrites. The part of the
brain containing the stained cell is then cut into sections, as it is too thick too be
imaged in its entirety at high resolution. Typically, there are 20 sections of 100mm
thickness per cell. Large areas have to be scanned to capture all axonal arbor. A
transmitted light bright�eld (TLB) microscope is used to image the sections at high
resolution using a mosaic-scanning technique. This results in a stack of thin, but
three-dimensional images of 20–90 gigabytes each.

3.1 Original Work�ow: Manual Tracing

The original work�ow [14] for tracing the neurons is based on the Camera Lucida
technique using, for example, the Neurolucida system [11]. Special software dis-
plays a live camera image of a section captured by an attached computer-controlled
microscope on the computer screen. The user then manually marks the neuronal
structures. By moving the stage in thexy-plane and varying the focus in thez-
direction, a progressively larger volume is inspected. The software combines the
marked structures into a 3D graph representation.

The most common approach is to start with the section containing the soma and
follow the dendritic and axonal branches from there. Whenever a branch reaches the
section boundary, the section under the microscope is replaced with the next one.
The user has to �nd structures in the new section that correspond to the end points
of the current tracing and transform the current tracing, such that it is aligned with
the new section. To �nd the correct alignment more easily, usually three or more
branches are traced concurrently. After alignment, the tracing continues in the next
section. This procedure is repeated until all branches have been entirely traced. This
approach works well for dendrites, as they usually have localized branching pat-
terns and relatively large diameters (� 2–5mm). Axonal branches, however, can be
less than 1mm thick and extend further away. Tracing and �nding correspondences
between sections is, therefore, extremely tedious and time-consuming (up to 100h
for complex, wide spreading axons). It also requires experienced users to reach a
reliable level of reconstruction quality. The number of skilled users is usually the
limiting factor when large numbers of cells have to be reconstructed.
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(a) (b)

Fig. 3 (a) Two sections (red and blue) after alignment. The vessel contours (blue and red circles)
are helpful during the manual alignment, as these features are easier to recognize and to match than
the segment end points. Based on 2D projection views, it is often dif�cult to decide which axon
fragments are to be spliced, e.g. in case of the green fragment. (b) Automatically aligned stack of
reconstructed sections, colored by section.

3.2 First Improvement: Automatic Tracing

In order to reduce the manual labor an automatic segmentation method for dendrites
and axons is required. The segmentation is, however, non-trivial: the structures are
very thin and contrast may be poor due to limited dye penetration, especially further
away from the soma where the tracer is injected into the cell. Therefore, axons fre-
quently appear fragmented. Also numerous background structures have a gray-value
in the same intensity range as the axons and dendrites (see Fig. 2(a)), in particular
glia cells that presumably contain biocytin contrast agent intrinsically.

Existing (semi-)automatic methods [9] focus mainly on tracing dendritic branches.
Therefore, an algorithm was developed that automatically segments both dendritic
and axonal structures from 3D TLB images and computes a graph representation
of the approximated centerlines [14]. The method is based on deconvolution [13],
followed by a sequence of image �lters and morphological operations, and �nally
skeletonization. The method �nds virtually all neuron branches. It is, however, very
conservative: oversegmentation is accepted in order to assure that no foreground
structure is lost (see Fig. 2(b)).

To �nish the reconstruction, a number of post-processing steps are performed
interactively using the Serial Section Manager in the Neurolucida software. First,
non-neuron artifacts are removed and fragmented branches are spliced (connected)
within each section separately. The user is presented visual feedback in the form of
three orthogonal projection images (xy-, xz- andyz-projections, see Figure 3(a)). To
support the user in deciding which fragments to delete and which to connect, the
traced segments are overlaid onto a maximum intensity projection (MIP) image of
the section.



8 V.J. Dercksen, M. Oberlaender, B. Sakmann and H.-C. Hege

Second, the sections are (rigidly) aligned. Alignment is done pair-wise, i.e., two
neighboring sections at a time. One section serves as a reference and remains �xed,
while the other is interactively rotated and translated. The user has to perform a
pattern matching task: he needs to determine the correspondences between neuron
fragments in the two slices. Again, having only 2D projection views, this can be ex-
tremely dif�cult, especially for dense, visually symmetric clouds of projected line
fragments. In some cases, �nding the correspondence is even impossible. To allevi-
ate this problem, blood vessel contours are traced additionally. These contours are
usually easier to match, as they are fewer and may have different diameters, giving
a hint on which vessels may correspond. After a rough blood vessel match has been
found, the neuron fragment correspondence can often be determined more easily.

Finally, the corresponding fragments are spliced across the section boundaries.
Again, the lack of a three-dimensional view on the data makes this step dif�cult and
unnecessarily time-consuming.

3.3 Second Improvement: 3D Interactive Editing

Being based on 2D projection views, the interactive post-processing severely ham-
pered the reconstruction process. Therefore, a 3D interactive environment, the�l-
ament editor[1], was developed as part of the Amira [20] visualization and data
analysis software. Its main components are:

� A graph data structure, consisting of a set of nodes (the branching and end points)
and segments connecting the nodes. The trajectory of each segment in 3D space
is represented by a sequence of points. Attribute values can be associated with the
nodes, segments and/or points. For example, aradiusattribute can be associated
with the points, de�ning a �oating point value at each point along the segments.
One could also de�ne anatomical labels to all elements in the combined set of
nodes and segments, resulting in the assignment of label values likedendrite,
axonor vesselto subgraphs.

� A set of tools to select (parts of) the data structure, including clicking on or
drawing a contour around target elements, selection of connected subgraphs, etc.

� A set of operations to manipulate the data structure, like deletion and connecting
of nodes and segments. All operations can be undone/redone.

� A graphical user interface that – besides GUI elements for invoking the available
selection and editing tools – contains a 3D viewer window for displaying the
graph and other objects, like a MIP image. The graph can be colored according
to its attribute values.

In the improved work �ow, �rst, each slice is cleaned and spliced individually.
The user loads the automatically traced neuron fragments and displays them colored
by the attribute indicating whether a particular connected subgraph touches the top
of the slice, the bottom, both or neither (see Fig. 2(b)). This information is exported
by the tracing program, together with a MIP image of the section. The graph data is
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superimposed on the MIP image. In the MIP, most neuronal processes are easily dis-
tinguishable from falsely traced background structures. Hence, if not already traced
perfectly, fragmented branches are spliced according to the MIP interactively. Af-
terwards, artifacts are removed by drawing a selection polygon around them. Only
connected subgraphs that are entirely within the polygon are selected and removed.
This feature makes it easy to remove many small artifacts at once, while avoiding
the removal of parts of larger, already connected, neuronal branches. However, some
processes are too faint to be recognized in the MIP. By rotating the tracing, human
pattern recognition can compensate for that. Speci�cally the coloring of top and
bottom structures proved to be helpful. Every branch has to touch either the top or
bottom (in most cases both) borders of a slice. Therefore, in most cases, these weak
processes resemble dashed 3D lines starting with blue (top), connecting to yellow
(intermediate) and ending at green (bottom) fragments.

Second, all manually edited sections are combined into a single graph for in-
teractive alignment in the�lament editor. The nodes and segments of each section
are labeled according to their section number for visualization and fast selection. A
section is aligned with its �xed predecessor section by interactive translation and
rotation in the 3D viewer using handles. All other sections can be hidden to not
obscure the view. By repeated pair-wise alignment the entire stack is processed.

Third, the segments are spliced across the slice boundaries. The alignment and
splicing process is regarded as the �nal quality control for each tracing. Missing or
falsely connected branches as well as loops can be easily identi�ed and corrected in
the individual sections. As a �nal and optional step, subgraphs representing different
anatomical structures can be labeled as such.

An important aspect of such interactive tools is usability. In the case of the�la-
ment editor, this not only includes fast access to the selection and editing tools by
mouse and shortcut keys, it also requires stability and robustness against operating
errors. Important is also responsiveness. All viewing, selection and editing opera-
tions have to be immediate, also for the relatively large data sets that may result
from the automatic tracing (containing� 1M points).

Altogether, the 3D environment enables ef�cient interactive post-processing and
alignment of the automatically reconstructed sections. The additional depth cues,
obtained primarily by interactive rotation of the scene, are the major advantage of
the 3D editing, when compared to the 2D Neurolucida work�ow. They are essen-
tial in order to quickly decide which fragments to discard and which to connect.
Based on the alignment by the interactive tool, all neuron morphologies could be
reconstructed with satisfactory quality.

3.4 Third Improvement: Automatic Section Alignment

In order to make the alignment faster and more objective, an automatic alignment al-
gorithm was developed [2]. Given two sections containing multiple segments (poly-
lines), it computes an optimal transform, i.e., a rotation angle around thez-axis, a
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2D translation in thexy-plane and an optional uniform scaling, using the following
steps:

1. For a pair of sections to be aligned, �nd the set of fragment end points for each
section. This results in two point setsP andQ, one for each section, that have to
be matched. A matchingM is a set of corresponding point pairsf (pi ;q j )g.

2. Find a set of candidate matchings by searching for subsetsP0andQ0for which the
mutual distances between all points inP0are similar to the distances between the
corresponding points inQ0. For each candidate matching, compute the optimal
transformation. These are the starting transformations.

3. Starting from each starting transformation, further optimize the matching and the
transformationT with respect to a scoring function that favors a large match size
jMj, but penalizes large distances between corresponding points:

score(P;Q;M;T) =
jMj

min(jPj; jQj)
� e

� a �

r
å (p;q)2M kp� T(q)k2

jMj (4)

The parametera balances these contradicting goals. The �nal result is the match-
ing and transformation leading to the highest score.

This method works very well for this type of data. It is also very fast, it takes a
few seconds per slice pair for typical point set sizes of 30–100. As this automatic
aligment method is integrated in the�lament editor, the results are immediately
displayed in the 3D viewer and can be visually validated. Whenever a slice pair
cannot be successfully aligned, it can be transformed interactively, as before.

3.5 Reconstruction Time

The reconstruction time strongly depends on the neuron type, its spatial extent and
axonal complexity. For instance, an axon of a pyramidal neuron in S1 can spread
over millimeters, reaching a total length of several centimeters. Reconstructing L5
cells, approximately 20 sections (1.7� 1.7� 0.1mm3) at a resolution of 92� 92� 500
nmneed to be imaged, resulting in a data set of 1,7TB. For such neurons the recon-
struction time can be divided as follows:

� Scanning time:� 3 days (� 4h per section).
� Automatic processing:� 9 days (� 10h per section).
� Interactive post-processing and alignment:� 2–3 days (5–90 minutes per section,

60 minutes on average).

Although this results in a total of two weeks per L5 cell, less than 20 hours of
manual labor are required. The pipeline also greatly bene�ts from task and data
parallelization. The time for automatic reconstruction decreases linearly with the
number of microscopes, computers and human tracers. Finally, the interactive post-
processing does not need to be done by a single neuroscience expert, but by multiple
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(a) (b) (c) (d)

Fig. 4 (a) Segmentation validation by semi-transparent overlay. (b) Surface reconstruction of a
cluster of touching cells after binary segmentation. (c) After marker-based watershed splitting. (d)
After splitting based on soma volume statistics.

(a) (b) (c)

Fig. 5 (a) Maximum intensity image of 3D data set containing NeuN-stained somata and automat-
ically detected centers. (b) Surface reconstruction of individual cell bodies after automatic segmen-
tation and cluster splitting. (c) Automatically detected somata (green) and MIP of the cell density
in a large tissue volume (550mm� 550mm� 2mm) containing a cortical column.

student assistants in parallel, after only a few hours of training. Altogether, this
pipeline allows for a much higher throughput of individual cell models, making the
modeling of large networks feasible.

4 Automatic Counting of Neurons in Large Brain Volumes

In order to model a realistic neuronal network in 3D, one needs to know how many
nerve cells constitute the network and how they are distributed in space. The es-
timation of absolute numbers of neurons, densities or rates of density change in
neuron populations has usually been based on random, sparse sampling methods,
such as stereology [21]. These methods determine cell densities by inspecting a rep-
resentative sub-volume of tissue and extrapolating the obtained density values to a
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reference volume. However, due to the lack of well-de�ned reference volumes and
usually unjusti�ed assumptions of homogeneous densities across them, it is prefer-
able to detect and count all cells within the volume of interest.

Three-dimensional imaging techniques, e.g., confocal or wide�eld microscopy,
and suitable neuronal stains, like NeuN, which stains all neuron somata, offer pos-
sibilities to achieve this. Using these techniques, neuron somata appear as roundish
shapes, sometimes prolongated by the onset of the dendritic arbors that have taken
up some stain.

4.1 Original Work�ow

The simplest way to detect all somata in such 3D images is by manual marking.
This is, for example, achieved by moving a 2D image slice through the data set
and clicking on the center of each soma to place a landmark at its approximated
centroid. The center is set on the slice where the soma has the largest diameter. This
procedure, however, is very time-consuming, but can be regarded as rather accurate,
with a reported inter-user variability of 2% [10].

An approach to make the work�ow more three-dimensional is to display a rough
binary segmentation by a semi-transparent isosurface and use this to place the land-
marks. Alternatively, a direct volume rendering of the image can be used [16]. These
approaches depend, however, on a suitable threshold value or transfer function and
are, therefore, not very accurate when the brightness varies strongly across the im-
age, which is typical for these kind of images.

The main problem for both of these approaches is the amount of required manual
labor, making a quanti�cation of some cubic millimeter large volumes impossible.
Even a volume containing just one single cortical column and its direct surroundings
(500� 500� 2000mm) embodies tens of thousands of cells, making manual marking
of each neuron extremely time-consuming.

4.2 Automatic Detection and Counting Algorithm

To make the exhaustive counting of nerve cells in large tissue volumes feasible, we
developed a method for automatic detection and counting of neuron somata in 3D
images [15]. It consists of three steps (Fig. 4):

1. Segmentation. This step produces a binary image separating foreground from
background. The main processing steps are contrast enhancement, thresholding
and a number of morphological image �lters for speckle removal and hole �lling.
The exact �lters and parameters depend on the imaging and staining procedure.
In [15] various combinations for different types of image data are presented. Due
to locally high cell densities and limited resolution, clusters of touching somata
may, however, remain.
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2. Morphological splitting. Touching objects are separated at the connecting neck
by marker-based watershed transform.

3. Model-based splitting. Any remaining touching objects are divided on the basis
of the volume statistics of the object population. This is an optional step that as-
sumes a dominant population of cells with a Gaussian-distributed soma volume.
Any object that could not be split at a thin neck, but is statistically too large to
consist of a single object, is divided into the most probable number of compo-
nents.

The method results in cell counts and densities comparable with manual count-
ing (� 4% deviation). This makes it possible to refrain from manual counting and
process large data sets completely automatically. Thus, also the exhaustive counting
of entire column populations is now feasible.

4.3 Visualization for Algorithm Development and Validation

The development of a segmentation algorithm that consists of a sequence of image
�lters, each with its own parameters, is often a trial-and-error process that requires
a frequent evaluation of intermediate results. As an objective quantitative measure
is not always available, this evaluation is commonly done visually. For an ef�cient
work�ow during algorithm development, easy-to-use visualization tools are there-
fore indispensible.

A common way to judge the result of a binary segmentation algorithm is to dis-
play a gray-value image slice overlaid with the segmented foreground in a semi-
transparent color, for example, using Amira [20] (see Fig. 4(a)). By moving the 2D
slice, the algorithm developer can quickly verify the quality of the segmentation re-
sult. If a foreground voxel object needs to be separated into its constituent parts, as,
for example, in step 2 and 3 of the automatic cell detection method, the 2D slic-
ing approach is insuf�cient. The boundary between two touching objects should be
located at a thin `neck', which is very di�cult to verify on 2D slices. In this case,
the generation of object boundary surfaces using the Generalized Marching Cubes
algorithm [5] has proven very useful. As in this surface representation each object
has a distinct color, the correctness of the splitting result can be determined almost
instantly.

Visualization is also very useful to compare differences between automatically
computed soma positions and those of a reference data set, e.g., a `gold standard',
manually created by an expert. In order to discover whether a particular false pos-
itive or negative result is caused by the automatic algorithm, by expert error, data
artifacts, or differences in treatment of only partially imaged boundary objects, etc.,
one has to look closely at each differing data point in combination with the image
data. In Amira, one can for example display both landmark sets with different col-
ors, and show the image data using 2D textured slices with contrast control, or 3D
direct volume rendering. Together with a simple 3D viewer allowing for interac-
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(a) (b) (c)

Fig. 6 (a) Visual validation of neuron morphology classi�cation. The same highlighted neuron is
displayed together with cells of the same type (left) and of a different type (right). In the latter
case, the difference in shape is immediately visible. (b) Visualization of the spatial relation of
two neuron types. The apical (pink) and basal (red) dendrites of a small number of L5B cells are
displayed together with one VPM axon (blue). (c) Volume-rendered dendritic density �eld of a
large population of L5B cells. Together with an axonal density �eld (not displayed) this allows for
qualitative and quantitative analysis of the innervation domain of these two cell types.

tive zooming and rotating, this is a very effective environment for visual method
validation.

Although the automatic method performs very well, it may occur that the results
for a particular data set are not satisfactory. In such cases, it is useful to have an
interactive landmark editor to make corrections.

4.4 Conclusion

Summarizing, we have seen how automatic counting of neuron somata allows the
neuroscientist to reliably determine neuron numbers and 3D distributions in large
tissue volumes, like a brain region containing cortical columns. Being free of as-
sumptions, like homogeneity across a reference volume, the automated approach
potentially leads to more valid results than sparse sampling methods. This exam-
ple also illustrates that the use of visualization methods is indispensible during al-
gorithm development, as it allows the computer scientist to perform the frequent
evaluation of results quickly and effectively.
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5 Visual Analysis of Neuron Morphology and Function

In this section we will present two examples of how even simple visualization tools
for the analysis of 3D neuron morphology support neuroscientists in their daily
work. We also discuss the requirements and challenges for analyzing functional
properties of networks of neurons resulting from numerical simulations.

5.1 Evaluation of a Neuron Classi�cation Algorithm

Given a reasonably large set of reconstructed neurons, one can manually and/or
automatically group them in multiple morphological cell types. Such a classi�cation
is a key prerequisite for many anatomical investigations. For example, correlation of
anatomical classes with physiological responses to stimuli or determination of the
3D spatial extent (with respect to anatomical position landmarks such as pia surface)
of a certain cell type, help neuroscientists to gain insights into network structure and
function.

For any given neuron clustering algorithm, for instance the one described in [12],
a tool to visually validate and analyze its results is very useful. We developed a sim-
ple visualization tool to display sets of morphologies (see Fig. 6(a)). Neurons that
have been assigned to the same cluster are overlaid. This gives insight into the typ-
ical properties of the particular class. The user can select and highlight one neuron
from the list of all neurons. From this, the user can immediately see whether the
selected neuron's morphology is similar to the morphology of the other neurons
in the group. The user can also compare it to neurons in other clusters. The com-
bined display of morphologies can also reveal errors in the reconstruction or in the
registration into a common reference frame.

5.2 Exploring 3D Innervation Volumes of Neuron Populations

To understand the structure of a neural network, a tool that allows for 3D visual
exploration of a population of neurons is very helpful. One property of interest is
the `innervation domain' of two neuron types, i.e., the region in space where axons
of one type and dendrites of the other type overlap, indicating potential connections
between the cell types.

Given a population of neurons that have been registered into a common coordi-
nate frame, e.g., using the method described in [12], the innervation domain can be
investigated by simply line-rendering some cells of both types with dendrites and
axons colored differently (Fig. 6(b)). This allows one to see the relative positions of
the two cell populations and their overlap regions.

For large neuron populations line renderings result in extreme visual clutter. One
solution is to sample branch density on a uniform grid, i.e., to compute dendrite/
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axon length per volume unit. This density map can be interactively explored, using
standard visualization techniques like volume rendering or iso-surfaces (Fig. 6(c)).
Having such axonal and dendritic density maps for two different cell types, one can
easily see where they overlap. In addition, it is possible to quantitatively analyze the
individual density �elds and their innervation domain.

5.3 Visual Analysis of Simulated Network Activity

Numerical simulation of the activity of single neurons (see Fig. 7) or large networks
results in time-dependent potentials, de�ned on each compartment comprising the
neuron morphology. Depending on the size of the network, the spatial resolution
and the number of time steps, the simulation of a column-size network can easily
lead to data sets that are hundreds of gigabytes in size. Tools for quantitative and
visual analysis are required to gain knowledge from such large and complex data.
Of interest are, for example, methods to correlate simulation results with measured
quantities, likein vivo two-photon Ca2+ time series imaging [4] for validation pur-
poses. Second, to �nd and understand yet unknown activity patterns, an interactive
exploration tool is required that supports the formulation and veri�cation of hy-
potheses, for example regarding correlations between anatomical and physiological
data. Also the comparison of results of different simulation runs for different input
conditions is important for network parameter tuning and sensitivity tests, requiring
an even more challenging 5D analysis tool.

6 Discussion and Conclusion

We illustrated, by means of `real-world' problems from the �eld of neuroscience,
that visual computing tools, including interactive visualization, proved to be essen-
tial for the extraction and validation of previously inaccessible anatomical data from
microscopic images. The resulting increase in throughput is important for obtaining
required anatomical data for the reconstruction of large, high-resolution 3D neural
networks, e.g., for numerical simulations. Interactive visualization tools also support
the integration of anatomical data into such networks, and subsequent exploration
and analysis.

The integration of all visualization tools into one software system (the visualiza-
tion and data analysis software Amira [20]) has proven extremely bene�cial as the
user has access to many different modules to simultaneously display image, line-
like and other data, allowing him to relate different objects in a single 3D interactive
environment.

Although important anatomical data could be extracted for the reconstruction
of a large neural network representing a cortical column, there are some important
open issues that have to be addressed in order to be able to study the functioning
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(a) (b) (c)

Fig. 7 Numerically simulated action potential propagating through a single VPM axon after 1 (a),
3 (b) and 5 (c) ms after arti�cial current injection at the axon onset (lower left).

of such large networks by numerical simulation of the electro-physiological pro-
cesses. These problems include the determination of the wiring of the neuronal cir-
cuits, i.e., the number and distribution of synaptic connections between cells in the
network (`connectomics'). Also other parameters that are important for the simula-
tion need to be determined reliably for all cells in the network, like dendrite/axon
radii, spine/bouton distributions, ion channel properties, etc. The current tendency
of using higher resolution image modalities as an initial step to address these prob-
lems and the according increase in data set size, calls for adequate visual computing
techniques to be developed in the near future. Also for the analysis of large-scale
numerical simulations of neural networks, adequate visual computing methods will
be indispensable.
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