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1 Introduction

1.1 Motivation

The title of this thesis consists of the two parts “meshless methods” and “conformation
dynamics”. In conformation dynamics one is interested in the identification of metastable
molecular conformations and the transition probabilities between them. For a better
understanding, let me explain the basic concepts of classical geometrical conformation
analysis and conformation dynamics, before showing the necessity of meshless methods
in this application area.

Geometrical conformation analysis. A molecule is defined by its n atoms, their
types and bonds. Position states q of a molecule are defined as a certain arrangement
of the atoms in configuration space, i.e. a 3n-dimensional vector of atom coordinates
q ∈ IR3n = Ω. Different position states q also lead to different chemical properties. The
algorithmic framework of software packages based on local minimization1 of potential
energy for geometrical conformation analysis is explained in Leach [77]. Although these
algorithms are very fast, there are some problems connected to this kind of approach.

• Unfortunately, the potential energy landscape V : Ω→ IR of e.g. drug-like molecules
is extremely rough including many local minima q ∈ Ω with similar structure and
properties. A listing of all these local minima does not contain any valuable infor-
mation.

• In order to filter some important and dissimilar position states out of the set of local
minima, a geometry based cluster algorithm is necessary. But chemical similarity
is not connected to the euclidian distance measure in Ω, which is often the base of
clustering in commercial software.

Instead of the euclidian distance, in a more realistic model, the dissimilarity of two position
states corresponds to the height of the free energy barrier between them, i.e. the possibility
of one conformation to reach the catchment area of the other conformation via molecular
dynamics in a heat bath (this will lead to definition (12) for metastable conformations).
Again, there is a couple of slower algorithms [6, 74, 12], which find saddle points (or an
ensemble of transition paths) between two local minima of the energy landscape in order
to define the energy barrier i.e. the dissimilarity between the minima. However, these

1Classical molecular conformation analysis in literature is often understood as a search for local minima
of a potential energy surface V : Ω → IR in order to examine the variety and the importance of these
position states. Therefore, computational chemistry software like Cerius2 and Catalyst by Accelrys
Software Inc., Concord and Corina by Molecular Networks GmbH Computerchemie, FANTOM by the
Seal Center for Structural Biology of the University of Texas and many others, often include a local
minimization routine combined with a sophisticated method, which generates suitable starting points for
an exhaustive search in Ω.
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algorithms may fail, if the potential energy surface is like the solid line in Figure 1(a):
The conformations may consist of multiple local minima separated by transition regions,
which also contain many local minima and saddle points. Note that Fig. 1(a) is only a one
dimensional example, whereas in higher dimensions there usually exists a very complex
network of minima and transition regions.

Thermodynamical ensemble. At a certain temperature T the probability for the oc-
currence of a position state q ∈ Ω in the so-called canonical ensemble is proportional
to the Boltzmann expression exp(−β V (q)), where β ∝ T−1 is the corresponding Boltz-
mann factor, see also Fig. 1(a). For T → 0 only the global minimum q ∈ Ω of V has
a significant density in the ensemble, for T → ∞ the position states are more and more
equally distributed. The total density function can be seen as a linear combination of
nC partial densities, which are defined in different regions of the potential energy surface
of the molecule separated via high-energy barriers, see Fig. 1(b) dashed and dotted line.
The thermodynamical weight w̃i of such a metastable conformation i ∈ {1, . . . , nC} is
given by the probability for the molecule to be in conformation i, i.e. the value of the
integral over the corresponding partial density function. In the point concept and in
commercial software for classical conformation analysis, the weights of the conformations
are estimated by the difference of the potential energy values at the corresponding local
minima. As one can see in Fig. 1(b), the correlation between the energy value at a local
minimum and the thermodynamical weight w̃i may be misleading: Although the right
local minimum is deeper, the “left” conformation has a higher thermodynamical weight,
because it is broader. For all these reasons, we now leave the classical point-concept
algorithms in the present work. Unfortunately, we also leave the possibility to use fast
local minimization routines and have to apply extensive algorithms for a thermodynam-
ically correct exploration of the conformational space Ω, like Markov chain Monte Carlo
sampling [101] combined with umbrella strategies [123, 124, 127] or other biased sam-
pling methods [88, 9, 84, 10, 35, 129, 113, 65, 1]. In the present thesis, an algorithm is
presented which combines the sampling of position states via umbrella strategies and the
corresponding analysis of conformations in the sense of Fig. 1(b) and (c).

Complexity reduction. A direct approach to conformation analysis with a correct
thermodynamical weight computation can be done, for example, by an approximation of
the partial density functions in Fig. 1(b). Examples for this approach are the probability
density estimation [53, 119] and the mixture model computation [21, 86, 108]. By using
this kind of algorithms, the complex shape of the partial density functions connected to
the rough energy landscape V becomes displeasing. The first step of model reduction
is to apply a clustering approach. As mentioned above, the definition of similarity has
to take an examination of the dynamical behavior of the molecule into account. There
are a couple of algorithms for clustering on the basis of molecular data and molecular
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density of the spacial states and (b) a splitting of the Boltzmann density into two parts,
which are separated by an high potential energy barrier. Complexity reduction (c) via
membership functions instead of approximating the partial densities themselves.
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dynamics time series. However, algorithms which indirectly use a mixture model for
the decomposition of the conformational space into different clusters like mixture model
clustering [29, 85] have to contain enough basis functions for the approximation of the
partial density functions, which may lead to a “curse of dimensionality”. Also Hidden
Markov Models [102] are based upon certain assumptions about the shape of the partial
density functions.

Deuflhard, Schütte et al. [27, 24, 28, 111, 26] invented the set-based approach to
conformation dynamics, which was inspired by ideas of Dellnitz et al. [18, 20]. In the
present text we change the point of view from their set-based concept to a function-based
clustering. For the clustering approach of Fig. 1(c) the Robust Perron Cluster Analysis
with a meshless function basis is used, which does not make any assumptions about the
shape of the density functions in Fig. 1(b). The total density function in Fig. 1(a), dashed
line, is a positive sum of partial densities. For each conformation i ∈ {1, . . . , nC} there is
a membership function χi : Ω→ [0, 1], which determines the portion of the partial density
w.r.t. the total density function. In order to sum up to the total density, these membership
functions χi form a partition of unity. In Fig. 1(c) the corresponding functions are shown
for the example from Fig. 1(b). Since local minima of a complex transition region cannot
be assigned to one single conformation, these membership functions are continuous and
overlapping. The problem of approximation of these sigmoidal membership functions is
much easier than the approximation of the partial densities themselves and can be done
with a small number s of basis functions. The algorithms for clustering are based on
spectral methods proposed by Dellnitz and Junge [20]. A good example for complexity
reduction like the one shown in Fig. 1(c) is epigallocatechin on page 99, which has two
conformations with multiple minima. A good example for a molecule with a pronounced
transition region is cyclohexane on page 94. These examples show, that the number s of
basis functions can be much lower than the number of local minima of the molecule.

Meshless methods. Conformation analysis in the view of Fig. 1(c), dashed and dotted
line, is a function approximation problem in a high dimensional space. We do not have
to know the function values exactly for each point q in Ω, because most position states
are physically irrelevant due to a high potential energy value V (q) and a low Boltzmann
factor exp(−β V (q)). Mathematically, a Boltzmann-weighted function approximation er-
ror is suitable for this kind of problem, see Section 5.2.1 equation (83). For weighted
function approximation many theoretical results have shown that only randomized al-
gorithms or meshless particle based methods might break the “curse of dimensionality”
[105, 98, 80, 79]. The notation “meshless methods” in this context only means that it
is computationally impossible to create a compactly supported structured function basis
in high-dimensional spaces in order to approximate χ, e.g. triangulation or regular grids,
because the number of basis functions used for the approximation of χ in mesh-based
methods increases exponentially with increasing dimension of Ω. In the present work, we
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therefore use a meshless approach to conformation analysis, see Section 5.1.

Conformation dynamics. Due to the exhaustive sampling in Ω not only thermody-
namical weights w̃i, i = 1, . . . , nC of the conformations are available, but also the dynam-
ical behavior between these conformations. Conformation dynamics is directly connected
with the definition of dissimilarity in the clustering step of the algorithm, because con-
formations should be clustered in a way that molecular dynamics is unlikely to transcend
between different conformations. Therefore, in the present work we aim at a maximiza-
tion of metastability (i.e. minimization of transitions between conformations) in Robust
Perron Cluster Analysis, see Section 3.4.2.

1.2 Outline

The thesis is organized as follows: In Section 2 a sampling method for the computation
of observables in configuration space and the transfer operator approach to conformation
dynamics is derived. In Section 3 Robust Perron Cluster Analysis is explained, which is
the most important tool for the meshless identification of molecular conformations. This
analysis is directly based on the transfer operator approach. In Section 4 Robust Perron
Cluster Analysis is extended to a meshless discretization of the configuration space. A
meshless partitioning method is derived for the computation of the relevant matrices used
for the cluster analysis. In Section 5 the algorithmic details of the corresponding code
ZIBgridfree [94] are designed. An error analysis is included, which balances the generation
of sampling points in local minima and transition regions of Ω in a problem adapted way.
Finally, in Section 6 the “proof of concept” is also shown numerically.
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2 Physical and Statistical Models

2.1 Molecular Dynamics

For an algorithmic introduction into molecular dynamics see also Allen and Tildesley [2]
Chapter 3.

The configuration space of a molecular system having n atoms can be expressed by
3n Cartesian coordinates q ∈ Ω = IR3n. For a classical description of molecular motion
with conservative forces, Newton’s 2nd law is given by:

Mq̈ = f(q).

In this equation M ∈ IR3n×3n is a diagonal matrix of atomic masses and f(q) ∈ IR3n

is a vector of internal and external forces acting on the atoms of a position state q.
f in general is the result of an averaging process: Internal forces arise from an averaged
electronic configuration of the molecular system due to the well-known Born-Oppenheimer
approximation. External forces for example arise from the statistical effects of the not
explicitly modeled part of the solvent. The computation of f is the most time-consuming
procedure in numerical routines. In the present text, molecular systems only consist of a
single molecule in vacuum, i.e. without modeling external forces. For more realistic results
the dynamics simulation has to be extended accordingly. In most of the applications, the
internal forces are expressed by the negative gradient of an energy function V : Ω→ IR,

f(q) = −∇V (q),

where V ∈ C1(Ω) is split into additive components like covalent interactions and non-
covalent interactions. The correct parameterization of different analytical forms of V is
a very important task in molecular dynamics simulation, because V is the link between
numerical methods and the model of a realistic molecule. The parameterization and
invention of so-called molecular force fields is a rapidly changing and profitable market.
For an excellent introduction into molecular modeling and molecular force fields see Leach
[77]. In our case, for the numerical routines in Section 6 the Merck Molecular Force Field
[50, 51] has been implemented, which is suitable for drug-like molecules. With these
preparations the Hamiltonian form of the equation of motion is

q̇ = M−1p
ṗ = −∇V (q), (1)

where p ∈ IR3n are the momenta coordinates of the molecule. For given initial momenta
p(0) and spatial coordinates q(0), the equation of motion (1) uniquely defines a trajectory
x(t) = (q(t), p(t)), t ∈ (−∞,∞), in the state space x ∈ Ω ⊗ IR3n. The Hamiltonian or
total energy of a molecular state x = (q, p) is given by the expression

H(q, p) =
1

2
p>M−1 p︸ ︷︷ ︸

=K(p)

+V (q),
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where K(p) is the kinetic energy part. Computing the time derivative of the total energy
and inserting into (1) implies that for a molecular dynamics trajectory the total energy
H(q(t), p(t)) ≡ H(q(0), p(0)) is constant for t ∈ (−∞,∞).

Reversibility. A substitution of variables p → −p and t → −t leaves the equations of
motion unchanged. I.e. if an initial state (q, p) is transferred to (q̃, p̃) in time span τ , then
the initial state (q̃,−p̃) is transferred to (q,−p) in time span τ , which is an often used
result in the following.

Symplectic flow. Let Φτ denote a solution of (1) for a finite time span τ and initial
conditions (q(0), p(0)):

(q(τ), p(τ)) = Φτ (q(0), p(0)).

In terms of the Hamiltonian H(x) and the state vector x = (q, p) the molecular dynamics
equation can also be written as

ẋ = J · ∇x H(x)

with the skew-symmetric matrix

J =

(
0 I
−I 0

)
,

where I is the 3n-dimensional unit matrix. (1) has a symplectic structure. For a detailed
mathematical analysis of the symplectic structure of molecular dynamics see Hofer and
Zehnder [57]. The symplectic property is used in the proof of self-adjointness of a transfer
operator corresponding to the Hamiltonian flow in Theorem 2.2. Symplecticity is defined
as conservation law

(DΦτ )> · J · (DΦτ ) = J,

for all τ and the Jacobian DΦτ of the Hamiltonian flow. Many other conservation laws can
be derived from the symplectic property. The area-preserving property can schematically
be shown via

det((DΦτ )> · J · (DΦτ )) = det(J) ⇒ det(DΦτ )2 = 1 ⇒ |det(DΦτ )| = 1.

Moreover, Mackey and Mackey [82] have collected some proofs that det(S) = 1 for a
symplectic matrix S. A symplectic numerical integrator Φτ

h , which is a discretization of
Φτ with time-step h, meets (∂Φh

hx(0)

∂x(0)

)>
J
(∂Φh

hx(0)

∂x(0)

)
= J

for a one step computation and, therefore, shares the area-preserving property with the
real flow Φτ . The invention of symplectic integrators is not in the scope of the present
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context. The most famous example for a symplectic numerical integrator having constant
step size h is the Störmer-Verlet integrator [125]. This integrator is also reversible. Both
properties are essential for the construction of a sampling scheme in Section 2.3. For
a constant step-size integrator the choice of h is determined by the shortest oscillation
period of bonds in a molecule, which is only some femtoseconds.

Lyapunov instability. Not only the time discretization h is sensitive. For molecular
dynamics simulation, the total time-span τ has also to be chosen carefully. Assume an
initial state x(0) and a perturbed initial state x∗(0). If these states are evolved by Φt,
then the error ‖x(t)− x∗(t)‖ exponentially depends on the length t of the trajectory:

‖x(t)− x∗(t)‖ ∼ ‖x(0)− x∗(0)‖ exp(λmax t),

where λmax is the maximal Lyapunov characteristic exponent. Deuflhard et al. [25] have
shown that for molecular dynamics λmax may be very large, such that only trajectories of
some 10−13 seconds are correlated with the initial state. Molecular dynamics as a point to
point concept has a chaotic behavior. Therefore, we will change our point of view from ill-
conditioned deterministic to statistical dynamics and investigate ensembles of molecular
systems.

2.2 Ensemble and Boltzmann Distribution

Statistical weights inside an (n, v, T )-ensemble. In an (n, v, T )-ensemble each sub-
system, in our case a single molecule in vacuum, has the same macroscopic properties,
volume v and temperature T . Furthermore, chemical reactions do not take place, which
means that the number n of particles is also kept constant. The subsystems can only
exchange energy with their surroundings and therefore have different states x = (q, p), for
which Boltzmann statistics can be applied. For a detailed derivation of the Boltzmann
distribution, which is defined as the most probable distribution of states in an (n, v, T )-
ensemble and is also called canonical ensemble µcan, see Schäfer [106] pp. 5–11. Via the
Hamiltonian H(·), the probability that a molecule attains the state x is

µcan(x) =
1

Z
exp(−β H(x)),

where Z is a corresponding normalization. β is the inverse temperature

β =
1

kBT
,

where T is measured in Kelvin and kB ≈ 1.38066 ·10−23J K−1 is the Boltzmann constant.
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Partition functions. For separable Hamiltonian functions, the Boltzmann distribution
of molecular states x = (q, p) in the canonical ensemble µcan(x) = π(q)η(p) has the
following splitting into a distribution of momenta and position states:

η(p) =
1

Zp

exp(−βK(p)), π(q) =
1

Zq

exp(−βV (q)).

η(·) represents a Gaussian distribution for each of the 3n momenta coordinates, because K
is a quadratic function with a diagonal matrix M. Therefore, the sampling2 of momenta
according to the Boltzmann distribution is simple, see e.g. [2]. The spacial factor π(·) is
a more complex distribution function. Whereas the exponential function exp(−βV (q))
can be computed pointwise, the unknown normalization constant (also denoted as spatial
partition function3) is

Zq =

∫
Ω

exp(−β V (q)) dq. (2)

For a sampling of points q ∈ Ω according to a distribution, which is known except for
a normalization constant, the Metropolis-Hastings algorithm can be applied, see Section
2.3.

Bracket notation. A macroscopic measurement is always carried out for a snapshot of
a molecular ensemble, where molecular states are distributed according to the Boltzmann
distribution. A spatial observable 〈A〉π of a function A : Ω→ IR in configuration space is
therefore measured as an ensemble mean, i.e. an expectation value

〈A〉π =

∫
Ω

A(q) π(q) dq, (3)

where A is µ-Lebesgue integrable w.r.t. the measure µ(dq) := π(q) dq. For the spatial
Boltzmann distribution we define the weighted spaces

Lr(π) := {u : Ω→ IR,

∫
Ω

|u(q)|r π(q) dq <∞}, r = 1, 2.

For r = 2 we get a Hilbert space with scalar product

〈u, v〉π =

∫
Ω

u(q) v(q) π(q) dq.

The scalar product is used for a Galerkin discretization in Section 3.2 and in Section 4.1.
In the following, these bracket notations for observable and inner products will be often
used abbreviations.

2“sampling” means: creating a sequence of momenta numerically, such that their distribution con-
verges against η.

3Zq is a function of temperature, volume and number of particles of an ensemble. For the canonical
ensemble Zq is a constant. The total partition function Z = ZqZp is the key to calculating all macroscopic
properties of the system.
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Importance sampling. Solving the integral (3) numerically is an important task in
computational chemistry. Deterministic quadrature formulas are not practical for high-
dimensional spaces Ω, see Novak [98]. Therefore, one applies Monte Carlo integration
methods with an importance sampling routine, i.e.

〈A〉π ≈
1

N

N∑
i=1

A(qi), qi ∝ π, (4)

where position states qi ∈ Ω are sampled according to their Boltzmann distribution π.
For introductory literature of Monte Carlo integration methods see [52, 103].

Molecular simulation. Generating a set of independent and identically distributed
position states in (4) is not easy. Only a few points out of Ω are physically important, the
most part of Ω has a high potential energy value V and is therefore not relevant. Instead
of creating independent points q, in practice one starts with a physically relevant position
state q1 ∈ Ω and generates further states via a Markov chain

q1 → q2 → q3 → . . . qN . (5)

This is called a Monte Carlo Simulation.

2.3 Hybrid Monte Carlo Method (HMC)

2.3.1 Requirements

Detailed balance. A sufficient condition for a correct sampling via Monte Carlo Sim-
ulation in the situatuion of (5) is the detailed balance condition with the desired Boltz-
mann distribution π. This condition holds, if the conditional probability density function
P(q → q̃) for a transition q → q̃ in (5) meets

π(q)P(q → q̃) = π(q̃)P(q̃ → q). (6)

In this case, the occurrence of a certain position state q in (5) is proportional to π(q).
For the sufficient and necessary “balance condition”, which is less rigorous than (6), see
Manousiouthakis and Deem [83].

Metropolis-Hastings algorithm. In the following we use a Metropolis-Hastings type
algorithm [90], where the transition probability density function P in (6) is split into two
factors

P(q → q̃) = Ppr(q → q̃)Pac(q → q̃). (7)

Here is the corresponding sampling scheme:
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• In equation (7), Ppr is a proposal probability density function, i.e. the probability
that after q ∈ Ω a position state q̃ ∈ Ω is proposed as candidate for the next step
in the chain (5).

• With an acceptance probability of Pac the next step in the chain is q̃, with a prob-
ability of 1 − Pac the step q is repeated in (5). For a numerical realization of
the acceptance probability, one computes a uniformly distributed random number
r ∈ [0, 1] and accepts q̃ if r ≤ Pac(q → q̃).

With equation (6) a sufficient condition for a correct sampling according to this scheme
is:

π(q)Ppr(q → q̃)Pac(q → q̃) = π(q̃)Ppr(q̃ → q)Pac(q̃ → q).

For a given (ergodic) proposal probability density function Ppr, a possible choice for Pac

satisfying the latter equation is for example the Metropolis dynamics:

Pac(q → q̃) = min
{

1,
π(q̃)Ppr(q̃ → q)

π(q)Ppr(q → q̃)

}
. (8)

Metropolis dynamics provides the chain of form (7) with minimal asymptotic variance
and is therefore the most popular one, see Peskun’s theorem [101].

Combination of MCMC and MD. The transition probabilities P(q → q̃) need not
have any physical meaning in order to meet (6), but for a good acceptance ratio Pac, a
combination of the Metropolis-Hastings algorithm for Markov chain Monte Carlo integra-
tion (MCMC) with molecular dynamics simulations (MD) is useful.

Starting in 1980, a variety of hybrid methods have been developed, which take the
advantages of both MD and MCMC [3, 30]. These so-called HMC algorithms where
originally developed for quantum chromo-dynamics, but they have been used successfully
for condensed-matter systems [88, 16, 64, 37, 46] and also for biomolecular simulations
[55, 35, 138]. HMC combine the large steps of MD in phase space with the property of
MCMC to ensure ergodicity and to eliminate inaccuracies in the numerical computation
of the Hamiltonian dynamics. In the following the HMC method is explained according
to Fischer [33].

Proposal step. HMC is a Metropolis algorithm, in which the proposal step q → q̃
is based on a molecular dynamics simulation with simulation length τ . To compute q̃
out of a given q, we first determine a start momentum vector p ∈ IR3n, where n is the
number of atoms. The start momentum vector is taken from the Boltzmann distribution
η(p) according to the simulation temperature, see Allen and Tildesley [2] Section 5.7.2
for algorithmic details. Then, with some numerical integrator a trajectory of total length
τ is computed. The starting point is given by (q, p), let the end point be denoted as
(q̃, p̃) = Φτ

h(q, p).
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Due to determinism in the integration scheme the probability for a proposition
Ppr(q → q̃) only depends on the choice of the initial momenta p, which is Ppr(q → q̃) ∝
exp(−β K(p)). If the numerical integrator is momentum-reversible, then for the reverse
step q̃ → q, we have to choose the start momentum vector −p̃, which transfers the starting
point (q̃,−p̃) to (q,−p) in time span τ . This means, Ppr(q̃ → q) ∝ exp(−β K(−p̃)). In
equation (6) the two terms are integrated over the Lebesgue measure dq ∧ dq̃. After
transformation into the momenta space the left hand side depents on dq ∧ dp and the
right had side on dq̃ ∧ dp̃. But this does not change anything in equation (8), because
the mapping (q̃, p̃) = Φτ

h(q, p) is area preserving and the two measures are equivalent.
Inserting these results into (8) yields

Pac(q → q̃) = min
{

1,
π(q̃) exp(−β K(−p̃))

π(q) exp(−β K(p))

}
= min

{
1,

exp(−β V (q̃)) exp(−β K(p̃))

exp(−β V (q)) exp(−β K(p))

}
= min {1, exp(−β (H(q̃, p̃)−H(q, p)))}, (9)

i.e. the acceptance probability of the HMC proposal step is based on the change of the
total energy during a numerical integration of the Hamiltonian. A reversible and area-
preserving numerical integrator is necessary and sufficient for a correct sampling, for a
rigorous proof see also Mehling et al. [88] Section III.

Hastings’ class of algorithms. Other acceptance rules instead of (8) may be inter-
esting. The reason is that HMC is trapped inside local minima of V , because MD with
small initial momenta does not overcome energy barriers. An alternative example is the
Barker dynamics given by

Pac(q → q̃) =
π(q̃)Ppr(q̃ → q)

π(q̃)Ppr(q̃ → q) + π(q)Ppr(q → q̃)
=

1

1 + exp(β ∆H)
. (10)

Metropolis dynamics intensifies the trapping effect, because going from higher to lower
energies in (9) is always accepted. The acceptance probability (10) of Barker dynam-
ics is always smaller than that of Metropolis dynamics, especially for “downhill” steps,
which can antagonize the trapping effect of HMC. For a modern interpretation of the
Metropolis-Hastings algorithm and a description of all possible acceptance rules see Billera
and Diaconis [11], especially Remark 3.2.

Sampling convergence. Using Markov Chain Monte Carlo integration theory the or-
der of convergence of the chain (5) is O(N− 1

2 ), which can be shown by a central limit
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theorem, see [14] Section 16, Theorem 1. For more details about HMC and necessary
assumptions4 for the next theorem cf. [33].

Theorem 2.1 Let 〈A〉π be a real-valued spatial observable and qi, i = 1, . . . N the Markov
chain (5) of an HMC method, then the mean value

1

N

N∑
k=1

A(qk)

is asymptotically normally distributed with expectation value 〈A〉π and variance σ2, i.e. the
following probability

lim
N→∞

P
(∣∣∣ 1

N

N∑
k=1

A(qk)− 〈A〉π
∣∣∣ ≤ c

σ√
N

)
= Θ(c) (11)

converges with

Θ(c) =
1√
2π

∫ c

−∞
exp(−t2

2
)dt.

It is worth mentioning that the order of convergence O(N− 1
2 ) does not depend on the

dimension of the space Ω, which is very important for high-dimensional integration and
cannot be achieved with deterministic methods [105, 98]. The price which we have to
pay is: The error estimation in Theorem 2.1 is only a random variable and not a fixed
value. For the special choice c = 1 in Theorem 2.1 the error estimation in (11) holds with
a probability of

Θ(1) ≈ 0.84,

which will be used in Section 5.2.2 below. The speed of convergence in HMC depends on
the correlation length of the realization of (5), see [88]. The shorter the correlation length
is the faster MCMC converges. In this case, the chaotic behavior and the poor condition
number of Hamiltonian dynamics becomes benefiting.

2.3.2 Choice of the Numerical Integrator

Table 1 shows some algorithmic details of HMC and related methods. It shows, which
Hamiltonian the methods are based upon, the acceptance probabilities and eventually a
necessary pointwise re-weighting of the sampling trajectory in order to be mathematically
rigorous.

4Obviously, the transition probabilities in (5) must be ergodic, in order to sample the whole configu-
ration space Ω.
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Hamiltonian accept re-weight

“exact” flow H 1 no

orig. HMC H e−β ∆H < 1 no

SHMC (idea) H̃ 1 H̃ → H

SHMC H̃app e−β ∆ eHapp ≈ 1 H̃app → H

Table 1: Possible approaches for a correct sampling according to the HMC method.
Algorithmic consequences.

“Exact” flow. As we have seen in the derivation of the acceptance probability, a re-
versible and area-preserving numerical integrator is necessary and sufficient for a correct
sampling, no matter how bad its state space solution is. However, if we could apply an
“exact” integrator the total energy would be constant during simulation and, therefore,
the acceptance probability according to Metropolis dynamics would be 1. Adaptive inte-
grators can be used with a pre-defined deviation from the exact flow. An example for an
adaptive integrator for Hamiltonian dynamics is DIFEX2, an extrapolation method based
on Störmer discretization, see Deuflhard et al. [22, 23]. For DIFEX2, area-preservation
and reversibility cannot be shown directly, but as the extrapolation method approximates
the real flow, it inherits these properties from Φτ . Other adaptive integration methods
and Fortran codes can be found in the book of Hairer et al. [49]. See also the first row of
Table 1.

Original HMC. Instead of solving the real dynamics one can apply an arbitrary area-
preserving and reversible integrator. In this case the mean acceptance ratio decreases
exponentially with system size n and time-step discretization h in the numerical integra-
tion Φτ

h, see Gupta et al. [47] and Kennedy and Pendleton [70] for an analytic study of the
computational cost of HMC. It is a general opinion that HMC methods are only suitable
for small molecular systems, see e.g. Section 14.2 in [38]. The reason is that in order to
keep the mean acceptance probability constant for increasing system size, the time-step h
of the symplectic integrator has to decrease accordingly. Instead of time-step refinements,
one can also increase the order of the integration method. Using Hamilton’s principle of
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a stationary action integral, Wendlandt and Marsden [136] derived a systematical scheme
for creating so-called variational integrators. With these higher-order numerical integra-
tors the acceptance ratio of HMC can be improved via better approximation properties.
By omitting the constant step size h in variational integrators, one can even get symplec-
tic and energy preserving integration schemes for the price of lower numerical efficiency.
For an excellent overview of these methods see Lew et al. [78]. See also the second row of
Table 1.

Shadow HMC (SHMC). Another approach uses the fact that a symplectic numerical

integrator solves the dynamics of a modified Hamiltonian H̃ exactly, see [48] or Skeel
and Hardy [121]. If one accepts each proposal step of the numerical dynamics simulation
this is like computing the density of the modified Hamiltonian, see third row of Table
1. In order to get the right distribution in configuration space, one has to re-weight the
resulting position states accordingly. This is only possible, if the modified Hamiltonian is
known. Fortunately, H̃ can be approximated up to arbitrary accuracy. For algorithmic
details see Izaguirre and Hampton [65].

Approximated SHMC. Approximating the modified Hamiltonian as exactly as pos-
sible is numerically expensive. Therefore, one would like to truncate the Taylor expansion
of H̃ after a finite number of terms in order to yield H̃app. This method is part of the
TSHMC method of Akhmatskaya and Reich [1]. Again an acceptance rule is introduced,
which zeroes out the numerical error of truncation, see the last row of Table 1. This
method seems to be very promising for larger molecules, because the acceptance proba-
bility is almost 1, the method is mathematically rigorous, and numerically efficient (extra

cost for computation of H̃app is negligible).

2.4 Transfer Operator Approach

Metastabilities in configuration space. Now we are interested in the identification
of molecular conformations as described in the introduction. Conformations are defined
as a decomposition of state space into physically distinguishable parts. Here it is assumed
that physical properties mainly arise from the position coordinates q ∈ Ω of a molecule.
Therefore, for a decomposition only the configuration space fraction Ω of the state space
Ω ⊗ IR3n is taken into consideration. Two different position states are physically similar
and belong to the same conformation, if molecular motion is likely to transfer one position
state into the other5. Assume, we aim at a partitioning of Ω into sets C1, . . . , CnC

∈ B(Ω),
where nC is the number of conformations. Let ℘ : IR × Ω × B(Ω) → [0, 1] denote the

5Note that the investigation of dynamically invariant subsets in the state space Ω ⊗ IR3n does not
make sense, because this would simply lead to the constant energy level sets of the Hamiltonian H(x),
which do not reflect physical properties.
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stochastic transition function. ℘(τ, q, Ci) is the ratio of trajectories starting in q ∈ Ω with
Maxwell-Boltzmann distributed initial momenta p ∈ IR3n, which end in Ci after time-span
τ . Thus, with the above considerations a molecular conformation Ci is defined by the
metastability property

℘(τ, q, Ci) ≈ 1 ⇔ q ∈ Ci,
℘(τ, q, Ci) ≈ 0 ⇔ q 6∈ Ci.

(12)

Transfer operator. The area-preserving property of a symplectic flow implies that
molecular dynamics does not have attractors. The clustering into conformations cannot
be based on subdivision techniques invented by Dellnitz and Junge [19], but one can
extend their transfer operator approach [20] to symplectic flows. The stochastic transition
function ℘ can be calculated via a transfer operator P τ : Lr(π)→ Lr(π), r = 1, 2,

P τu(q) =

∫
IR3n

u(Π1Φ
−τ (q, p)) η(p) dp, (13)

where Φ−τ is the reverse flow with initial state (q, p) and time span τ according to Hamilton
dynamics and Π1 is the projection of the molecular state Φ−τ (q, p) onto its position
coordinate, see Schütte et al. [111, 114]. As molecular dynamics is reversible, one gets
the position coordinates of the reverse flow by replacing p with −p and computing the
forward Hamilton dynamics. Note that the probability density function is symmetric,
η(p) = η(−p). Thus, forward and backward propagation are commutable. For more
details about backward and forward transfer operators see [114].

Theoretically speaking, the transfer operator P τ is self-adjoint for a Hamiltonian dif-
ferential equation in a canonical ensemble:

Theorem 2.2 (Schütte [111]) The transfer operator P τ defined in (13) meets the fol-
lowing properties:

i) P τe = e for the constant function e : Ω→ IR, e(q) ≡ 1.

ii) P τ : L1(π)→ L1(π) is a linear Markov operator.

iii) P τ : L2(π)→ L2(π) is a bounded and self-adjoint operator with ‖P τu‖π ≤ ‖u‖π for
u ∈ L2(π) and the corresponding weighted norm ‖ · ‖π. Hence its spectrum satisfies
σ(P τ ) ⊂ [−1, 1].

Proof: ii) is the proposition of Lemma 3.7, iii) a consequence of Lemma 3.9 and Lemma
3.10 in [111]. i) can be shown by a simple calculation. As self-adjointness of P τ is an
important property in the following, here is the summary of Schütte’s proof:

〈P τu, v〉π =

∫
Ω

[ ∫
IR3n

u(Π1Φ
−τ (q, p)) η(p) dp

]
v(q) π(q) dq
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=

∫
Ω⊗IR3n

u(Π1 Φ−τx) v(Π1 x) µcan(x) dx

(1∗) =

∫
Ω⊗IR3n

u(Π1 y) v(Π1 Φτy) µcan(y) dy

=

∫
Ω⊗IR3n

u(Π1 (q̃, p̃)) v(Π1 Φτ (q̃, p̃)) µcan(q̃, p̃) dy

(2∗) =

∫
Ω⊗IR3n

u(Π1 (q̃,−p̃)) v(Π1 Φτ (q̃,−p̃)) µcan(q̃,−p̃) dy

(3∗) =

∫
Ω⊗IR3n

u(Π1 (q̃, p̃)) v(Π1 Φ−τ (q̃, p̃)) µcan(q̃, p̃) dy

=

∫
Ω⊗IR3n

u(Π1 y) v(Π1 Φ−τy) µcan(y) dy

= 〈u, P τv〉π

With x = Φτy equation (1∗) holds due to invariance of µcan with respect to the Hamil-
tonian flow, H(y) = H(Φτy), and due to |det(DΦτ )| = 1, because (1) is symplectic.
In equation (2∗) the p-direction of integration is switched. Equation (3∗) holds due to
reversibility of (1) and η(p)-symmetry of µcan with y = (q̃, p̃). �

From set-based to function-based conformations. The stochastic transition func-
tion ℘ can be calculated as

℘(τ, q, Ci) = P τ 11Ci
(q),

where 11Ci
: Ω→ {0, 1} is the characteristic function of the set Ci, i.e. 11Ci

(q) = 1 if q ∈ Ci
and 11Ci

(q) = 0 otherwise. The metastability property (12) of a conformation Ci can be
rewritten as

P τ 11Ci
(q) ≈ 11Ci

(q), (14)

which will be discretized in the following. Via this transfer operator description of con-
formations, the set-based approach can be extended to a pure function-based definition
of conformations. This will be done in three steps:

1. Assume a decomposition of Ω into pairwise disjoint sets X1, . . . ,Xs with

11Cj
=

s∑
i=1

χdisc(i, j) 11Xi
, j = 1, . . . , nc,

where χdisc ∈ {0, 1}s×nC and χdisc(i, j) = 1 if Xi belongs to conformation Cj and
χdisc(i, j) = 0 otherwise. In order to find this clustering, Deuflhard et al. [26]
invented the so-called Perron Cluster Analysis. However, this method is not robust
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against small perturbations of the transfer operator, because a perturbation of P τ

is a continuous process, whereas changes of χdisc can only switch between 0 and 1.
This algorithm is not part of this thesis.

2. A robust version of the Perron Cluster Analysis is possible, see Deuflhard and We-
ber [28], if we allow χdisc(i, j) to attain values between the extremes 0 and 1. In
this case 11C1 , . . . , 11CnC

are not “characteristic” any more, but replaced by almost
characteristic functions χ1, . . . , χnC

. In terms of cluster analysis this is a transition
from a so-called crisp clustering into a fuzzy clustering. The Robust Perron Cluster
Analysis is the main step from a set-based conformation analysis to a function-based
one and it is described in Section 3.

3. In Section 4 we aim at a meshless discretization of Ω, which means that the dis-
cretization of Ω into sets (i.e. characteristic functions 11X1 , . . . , 11Xs) is replaced by
an arbitrary function basis ξ1, . . . , ξs, in order to get trial functions for a global
Galerkin discretization of (14). The advantages of this approach and its impact on
the HMC sampling method can be seen in Section 4.4. The construction of this
function basis is part of Section 5.1, for which an error analysis is derived in Section
5.2.

As we will abandon the set-based concept of conformations by and by, in the following we
will not use the abbreviation 11Ci

for characteristic functions any more. If characteristic
functions occur, it will be stated explicitly.
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3 Robust Perron Cluster Analysis

In this section a robust algorithm for the identification of an almost characteristic decom-
position of Ω into almost invariant membership functions χ1, . . . , χnC

is derived. First,
the physical meaning of these functions χl as conformations is shown. Afterwards, an op-
timization problem is derived, which leads to an optimal decomposition of Ω with regard
to uniqueness or metastability of the conformations. The algorithm for clustering needs
a spectral analysis of the transfer operator for eigenvalues near the unit circle which is
based on ideas of Dellnitz and Junge [20].

3.1 Almost Characteristic Functions

Like in Section 2.4 a conformation l of a molecule is defined as an almost characteristic
function (also called membership function in literature) χl : Ω → [0, 1]. A decomposition
of Ω into nC conformations χ1, . . . , χnC

in this context means that these functions form a
partition of unity. For the discretization of χl a partition of unity function basis is used:

Definition 3.1 A set of functions ξ1, . . . , ξs : Ω → IR is called a membership basis if it
is a partition of unity, i.e. for all q ∈ Ω

s∑
i=1

ξi(q) = 1, (15)

and the functions ξj are nonnegative, i.e.

ξi(q) ≥ 0 (16)

for all q ∈ Ω and i = 1, . . . , s.

In Section 3, we investigate membership basis functions ξ1, . . . , ξs, which are character-
istic functions of a decomposition of Ω =

⋃̇
i=1,...,sXi into pairwise disjoint subsets Xi ⊂ Ω,

i.e. ξi(q) = 1 if q ∈ Xi and ξi(q) = 0 otherwise. In this case, the membership basis is a set
of pairwise orthogonal functions in L2(π). In Section 4, the choice of membership basis
functions is generalized to arbitrary non-orthogonal systems. Because of the partition of
unity and the non-negativity assumption in Definition 3.1, a molecular conformation is a
convex combination of the membership basis functions, i.e.

χl(q) =
s∑

i=1

ξi(q) χdisc(i, l),

where q ∈ Ω, and χdisc ∈ IRs×nC is a row-stochastic rectangular matrix. In the following,
we want to find an optimal matrix χdisc of linear combination factors. Like in set-based
conformation dynamics, thermodynamical information for drug design can be calculated
via this function-based concept of conformations as follows:
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Partition functions. Each conformation χi of the molecule has its own partition func-
tion w̃i > 0 with

w̃i = 〈χi〉π, i = 1, . . . , nC . (17)

w̃i denotes the part of the ensemble which corresponds to conformation χi. The partition
function is an important term to calculate thermodynamic properties of molecular sys-
tems. In Section 5.2.2 an error estimation for the computation of w̃i, i = 1, . . . , nC related
to the approximation error of χi is derived.

Observables. Spatial observables of a function A : Ω → IR like in (3) can also be
computed separately for each function-based conformation χ1, . . . , χnC

: Ω→ [0, 1] via

〈A〉π,χi
:=

1

w̃i

〈A χi〉π =
1

w̃i

∫
Ω

A(q) χi(q) π(q) dq, i = 1, . . . , nC . (18)

From this point of view, a conformation χi, which is a function in configuration space,
can also be seen as a molecular state. Oršič and Shalloway [99] therefore denote this kind
of conformation as macrostate. A function-based conformation can be seen as

1. a macrostate i, which is described via a modified distribution in state space, i.e. if π
is the Boltzmann distribution of spacial coordinates, then the macrostate is defined
by the distribution 1ewi

χi π, see (18), or

2. as a macrostate i, which is totally described via a modified potential energy function
V − 1

β
ln(χi), because

1

w̃i

χi π =
1

Zqw̃i

χi exp(−β V ) =
1

Zqw̃i

exp(−β(V − 1

β
ln(χi))),

see also (56).

Transition probabilities. The behavior of a single molecule in the ensemble can be
seen as a continuous-time Markov jump process, x̄(t) ∈ {1, . . . , nC}, where a molecule can
jump between the nC different macrostates, see also Section 4.3. Neglecting the exchange
of energy with the surroundings during the dynamics simulation, the corresponding tran-
sition probabilities for a discretization of time into intervals of length τ can be computed
as proposed in [114]:

Definition 3.2 The stochastic coupling matrix P ∈ IRnC×nC , which provides the transi-
tion probabilities between the conformations χ1, . . . , χnC

: Ω→ [0, 1], is defined as

P =
(〈χi, P

τχj〉π
〈χi〉π

)
i,j=1,...,nC

,

where P τ is the transfer operator defined in equation (13). The trace of P is referred to
as metastability of the conformations χ1, . . . , χnC

.
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3.2 Galerkin Discretization

Metastable conformations. With the transfer operator approach (14) a metastable
almost characteristic function χl : Ω→ [0, 1] has the following defining property:

χl ≈ P τχl, l = 1, . . . , nC . (19)

For a set-based discretization of Ω the membership basis functions meet ξi(q) ∈ {0, 1}
for i = 1, . . . , s and therefore ξ2

i = ξi. This together with the partition of unity implies
that the product of two different membership basis functions vanishes, ξiξj = 0 for i 6= j.
With these preparations the Galerkin discretization of the condition (19) is:

χl ≈ P τχl

⇔
s∑

j=1

ξj χdisc(j, l) ≈ P τ

s∑
j=1

ξj χdisc(j, l)

⇒
∫

Ω

s∑
j=1

ξi(q) ξj(q) χdisc(j, l) π(q) dq ≈
∫

Ω

s∑
j=1

ξi(q) P τξj(q) χdisc(j, l) π(q) dq

⇔ 〈ξi〉π χdisc(i, l) ≈
s∑

j=1

〈ξi, P
τξj〉π χdisc(j, l), i = 1, . . . , s

⇔ Dχdisc ≈ Pχdisc,

where D = diag(w1, . . . , ws) is the diagonal matrix of the statistical weights of the mem-
bership basis functions wi = 〈ξi〉π, i = 1, . . . , s and P is the Galerkin discretization of
the transfer operator P τ , i.e. P (i, j) = 〈ξi, P

τξj〉π. Self-adjointness of P τ implies that
P ∈ IRs×s is a symmetric matrix. The diagonal entries of D equal the row sums of P ,
therefore, P = D−1P is a stochastic matrix. Like in Definition 3.2, where P defines
the transition probabilities for the conformations, the entry P (i, j) can be interpreted as
transition probability between the subsets of Ω given by the characteristic functions ξi

and ξj, see also Schütte [111]. With these preparations the discretization of (19) is

Pχdisc ≈ χdisc. (20)

Eigenvalues and eigenvectors of P . For Robust Perron Cluster Analysis the eigen-
vectors X ∈ IRs×s of P play an important role. In order to exploit the Hamiltonian struc-
ture for the computation of the eigenvectors and the eigenvalues Λ = diag(λ1, . . . , λs),
one can transform the eigenvalue problem of P into a symmetric form:

P X = X Λ

⇔ (D−1/2PD−1/2) D1/2 X = D1/2 XΛ. (21)
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Instead of solving the eigenvalue problem for P one can solve the symmetric eigenvalue
problem for the nonnegative matrix (D−1/2 P D−1/2) and rescale its eigenvectors Y ∈ IRs×s

with X = D−1/2 Y . The eigenvalues are identical, which also shows that P has a real-
valued spectrum and generalized symmetric eigenvectors with I = Y > Y = X> D X,
where I ∈ IRs×s is the s-unit matrix. A simple Gerschgorin estimation yields λi ∈
[−1, 1], where λ1 = 1 always occurs: For a stochastic matrix P the eigenvector X(:, 1)
corresponding to the eigenvalue λ1 = 1 is a constant vector X(:, 1) = (1, . . . , 1)> ∈ IRs,
which will be important for Robust Perron Cluster Analysis, see Section 3.4.1.

Basic idea of Perron Cluster Analysis. As P has a real-valued spectrum with sorted
eigenvalues λ1 ≥ . . . ≥ λs and an eigenvector matrix X, where the i-th column of X is an
eigenvector corresponding to λi, the clustering can be computed in terms of the basis X
as

χdisc = XA, (22)

with A ∈ IRs×nC . As equation (20) is aimed at, one can restrict equation (22) to eigen-
vectors, which correspond to eigenvalues λ1, . . . , λnC

near the maximal eigenvalue 1, i.e.
X ∈ IRs×nC , A ∈ IRnC×nC and Λ = diag(λ1, . . . , λnC

). The spectral analysis is also the
basis for identifying the number of conformations nC , see Section 3.5. The justification
for this restriction of the full basis expansion (22) to only nC eigenvectors can be given by
perturbation analysis, see Section 3.3. This approach reduces the number of unknowns
from dim(χdisc) = nC · s to dim(A) = n2

C , because if A is given χdisc can be computed via
(22). This is a real simplification, because in most applications nC � s. In this context,
cluster analysis is equivalent to finding a basis transformation A of nC eigenvectors X,
such that χdisc = XA is a row-stochastic matrix. In general, there are many matrices
A which meet this condition, therefore, in Section 3.4 an optimization problem for the
entries of A is derived.

3.3 Perturbation Analysis

In order to understand why the optimal clustering χdisc can be seen as a linear combination
of the first nC eigenvectors of P , we first examine the “ideal case”, where the matrix P is
block-structured. For perturbation analysis, this block-structured matrix is denoted as P̃ .
The row sum of a stochastic matrix P̃ ∈ IRs×s is 1 for each row, which can be expressed
via P̃ e = e for the constant vector e = (1, . . . , 1)> ∈ IRs. If P̃ is a transition matrix for
a non-ergodic Markov chain having nC disjoint communicating index subsets C1, . . . , CnC

,

then row sums can be restricted to the corresponding index subsets. In this case P̃ is a
block-diagonal matrix6. For a matrix χ̃disc ∈ IRs×nC , with χ̃disc(i, j) = 1 if i ∈ Cj and

6possibly with a permutation of rows and columns.
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χ̃disc(i, j) = 0 otherwise, this non-ergodicity can be expressed in matrix notation:

P̃ χ̃disc = χ̃disc.

This is an eigenvector equation. For every regular transformation matrix Ã ∈ IRnC×nC

the matrix X̃ ∈ IRs×nC , with X̃ = χ̃disc Ã−1, provides a basis of eigenvectors of P̃ corre-
sponding to λ = 1. In this case, Ã−1 is only a shift of the piecewise constant components
of χ̃disc. Thus, for a reducible stochastic matrix P̃ the nC communicating index subsets
are given by the constant level pattern of the first nC eigenvectors X̃. Vice versa, for
a given set of eigenvectors X̃ there is a regular transformation matrix Ã, such that the
“solution” χ̃disc of the cluster problem is given as

χ̃disc = X̃Ã.

This is a justification of the approximation (22) for the solution of the cluster problem
for the irreducible matrix P via a linear mapping of the eigenvectors, which correspond
to eigenvalues near λ1 = 1. Now it is shown that convergence of χdisc towards χ̃disc

holds when P becomes more and more blocky. As the eigenvalue problem for P can be
transformed into a symmetric one, see (21), perturbation analysis can be applied. Assume
the regularity conditions of Theorem 6.1 from Kato [69]: Let the analytic expansion

P (ε) = P̃ + εP (1) + ε2P (2) + . . .

define a family of matrices, such that P̃ is reducible with nC communicating index subsets
and P (ε) is generalized symmetric and stochastic for εmax ≥ ε ≥ 0. Furthermore, let P (ε)
for ε > 0 be primitive, i.e. the Perron root λ1(ε) = 1 is simple and each P (ε) has a unique
left positive eigenvector w corresponding to λ1 (w is called the invariant distribution).
With these regularity conditions, the eigenvalues λi(ε), i = 1, . . . , nC , and eigenvectors of
P (ε) are analytic for ε ≥ 0 with the following expansion

X = X̃ + εX(1) +O(ε2), (23)

which has been shown in [114]. As P has strong structural properties, the following lemma
holds.

Lemma 3.3 ([28]) There exists a matrix B ∈ IRnC×nC such that the first order term
X(1) in the expansion (23) can be simplified to

X(1) = χ̃disc B.

As we have shown, X̃ is a matrix of piece-wise constant eigenvectors of P̃ . Lemma
3.3 shows that the matrix X(1) shares the same piece-wise constant level pattern like X̃.
The main conclusion is that X̃ and X̃ + εX(1) define the same nC-subspace and therefore
lead to the same solution in terms of χdisc. This conlusion is part of the next
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Theorem 3.4 ([28]) In terms of the perturbation parameter ε > 0, the following approx-
imation result holds:

χdisc = χ̃disc +O(ε2).

Assume that for the transformation matrix A, the diagonal matrix

Λ = Λ(ε) = diag(λ1(ε), . . . , λnC
(ε)),

and the nC-unit matrix I the following inequality

‖A−1ΛA− I‖1 < 1

is satisfied. Then metastability, see Definition 3.2, can be bounded via

trace(Λ)−O(ε2) ≤ trace(P) ≤ trace(Λ).

Proof: The complete proof can be found in [28]. An important step in the proof of the
metastability bounds is a reformulation of P via

P = S A−1 ΛA, (24)

where S is defined as:

S =
(〈χi, χj〉π
〈χi〉π

)
i,j=1,...,nC

.

Due to the O(ε)-result for χdisc (and therefore also for χl, l = 1, . . . , nC) this matrix is
a perturbation of the unit matrix I, i.e. S = I − O(ε2), which implies that trace(P) =
trace(Λ)−O(ε2). �

From Theorem 3.4 the robustness of the approach (22) with almost characteristic
functions becomes clear. The more blocky the transition matrix P is, the more charac-
teristic are the resulting conformations and O(ε2)-convergence towards the unperturbed
clustering holds. In practice, only the perturbed transition matrices P are available, the
unperturbed matrix P̃ is only artificial. In Section 3.5.1 a construction method for P̃ is
shown, such that P̃ has the same invariant distribution like P , i.e. the eigenvectors of P
and P̃ are orthogonal with respect to the same diagonal matrix D.

In the following, the term Perron cluster eigenvalues and Perron cluster eigenvectors is
used for the eigenvalues λ1, . . . , λnC

≈ 1 and the corresponding eigenvectors X ∈ IRs×nC .
From this denotation the abbreviations PCCA for Perron Cluster (Cluster) Analysis and
PCCA+ for Robust Perron Cluster (Cluster) Analysis is derived, because these cluster
methods use the Perron cluster eigenvalues, see also [28].
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3.4 Optimization Problem

Cluster analysis in terms of (22) is not unique. There is an uncountable number of
transformation matrices A such that χdisc = XA is a row-stochastic matrix. For example,
there is always a matrix A, such that every entry of χdisc is identical to 1/nC , i.e. the
conformations are identical constant functions. Therefore, we have to introduce some more
properties in order to get an “optimal” clustering in terms of separation or metastability.

3.4.1 Feasible Set

For the set {χ1, . . . , χnC
} of almost characteristic functions, the partition of unity and

the non-negativity constraints should hold. In terms of the discretization factors χdisc for
a membership basis ξ1, . . . , ξs, this means that χdisc ∈ IRs×nC has to be a row-stochastic
rectangular matrix. Additionally it is assumed that χdisc = XA is a linear combina-
tion A ∈ IRnC×nC of the eigenvector data. This assumption restricts the problem to n2

C

unknowns, because by fixing the n2
C entries of A one also determines the set of confor-

mations. In the following the set FA of feasible transformation matrices is characterized.
For given eigenvector data X ∈ IRs×nC the non-negativity constraint is

χdisc(l, i) ≥ 0 ⇔
nC∑
j=1

A(j, i) X(l, j) ≥ 0, i = 1, . . . , nC , l = 1, . . . , s, (25)

and the partition of unity can be expressed as

nC∑
i=1

χdisc(l, i) = 1 ⇔
nC∑
i=1

nC∑
j=1

A(j, i)X(l, j) = 1, l = 1, . . . , s. (26)

Equation (26) can be written in matrix form using the constant vectors

ẽ = (1, . . . , 1)> ∈ IRnC , e = (1, . . . , 1)> ∈ IRs

and the 1st unit vector e1 = (1, 0, . . . , 0)> ∈ IRnC :

XAẽ = e ⇔ Aẽ = e1 ⇔
nC∑
i=1

A(j, i) = δj,1, i = 1, . . . , nC ,

where δ is the Kronecker symbol and it is used that the first eigenvector of a stochastic
matrix is constant, i.e. the first column of X equals e. Together with (25) we arrive at
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the following constraints7 for the feasible set FA:

(1) A(j, 1) = δj,1 −
nC∑
i=2

A(j, i), j = 1, . . . , nC ,

(2) A(1, i) ≥ −
nC∑
j=2

A(j, i)X(l, j), i = 1, . . . , nC , l = 1, . . . , s.

(27)

The set FA has at least the feasible point A∗(j, i) := δj,1nC
−1 and is therefore not empty.

Vertices of FA. Note that the constraints for FA are linear, which also implies that FA
is convex. In Lemma 3.7, the vertex set8 v(FA) of FA plays an important role. Because
of FA ⊂ IRn2

C , a vertex A ∈ v(FA) ⊂ FA is determined by n2
C active linear constraints out

of (27). A subset of 2nC active constraints can be characterized by the following

Lemma 3.5 Let A ∈ FA be regular and χdisc = XA. If there exists an index i ∈
{1, . . . , nC}, such that for all l = 1, . . . , s

0 < χdisc(l, i)

holds, then A 6∈ v(FA).

Proof: Without loss of generality i = 1 in the above lemma. Define

A∗ :=


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ∈ IRnC×nC ,

and

0 < δ := min
j=1,...,s

χdisc(j, 1) < 1, B :=
A− δA∗

1− δ
,

where χdisc and A are given by the lemma. Then, we have A∗,B ∈ FA and A is not a
vertex of the convex set FA, because A = (1− δ)B + δA∗. �

Because of Lemma 3.5, at a vertex of FA, for every i = 1, . . . , nC , there exists an
l ∈ {1, . . . , s} such that χdisc(l, i) = 0. This means, for every i = 1, . . . , nC at least one

7The presentation of the theory of Robust Perron Cluster Analysis slightly differs from [28]. The reason
is that in the present text the transformation of (27) into (28) and the introduction of unconstrained
minimization in Algorithm 3.11 without any “side condition” seems to be more directly.

8In [131] the notion “indecomposable membership function” was introduced, which is nothing else but
a discretization matrix χdisc = XA for A ∈ v(FA). Therefore, Lemma 3.5 can be compared to Lemma
3.3(iii) in [131].
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linear constraint out of (27.2) is active. Therefore, one can define a subset F ′
A ⊂ FA with

v(FA) ⊂ F ′
A by the following constraints:

(1) A(j, 1) = δj,1 −
nC∑
i=2

A(j, i), j = 1, . . . , nC ,

(2) A(1, i) = − min
l=1,...,s

nC∑
j=2

A(j, i)X(l, j), i = 1, . . . , nC .

(28)

This subset F ′
A of the feasible set FA, which includes an optimal vertex A of FA, is

very important in the following, because it is defined via equations, which reduces the
dimension of the search space. Except for (28.1) in the case j = 1, every equality in (28) is
invariant against positive scaling A → γA, γ > 0. This partial invariance against scaling
is used for a construction of feasible matrices A in Algorithm 3.10 and for a transformation
into an unconstrained optimization problem in Algorithm 3.11 below.

3.4.2 Objective Functions

Every matrix A ∈ FA leads to a feasible clustering χdisc = XA in terms of almost charac-
teristic functions. We now specify some objective functions, which should be maximized
for an optimal transformation matrix A. Here are two natural objective functions together
with their upper bounds:

• For each conformation χi, i = 1, . . . , nC there should be a point q ∈ Ω with maximal
degree of membership χi(q) ≈ 1. This optimization problem can be expressed by
the objective function

I1(A) =

nC∑
j=1

max
l=1,...,s

χdisc(l, j) =

nC∑
j=1

max
l=1,...,s

nC∑
i=1

X(l, i)A(i, j) ≤ nC . (29)

A justification for this objective function is given in (34) in Section 3.5.3 below.

• Metastability of the conformations χ1, . . . , χnC
should be maximal, see Definition

3.2. With D̃ = diag(w̃1, . . . , w̃nC
) and

P = D̃−1 χdisc P χdisc = D̃−1A>X> P XA = D̃−1A>ΛA,

the corresponding objective function is

I2(A) = trace(P) = trace(D̃−1A>ΛA) ≤
nC∑
i=1

λi.
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In order to get a formulation of metastability I2 in terms of A, we proof that the partition
functions can be expressed by the first column of a feasible transformation matrix:

Lemma 3.6 The partition function w̃i of conformation χi in equation (17) can be ob-
tained from the transformation matrix A via

w̃i = A(1, i), i = 1, . . . , nC .

Proof: From (17) we get

w̃i = 〈χi〉π =
s∑

j=1

χdisc(j, i)〈ξj〉π =
s∑

j=1

nC∑
k=1

X(j, k)A(k, i)〈ξj〉π.

Due to (21) the eigenvectors X(:, k) for k = 2, . . . , nC are orthogonal to the first one,
X(:, 1) = e, w.r.t a generalized dot product, i.e.

0 = X(:, k)> D e =
s∑

j=1

X(j, k)〈ξj〉π.

Hence

w̃i =

nC∑
k=1

A(k, i)
s∑

j=1

X(j, k)〈ξj〉π = A(1, i)
s∑

j=1

X(j, 1)︸ ︷︷ ︸
=1

〈ξj〉π

= A(1, i)
s∑

j=1

〈ξj〉π = A(1, i).

�

Via Lemma 3.6 metastability I2 becomes:

I2(A) =

nC∑
i=1

λi

nC∑
j=1

A(i, j)2

A(1, j)
.

Note that for I1 and I2 the eigenproblem data X and λ is fixed and A consists of the op-
timization variables. There are many other possibilities for objective functions. However,
for a transformation of the corresponding optimization problem with feasibility constraints
A ∈ FA into an unconstrained optimization problem in Section 3.4.4 it is only necessary
that the objective function is convex. This leads to a combinatorial optimization problem:

Lemma 3.7 The set FA in (27) of feasible transformation matrices A ∈ FA is a convex
polytope. The objective functions I1 and I2 are convex in FA. For I1 and I2 there are
optimal vertices of FA maximizing the objective functions, i.e. there is a solution A of
the optimization problem with A ∈ v(FA) ⊆ F ′

A. For the definition of F ′
A see (28).
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Proof: The constraints which determine FA are linear, therefore FA is a convex polytope.
The convexity of I1 is easy to show: The maximum of a set of linear functions is convex
and also the sum of these convex functions, Theorem 1.9 in [59]. Convexity of I2 follows
from the fact that the Hessian of f(a, b) := a2 b−1 has non-negative eigenvalues for b > 0,
whereas positivity of b = A(1, j) holds due to Lemma 3.6. I1 and I2 are continuous
bounded functions, suprema exist. A supremum of a convex function in a closed convex
polytope is attained at a vertex of the polytope, see Chapter 3 in [59]. �

3.4.3 Linear Program

The existence of maxima for I1 and I2 has been shown in Lemma 3.7. Maximization
of convex functions9 I1 and I2 in a linear bounded feasible set is a non-trivial global
optimization problem. In the following the convex function I1 is transformed into a linear
function, i.e. optimization can be done by solving a linear program.

Simplex structure. The transformationA ∈ IRnC×nC from the matrix of Perron cluster
eigenvectors X ∈ IRs×nC to the matrix χdisc = XA ∈ IRs×nC of the convex combination
factors is linear. Because of the positivity and partition of unity property, the rows of
χdisc can be seen as points χdisc(i, :) ∈ IRnC , i = 1, . . . , s, which lie inside a simplex σnC

spanned by its vertices – the nC unit vectors e1, . . . , enC
∈ IRnC :

x ∈ σnC
⇔ ∃γ1, . . . γnC

∈ [0, 1], x =

nC∑
j=1

γjej,

nC∑
j=1

γj = 1.

A linear mapping A−1 maps the simplex σnC
to another simplex σ̃nC

= σnC
A−1 with

vertices
v>j = e>j A−1 = A−1(j, :), j = 1, . . . , nC . (30)

This means, the rows of X as points in IRnC lie inside a simplex with the vertices
v1, . . . , vnC

∈ IRnC , and the rows of A−1 equal these vertices. Assume (maximality as-
sumption) that for each conformation j in the solution of Robust Perron Cluster Analysis
there exists a set ξi with maximal membership χdisc(i, j) = 1, i.e. χdisc(i, :) = e>j . Then
the i-th row of χdisc is a vertex of σnC

, which implies that the i-th row of X is a vertex
vj = X(i, :)> of σ̃nC

. Via (30) this gives us:

A−1(j, :) = X(i, :). (31)

In other words, the maximality assumption implies that the vertices vj can be found
among the rows of X. With an appropriate index mapping

ind : {1, . . . , nC} → {1, . . . , s}
9Equivalent: Minimization of concave functions. This problem is known as “Concave Programming”.

The general form is NP -hard, see [58, 59].
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0

0

v1

X(ind(1),:)

Figure 2: Example for nC = 3, taken from [28]. By omitting the first (constant) component,
the eigenvector data X(l, :) ∈ IR3 for l = 1, . . . , 60 is projected to IR2. The I1-optimal simplex
σ̃3 spanned by the vertices v1, . . . , vnC is shown. Algorithm 3.8 provides X(ind(1), :) as an
approximation of v>1 = A−1(1, :).

we get vj = X(ind(j), :)>, j = 1, . . . , nC . If the maximality assumption nearly holds,
see Fig. 2, then the following routine [28] finds an index mapping for an approximation
of the simplex σ̃nC

. Its “vertices” are determined successively among the rows of X:
Once one has found a vertex subset, the hyperplane of minimal dimension is constructed,
which includes these vertices. The next vertex is a point having maximal distance to this
hyperplane. The distance can be calculated from an orthogonalization routine.

Algorithm 3.8 Index mapping for approximate vertices of σ̃nC
.

1. Find the row i∗, which maximizes the norm ‖X(i, :)‖2, i = 1, . . . , s.

Set ind(1) = i∗, ṽ1 = X(ind(1), :).

For i = 1, . . . , s set X(i, :)← X(i, :)− ṽ1.

2. FOR j = 2, . . . , nC find further vertices via:

Find the row i∗, which maximizes the norm ‖X(i, :)‖2, i = 1, . . . , s.

Set ind(j) = i∗ and X ← X/‖X(ind(j), :)‖2 for i = 1, . . . s.

Set ṽj = X(ind(j), :).

For i = 1, . . . , s set X(i, :)← X(i, :)− ṽjX(i, :)>ṽj.

NEXT loop index
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Objective function. Algorithm 3.8 supplies the indices ind(1), . . . , ind(nC) of points
X(ind(j), :), j = 1, . . . , nC , which are nearly vertices of σ̃nC

. In a feasible solution the
vertices vj of σ̃nC

are mapped to the vertices of σnC
. In this case, the points X(ind(j), :

) ≈ vj, j = 1, . . . , nC are nearly mapped to the unit vectors e1, . . . , enC
. In other words,

for a fixed j = 1, . . . , nC , the membership maxi=1,...,s χdisc(i, j) is maximal for i = ind(j).
Using this information, I1 in (29) becomes:

I1(A) =

nC∑
j=1

nC∑
i=1

X(ind(j), i)A(i, j).

This is a linear function. Maximization of a linear function over a polytope is known
as linear programming and can be solved efficiently via simplex algoritms or via interior
point methods, see Karmarkar [68].

3.4.4 Unconstrained Optimization

Solving the optimization problem with objective I1 via a linear program is a time-
consuming procedure, because there may be a large number of constraints. Note that
Algorithm 3.8 can also provide an initial guess A0 ∈ IRnC×nC for a local optimization
method. In the spirit of equation (30), for a feasible solution of the optimization problem
we have to find a simplex σ̃nC

that includes the rows of X as points in IRnC . Only if the
convex hull co(X ) of the point set X := {X(i, :); i = 1, . . . , s} is already a simplex, the
Algorithm 3.8 finds its vertices and the following algorithm computes a feasible starting
guess, see Lemma 3.13 and Theorem 3.14 below. In general the starting guess is infeasible.

Algorithm 3.9 Infeasible initial guess for optimization

1. Determine the index mapping ind() for finding approximate vertices of σ̃nC
via Al-

gorithm 3.8.

2. Using the maximality assumption, the transformation matrix A0 can be calculated
via equation (31):

A0 =

 X(ind(1), 1) · · · X(ind(1), nC)
...

...
X(ind(nC), 1) · · · X(ind(nC), nC)

−1

.

3. In general, A0 provides an infeasible initial guess χdisc = XA0 for the optimization
problem.

What kind of infeasibility can occur in Algorithm 3.9? Note that the first column of

A−1

0 is A−1

0 (i, 1) = 1 for i = 1, . . . , nC by construction. Also note that the first column
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of X has this property, too, i.e. X(l, 1) = 1 for l = 1, . . . , s. Therefore, from the first

column of the equation χdiscA
−1

0 = X it follows that χdisc meets the partition of unity
property in Algorithm 3.9. Only the positivity constraint may be violated. In most of
the applications, Algorithm 3.9 provides very good solutions, which are almost feasible.
Therefore, further investigations are not neccessary. But in order to be mathematically
rigorous, a feasible solution is derived in the following.

From infeasible to feasible solutions. We now aim at a projection algorithm from an
arbitrary matrix A ∈ IRnC×nC to a feasible transformation matrix A. Because of Lemma
3.7, theoretically, we can restrict our search of transformation matrices to vertices of the
feasible set A ∈ v(FA). In practice, it is not easy to compute these vertices explicitly.
Therefore, one applies Lemma 3.5 and (28) to extend the search to a superset of matrices
A ∈ F ′

A ⊃ v(FA). It is easy to verify that the following routine computes a feasible
transformation matrix A out of an arbitrary matrix A:

Algorithm 3.10 Feasible transformation matrices

1. For j = 2, . . . , nC replace A(j, 1) with A(j, 1) := −
nC∑
i=2

A(j, i).

2. For i = 1, . . . , nC replace A(1, i) with A(1, i) := − min
l=1,...,s

nC∑
j=2

A(j, i) X(l, j).

3. The sum of the elements of the first row have to be 1 due to Lemma 3.6:

γ :=
k∑

i=1

A(1, i).

Therefore, the feasible transformation matrix A is computed as follows:

A(j, i) :=
A(j, i)

γ
, i, j = 1, . . . , nC .

Verification of the Algorithm 3.10: Step 1 assures feasibility of A w.r.t. equation
(28.1) for j = 2, . . . , nC , which still is true after rescaling in step 3 of the algorithm. Step
2 is also invariant against positive scaling of A and assures feasibility of A according to
equation (28.2) for i = 1, . . . , nC . After step 3 A is feasible w.r.t. the missing condition
(28.1) for j = 1. Algorithm 3.10 is obviously a projection algorithm: If the input A is
feasible w.r.t. (28), then A = A is returned. I.e. Algorithm 3.10 is a surjective mapping
to F ′

A including the optimal transformation matrix. �

In order to get a feasible transformation matrix in Algorithm 3.10 only a specification
of the elements A(j, i) for j, i 6= 1 is necessary, because the other elements are specified in
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step 1 and 2 of the algorithm. Obviously, there are no constraints10 for the choice of these
(nC − 1)2 elements, because after step 3 every input matrix A is mapped to a feasible
one. In other words, the constrained optimization with n2

C variables can be transformed
into an unconstrained optimization problem in (nC − 1)2 variables:

Algorithm 3.11 Robust Perron Cluster Analysis

1. Via Algorithm 3.9 compute an infeasible initial guess A0 for a local optimization.
Use Algorithm 3.10 to get a feasible initial guess A0.

2. Perform an iterative local optimization A0,A1,A2, . . . of I1 or I2 starting with A0.
In each step Ak → Ak+1 of the local optimization routine only update the elements
Ak(i, j), i, j 6= 1, without regarding any constraints. Use Algorithm 3.10 to get a
feasible matrix Ak+1 before evaluating I1(Ak+1) or I2(Ak+1) respectively.

3. If a criterion of convergence is satisfied for some Ak: STOP. The solution is χdisc =
XAk.

In Robust Perron Cluster Analysis, via Algorithm 3.10 infeasible matrices Ak are trans-
formed into feasible ones Ak ∈ FA using a non-differentiable routine, i.e. for a local
optimization procedure only function values I1(Ak+1) or I2(Ak+1) are available. Deufl-
hard and Weber [28] therefore proposed to use the derivative-free Nelder-Mead simplex
method [97, 76] for optimization. From [76]: “[. . .] The Nelder-Mead algorithm should
not be confused with the (probably) more famous simplex algorithm of Dantzig for linear
programming; both algorithms employ a sequence of simplices but are otherwise com-
pletely different and unrelated[. . .]” This statement also holds for the simplices used in
the Nelder-Mead routine, which have dimension (nC − 1)2, and σ̃nC

or σnC
, which have

dimension nC .

3.4.5 Unique Solutions

The optimization problems for I1, I2 are combinatorial global optimization problems, in
general with different local maxima. We cannot assume that local optimization in Al-
gorithm 3.11 finds a global maximum of the objective functions. In the present section
conditions are derived, for which the set of vertices v(FA) of FA is in such a manner that
once one has found any transformation matrix A ∈ v(FA) this matrix is globally optimal.
In other words, every vertex of FA leads to the same function value of I1 or I2.

10Exception: For evaluation of I2 there should not exist any column i = 2, . . . , nC with A(j, i) = 0 for
all j = 2, . . . , nC .
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Definition of uniqueness. As we have seen, the optimal solution of Robust Perron
Cluster Analysis is attained at a vertex A ∈ v(FA) of the feasible set FA. “Uniqueness
of the solution” means that there is only one “real” vertex of FA. In other words, a
regular transformation matrix A ∈ v(FA) is called unique if for every transformation
matrix B ∈ v(FA) the columns of A and B are identical except for permutation. A result
of Deuflhard and Weber provides a sufficient condition for uniqueness.

Theorem 3.12 ([28]) For a matrix χdisc ∈ IRs×nC and the matrix of Perron cluster
eigenvectors X ∈ IRs×nC always three out of the following four conditions are satisfiable:

i) For all l = 1, . . . , s:
nC∑
i=1

χdisc(l, i) = 1,

ii) for all i = 1, . . . , nC and l = 1, . . . , s : χdisc(l, i) ≥ 0,

iii) χdisc = XA with A regular,

iv) for all i = 1, . . . , nC there exists l ∈ {1, . . . , s} with χdisc(l, i) = 1.

If all four of the conditions hold, then χdisc = XA is a solution of the Robust Perron
Cluster Analysis, where A ∈ v(FA) is unique.

Theorem 3.12 implies that a clustering algorithm in terms of almost characteristic
functions always has one “disadvantage”. For example:

• The “inner simplex algorithm” by Weber and Galliat [131], which is identical to
Algorithm 3.9, provides a clustering, which meets the triple “i),iii),iv)”, but the
solution may have negative elements, χdisc 6≥ 0.

• The sign-structure PCCA algorithm by Deuflhard et al. [26] provides a crisp cluster-
ing, i.e. the triple “i),ii),iv)” is satisfied, but the solution is not a linear combination
of eigenvectors, i.e. an important condition for robustness of the clustering does not
hold.

• The Robust Perron Cluster Analysis by Deuflhard and Weber [28] meets “i),ii),iii)”,
where condition “iv)” turns into an optimization problem for I1. If I1 is maximal,
then the solution is unique.

I1 as indicator of uniqueness. Whereas Theorem 3.12 provides a sufficient condition
for uniqueness, in the following a necessary and sufficient condition is shown, which leads
to a better understanding of the relation between the initial guess in Algorithm 3.9 and
the objective function I1. As a pre-requisite, for a characterization of uniqueness we first
proof the following
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Lemma 3.13 (compare [131]) For a matrix X ∈ IRs×nC of Perron cluster eigenvectors
define the set X := {X(l, :) ∈ IRnC ; l = 1, . . . , s}. Then, every regular transformation
matrix A ∈ v(FA) is unique, if and only if the convex hull co(X ) of X is a simplex.

Proof: Feasibility of A can be expressed, like in Section 3.4.3, by the condition that the
convex simplex σ̃nC

spanned by the vertices v>i = A−1(i, :) ∈ IRnC is a superset of X .
Equivalently, σ̃nC

⊃ co(X ). If a point f ∈ X meets f ∈ ∂σ̃nC
, then f ∈ ∂ co(X ), because

co(X ) is the smallest convex set including X .
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Figure 3: A vertex A ∈ v(FA) of the feasible set of transformation matrices is characterized by
the fact that each facet of σ̃nC includes a facet of co(X ) (elements of X are plotted as circles),
where σ̃nC is spanned by the vertices v>i = A−1(i, :) ∈ IRnC , i = 1, . . . , nC . The figure shows the
case nC = 3 with a projection to IR2.

A ∈ v(FA) if and only if nC(nC−1) linear independent inequalities in (27.2) are active,
i.e. nC(nC − 1) points out of X are mapped via A onto facets of σnC

, where membership
according to one cluster is zero. A dimension argument shows that this is the case if
and only if each of the nC facets of σ̃nC

includes (nC − 1) points out of X . These points
have to be part of ∂ co(X ), too, and therefore determine a facet of co(X ). Because of the
convexity of co(X ), finally, a vertex A ∈ v(FA) is characterized by the fact that a facet
of the corresponding simplex σ̃nC

includes a facet of co(X ). Therefore, the choice of such
facets is unique (except for permutation) if and only if co(X ) is a simplex, see also Figure
3. �

With these preparations, the main result of this section is

Theorem 3.14 For a transformation matrix A ∈ IRnC×nC and a matrix X ∈ IRs×nC of
Perron cluster eigenvectors, the following statements are equivalent:

i) A is (except for permutation of columns) the result of Algorithm 3.9 and A ∈ FA,
i.e. the initial guess χdisc = XA is feasible.
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ii) A ∈ v(FA) is unique.

iii) A ∈ FA and I1(A) = nC, i.e. for every i = 1, . . . , nC there is an l ∈ {1, . . . , s} with
maximal degree of membership χdisc(l, i) = 1.

In most of the applications, Algorithm 3.9 provides an almost feasible solution of the
cluster problem, which means that Theorem 3.14 is not a trivial exception but the generic
case, see also [132] and [135].

Proof: “i)⇒ iii)”: In Algorithm 3.9 for a feasible solution we get I1(A) = nC , because
for i = 1, . . . , nC maximailty χdisc(ind(i), i) = 1 holds via construction, see Section 3.4.3.

“iii)⇒ ii)”: If “iii)” holds, then due to maximality of InC
there is a feasible trans-

formation matrix A, which maps nC points {v1, . . . , vnC
} ⊂ X directly to the vertices

e1, . . . , enC
of the standard simplex σnC

, where X is defined in Lemma 3.13. In this case,
the convex hull of X is a simplex spanned by these vertices v1, . . . , vnC

. Lemma 3.13
implies that “ii)” holds.

“ii) ⇒ i)”: Algorithm 3.9 applies Algorithm 3.8 for an identification of so-called ex-
treme points of X . Extreme points are in fact vertices of the convex hull co(X ), see Section
3.1.1. in [100]. If the convex hull of X is a simplex due to Lemma 3.13, then Algorithm
3.8 already finds all vertices of the convex hull of X and therefore A is feasible, because
the rows of A−1 span a simplex including all points of X . Note that a permutation of
rows of A−1 is equivalent to a permutation of columns of A. �

Theorem 3.14 shows that if FA has only one “real” vertex A, then this transformation
matrix can be found via the starting guess algorithm. An indicator of uniqueness is the
value of the objective function I1. See also Section 3.5.3, where it will be shown that this
indicator I1 is an upper bound for the metastability I2. Especially for the case nC = 2 an
important consequence of Theorem 3.14 can be derived:

Corollary 3.15 For the case nC = 2, Algorithm 3.9 provides a feasible unique solution
of Robust Perron Cluster Analysis.

Proof : (see (4.26)-(4.28) in [28]) The solution of Robust Perron Cluster Analysis is
χdisc = XA with a transformation matrix A ∈ v(FA) ⊂ F ′

A. Therefore, if A is unique for
F ′
A, then it is also unique for v(FA). For the case nC = 2 equation (28) for F ′

A is:

A(1, 1) = 1−A(1, 2), A(2, 1) = −A(2, 2),

A(1, 1) = − min
l=1,...,s

A(2, 1)X(l, 2), A(1, 2) = − min
l=1,...,s

A(2, 2)X(l, 2).
(32)

Introducing the following notations

a = max
l=1,...,s

X(l, 2), b = − min
l=1,...,s

X(l, 2),
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for A(2, 2) > 0 we get a unique solution of (32):

A =

 a
a+b

b
a+b

− 1
a+b

1
a+b

 .

For A(2, 2) < 0 we get the same solution, but with a permutation of the columns of A.
For A(2, 2) = 0, the solution A is not regular. Summarizing, in the case nC = 2 the
feasible transformation matrix A is unique. A short calculation shows I1(A) = 2 = nC ,
i.e. Theorem 3.14 “iii)⇒ i)” implies that Algorithm 3.9 finds this solution. �

3.5 Indicators for the Number of Clusters

For a given number nC of clusters the Algorithm 3.11 provides a locally optimal clustering
in terms of almost characteristic functions. But how to fix nC? Here are three methods.

3.5.1 Lower Bound for the Perron Cluster

The simplest method to identify the number of clusters is to prescribe a lower bound for
the lowest eigenvalue λnC

of the Perron cluster. This MINVAL-indicator can be justified
by Theorem 3.18, which will be shown in the following, see also Weber [130].

First we have to construct the unperturbed counterpart P̃ of P . There are many
possible construction methods. The following definition is inspired by a disaggregation
technique evolved from the Simon-Ando theory [120]. This construction rule preserves
the invariant distribution of P .

Definition 3.16 The disaggregation of a stochastic matrix P = D−1P is a stochastic,

reducible matrix P̃ = D−1P̃ having nC uncommunicating blocks with a corresponding index

set decomposition C1, . . . , CnC
. Herein, the non-vanishing entries of P̃ are defined as:

P̃ (i, j) =


P (i, j) , i 6= j

P (i, i) +
nC∑

k=1; i6∈Ck

∑
l∈Ck

P (i, l) , i = j.

This means, the outer-block entries of P are added to the diagonal of P̃ .

For an eigenvalue estimation of λnC
we need the following

Lemma 3.17 (see [44] Corollary 8.1.6.) If A and A + E are symmetric (s, s)-matrices,
then

|λk(A + E)− λk(A)| ≤ ‖E‖2.
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With these preparations we can estimate the lowest eigenvalue of the Perron cluster
from the deviation of P and P̃ .

Theorem 3.18 For a stochastic matrix P = D−1P of a reversible Markov chain, i.e. P

is symmetric, and its disaggregation P̃ = D−1P̃ the following estimation holds

λnC
(P ) ≥ 1− ‖P − P̃‖,

where ‖ · ‖ is any induced sub-multiplicative matrix norm.

This theorem implies that one has to select nC such that λnC
≥ 1 − ε, if ε is the

maximal allowed deviation ε = ‖P − P̃‖ from block structure.

Proof of Theorem 3.18, see also Weber [130]. By construction P̃ is symmetric and

has nC blocks, i.e. the nC-th eigenvalue λnC
(P̃ ) = 1 is maximal. From (21) we know that

D−1/2PD−1/2 and D−1/2P̃D−1/2

are symmetric matrices with the same spectra like P and P̃ , respectively. From Lemma
3.17 we get the following estimation for the spectral radius ρ(P − P̃ ):

1− λnC
(P ) = |λnC

(P )− λnC
(P̃ )|

= |λnC
(D−1/2PD−1/2)− λnC

(D−1/2P̃D−1/2)|

≤ ‖D−1/2PD−1/2 −D−1/2P̃D−1/2‖2

= ‖D−1/2(P − P̃ )D−1/2‖2

= max{|λ1(D
−1/2(P − P̃ )D−1/2)|, |λs(D

−1/2(P − P̃ )D−1/2)|}

= max{|λ1(D
−1(P − P̃ ))|, |λs(D

−1(P − P̃ ))|}

= max{|λ1(P − P̃ )|, |λs(P − P̃ )|}

= ρ(P − P̃ ).

The fact that any induced sub-multiplicative matrix norm is an upper bound for the
spectral radius of a square matrix completes the proof11. �

11For arbitrary eigenvalues the proof method of Theorem 3.18 provides λj(P ) ≥ λj(P̃ )− 2‖P − P̃‖ for
any sub-multiplicative norm. For similar results see also Meerbach et al. [87] Theorem 3.3. Therein, the
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Remark 3.19 For the proof it is only necessary that P̃ is symmetric and has the same
row-sums like P . Therefore, Definition 3.16 is not the only construction rule, which
is compatible with Theorem 3.18. Stochastic complementation is another example, see
[91, 87].

MINVAL-indicator in practice. If one knows the maximal allowed error ε = ‖P−P̃‖
a priori, then Theorem 3.18 provides a necessary but not sufficient condition for the lowest
Perron cluster eigenvalue λnC

≥ 1 − ε. The question is: Which value ε is reasonable? A
simple counter example shows that in the presence of transition states the estimation of
Theorem 3.18 is rather bad. Example 2.1 in [131], with a = b = 0.5 and ε = 0.01, is

P =

 0.99 0.01 0.0
0.5 0.0 0.5
0.0 0.01 0.99

 . (33)

In this matrix the second row can be seen as a transition state. For nC = 2 we get
λ2(P ) = 0.99, but the construction of P̃ according to Definition 3.16 at least gives us

‖P − P̃‖1 = 0.51, i.e. Theorem 3.18 provides the estimation λ2(P ) ≥ 0.49. The bad
estimation is implied by the fact that the transition state (2nd row of P ) cannot be
assigned to one of the other two states keeping ε small. In conformation dynamics the
occurrence of transition states is generic. In fact, this observation was the reason for
introducing a “soft”-clustering method, see [131]. The MINVAL indicator is necessary
but not sufficient for fixing nC . Further investigations are essential. Another motivation
for a MINVAL indicator is given in Section 4.3 Theorem 4.4, where a connection between
eigenvalues and holding probabilities of conformations is derived.

3.5.2 Spectral Gap

Schütte’s conjecture. Schütte conjectured (Conjecture 4.23 in [111]) that for realistic
molecular data the essential spectral radius of the propagator P τ is very small. This means
that in the discrete counterpart P of P τ there is probably a significant gap between the
last Perron cluster eigenvalue λnC

and the rest of the spectrum. Theorem 4.13 of Huisinga
[60] clarifies this conjecture:

Theorem 3.20 Let P τ : L1(π)→ L1(π) denote the propagator corresponding to a stochas-
tic transition function ℘ : IR×Ω×B(Ω)→ [0, 1], where B(Ω) is the class of Borel sets in

estimation is
λj(P ) ≥ λj(P̃ )− 2‖P − P̃‖∞, j = 1, . . . , s,

where P̃ is constructed like in Definition 3.16 or P̃ is the so-called stochastic complement of P . An
alternative proof of Theorem 3.18 uses the well-known result ‖diag(λ1 − λ̃1, . . . , λs − λ̃s)‖ ≤ ‖A− Ã‖ for
Hermitian matrices and any unitarily invariant norm ‖ · ‖, which has been shown by Mirsky [95].



42 3 ROBUST PERRON CLUSTER ANALYSIS

Ω. Let µ denote the measure implied by the Boltzmann distribution π. If p(·, ·, ·) satisfies
a µ-a.e. Doeblin-condition, i.e. if there exist constants ε, δ > 0 and m ∈ N such that for
all A ∈ B(Ω) and µ-almost every q ∈ Ω

µ(A) ≤ ε⇒ ℘m(τ, q, A) ≤ 1− δ,

then the essential spectral radius of P τ is bounded by ress(P
τ ) ≤ (1− δ)1/m.

This theorem implies that Schütte’s conjecture is true, if the probability ℘(τ, q, A) for a
transition in time span τ from q ∈ Ω into a set A ⊂ Ω of small measure is also small.
For example, the essential radius might not be small, if the free energy landscape of the
system has a funnel structure with a deep valley. These systems, however, are not very
interesting for conformation analysis.

Vice versa, due to the correlation between metastability and the spectrum of P in
Theorem 3.4, inside the Perron cluster of eigenvalues there should not be a significant
gap. Together with Schütte’s conjecture, this assumption implies that it is possible to
search for a significant gap inside the spectrum of P in order to identify the number nC

of clusters.

Condition number of Robust PCCA. Spectral analysis is an important field in
Markov chain theory and well-investigated. Another justification for the spectral gap
indicator is also well-investigated, but usually not mentioned in Perron Cluster Analysis
– the condition of the invariant subspace corresponding to the Perron cluster eigenvalues.
In most cases the eigenvalues λ1, . . . , λnC

≈ 1 stay close together. This means that the
problem of computation of the corresponding eigenvectors is not well-conditioned, see
Corollary 7.2.6 in [44]. But in Robust Perron Cluster Analysis we are not interested in
each single eigenvector X1, . . . , XnC

∈ IRs, but only in the invariant subspace spanned by
all Perron cluster eigenvectors X = [X1, . . . , XnC

], because the solution χdisc is searched in
this space, χdisc = XA. To see that this problem is well-conditioned for a big gap between
the last Perron cluster eigenvalue λnC

and the next one λnC+1 here is a corresponding
adaption of Theorem 8.1.10 in [44]:

Theorem 3.21 Define the symmetric matrix A := D−1/2 P D−1/2 ∈ IRs×s like in equation
(21). Sort its eigenvalues λ1 ≥ . . . ≥ λs in descending order. For the corresponding
normalized eigenvectors y1, . . . , ys ∈ IRs define the matrices Y1 := [y1, . . . , ynC

] ∈ IRs×nC

and Y2 := [ynC+1, . . . , ys] ∈ IRs×(s−nC). If E ∈ IRs×s is a symmetric error matrix with

‖E‖2 ≤
λnC
− λnC+1

5

and E21 := Y >
2 E Y1, then there exists a matrix Ŷ1 ∈ IRs×nC , such that the columns of Ŷ1

define an orthogonal basis for an invariant subspace of A + E with

dist(span(Y1), span(Ŷ1)) ≤
4

λnC
− λnC+1

‖E21‖2.
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In this inequality dist(span(Y1), span(Ŷ1)) := ‖Y >
2 Ŷ1‖2 can be seen as distance measure

between two subspaces of IRs and 4(λnC
−λnC+1)

−1 as condition number for the sensitivity
of span(Y1), which is small for a big gap between λnC

and λnC+1.

Proof: See Theorem 8.1.10 with equation (8.1.2) and Corollary 8.1.11 in [44]. �

3.5.3 minChi Indicator for Simplex Structure

The next indicator has first been defined in 2002 [131] as indicator for uniqueness. If
this indicator is zero, then the initial guess in Algorithm 3.9 is feasible and except for
permutation a unique solution of the clustering, see also Theorem 3.14. In the view
of perturbation analysis [28] and after comparison of Robust Perron Cluster Analysis
with graph partitioning methods by Weber et al. [134, 135] the meaning of the following
indicator has changed.

Perfect simplex structure. Robust Perron Cluster Analysis is a cluster method,
which is in principle a simple linear mapping from eigenvector data into a simplex. Let
χ1, . . . , χnC

∈ L2(π) a set of almost invariant membership functions, χl : Ω→ [0, 1], with
maximal value χl,max ≤ 1. For the metastability of these functions we have (the maximal
eigenvalue of P τ is 1, see Theorem 2.2 iii)):

P(l, l) =
〈χl, P

τχl〉π
〈χl, e〉π

≤ 〈χl, χl〉π
〈χl, e〉π

≤ χl,max 〈χl, e〉π
〈χl, e〉π

= χl,max. (34)

Therefore, the maximal value χl,max of the membership function l is an upper bound for
the metastability P(l, l) of an almost invariant membership function χl, i.e. I2 ≤ I1.
We aim at a clustering of Ω into a set χ1, . . . , χnC

of maximal metastable membership
functions. Due to (34) a necessary condition is χl,max ≈ 1, or in the discrete case, the
matrix χdisc should have a maximal entry near 1 per column. The corresponding rows in
χdisc represent points close to vertices of the simplex σnC

. In other words: A necessary
pre-requisite for metastability is an almost perfect simplex structure of the eigenvector
data and its linear mapping, see Section 3.4.3.

Initial guess and minChi indicator. In general, the initial guess of Algorithm 3.9 is
infeasible. Whereas feasibility w.r.t. the partition of unity is always satisfied, the interval
restrictions for χdisc(i, j) ∈ [0, 1], i = 1, . . . , s and j = 1, . . . , nC , usually are violated,
which means that negative entries occur. The minChi-indicator is defined as the minimal
entry of χdisc evaluated for the initial guess in step 3. of Algorithm 3.9. If this entry is
almost zero, then the initial guess is almost feasible, then χl,max ≈ 1 can be achieved for
each membership function, which is a necessary condition for high metastability due to
equation (34). Perturbation theory obviously implies minChi = O(ε2).
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MinChi for nC = 2. For the case nC = 2 there is always a unique solution of the Robust
Perron Cluster Analysis, see Corollary 3.15. Therefore, the minChi-indicator is always
zero in this case. One has to take this fact into account for the determination of nC . If
minChi is almost zero for some 2 < nC � s then there is a clustering. But if minChi is
only zero for nC = 2 and significantly larger for nC > 2, then there has to be another
indicator for the decision whether nC = 1 or nC = 2. The results of spectral analysis can
be helpful for this decision. A corresponding improvement of the minChi-algorithm given
in [134, 135] is the following:

Algorithm 3.22 Determining the number of clusters

0. If the second eigenvalue λ2 of P is λ2 < λmin for a predefined lower bound λmin,
then there is no metastability inside P , i.e. nC = 1. STOP

1. For nC = 2, . . . , b, where 2 < b � s: Compute the initial guess for the Robust
Perron Cluster Analysis via Algorithm 3.9 and its minChi(nC)-value.

2. Determine the maximal number nC for which the corresponding minChi-value
minChi(nC) is higher than a predefined lower bound θ < 0 as the number of clusters.

Unfortunately, there is always a couple of parameters, which have to be predefined
in each of the above algorithms, in order to compute the number nC of clusters. The
question, what is the “correct” number of clusters, is not easy to answer. Therefore, the
given indicators are only a kind of justification for a special choice of nC .

3.6 Normalized Cut and Robust Perron Cluster Analysis

There is a deep relation between Robust Perron Cluster Analysis and spectral clustering
methods in graph partitioning [134, 126]. Especially the relaxation of the normalized cut
minimization problem used by Shi and Malik [118] and the Multicut Algorithm by Meila
and Shi [89] are very close to the Perron Cluster Analysis method. This relation will be
discussed in the present section.

Minimizing the cut. The symmetric matrix P can be interpreted as weight matrix of
a weighted and undirected complete graph G, such that P (i, j) is defined as the weight of
the edge between the vertices i and j of G. The problem of computing almost invariant
subsets in configuration space is equivalent with the problem of optimal graph partitioning
of G. The straight forward method for an optimal graph partitioning is to minimize the
so-called cut of the partitioning, see e.g. Wu and Leahy [137]. If V denotes the set of
vertices of G the cut of a partition A ⊂ V is defined as

cut(A) :=
∑

i∈A,j 6∈A

P (i, j).
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The sum of the cut values of A1, . . . , AnC
, which is an nC-way graph partitioning of G,

can be seen as a special norm of the deviation P̃ −P , see Section 3.5.1. This value should
be minimal for an optimal clustering. Although this optimization problem can be solved,
the results are bad, because the minimal cut algorithm tends to separate low weighted
parts of G first and to lead to an unbalanced clustering, see [118, 137].

Normalized cut. In order to get a balanced partitioning, the normalized cut value of
a partitioning is minimized, which is defined as

Ncut :=

nC∑
i=1

cut(Ai)

assoc(Ai)
,

where assoc(Ai) is the association value of Ai, i.e. the sum of the rows of P assigned to
Ai:

assoc(Ai) :=
∑
j∈Ai

s∑
k=1

P (j, k).

In [118] it has been shown that minimizing the normalized cut value for a weighted graph
leads to a balanced nC-way graph partitioning of G. Unfortunately, solving this problem
is NP -complete.

Relaxation of normalized cut. The main result in [118] is: Normalized cut can be
relaxed, i.e. Shi and Malik transformed the crisp partitioning algorithm into a partition-
ing with almost characteristic functions (the same procedure which led from the Perron
Cluster Analysis in [26] to the Robust Perron Cluster Analysis in [28]). Then they showed
that the solution of this problem for nC = 2 is a linear combination of the eigenvectors
corresponding to the lowest two eigenvectors of the following eigenvalue problem:

(D − P )x = λDx.

A short calculation shows that this eigenvalue problem is equivalent to

Px = (1− λ)x.

Via substitution λ = 1 − λ this turns out to be the eigenvalue problem solved for the
Robust Perron Cluster Analysis. In other words: For nC = 2 the Robust Perron Cluster
Analysis exactly solves the relaxation of the normalized cut optimization problem.

NP -completeness. Due to the NP -completeness proof for the normalized cut mini-
mization by Papadimitrou in 1997 (see Appendix of [118]) we cannot assume a polynomial-
time algorithm for solving this optimization problem in a crisp sense. This is a mathemat-
ical reason for changing the point of view in conformation dynamics from strict clustering,
i.e. conformations as almost invariant sets, to its relaxation, i.e. conformations as almost
characteristic functions.
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For the case nC > 2. For an nC-way clustering with more than two clusters, Shi and
Malik suggest to use the sign structure of the last nC eigenvectors of the above eigenvalue
problem. This is very similar to the examination of the sign structure like in the former
Perron Cluster Analysis defined by Deuflhard et al. [26]. Note that the eigenvectors used
in both algorithms are identical. In [28] Deuflhard and Weber have shown that this
kind of algorithm is not robust. In terms of graph partitioning: We get into trouble if
we go back from the relaxed normalized cut optimization problem to a crisp clustering.
For nC > 2 Meila and Shi [89] suggest the so-called Multicut Algorithm in which they
compute the first nC eigenvectors of the stochastic matrix P and consider the rows of
the eigenvector matrix X as points in IRnC , which is equivalent to the proceeding in
Robust Perron Cluster Analysis, see Section 3.4.3. But after this step the two methods
are different. Meila and Shi simply apply a standard clustering method to this point
set, whereas Robust Perron Cluster Analysis makes use of the simplex structure of the
eigenvector data. That a simplex structure is necessary for clustering into metastable
conformations has been shown in Section 3.5.3.



47

4 Basic Concept of the Meshless Algorithm

In the following a set-based discretization of the conformational space will be replaced by
a global Galerkin discretization. This will lead to the occurence of a mass matrix in the
discretization of P τ .

4.1 Global Galerkin Discretization

So far, the solution of the Robust Perron Cluster Analysis assigns degrees of membership
to subsets of the configuration space Ω. The discretization of Ω into subsets in order to
define a membership basis ξ1, . . . , ξs often leads to methods depending on meshes.

• The simplest approach for a discretization of Ω is based on a uniform mesh, which
suffers from an exponentially increasing number of discretization boxes w.r.t. the
number of dimensions: “Curse of dimensionality”, see Bellmann [8].

• The “successive Perron Cluster Analysis of dihedrals” by Cordes et al. [17] uses a
uniform interval discretization of single intramolecular coordinates. In order to avoid
the curse of dimensionality, this method assumes that single internal coordinates can
be used in order to decompose Ω into metastable subsets. This assumption may be
wrong for some molecules.

• A different discretization approach of Kohonen [73] is based on prototyping, i.e.
particles {q1, . . . , qs} ⊂ Ω are used in order to represent a continuous distribution in
the high-dimensional space Ω. This method was the basis for Galliats self-organizing
box maps (SOBM) [39, 40]. In SOBM the Kohonen particles become centers of boxes
for a discretization of Ω. The problem of this method is to keep balance between
small overlap of these boxes and preferably complete overlay of the configuration
space, which works hardly for high-dimensional spaces.

All these methods use meshes (boxes, intervals) in some way, which can cause the
curse of dimensionality. For the solution of high-dimensional partial differential equations
via finite element methods this problem is also known, see e.g. [79, 45, 115, 80]. In
the last decade meshless particle methods have become of more and more interest, see
Li and Liu [79]. Similar to the self-organizing maps of Kohonen, methods including a
non-deterministic generation of particles are assumed to be able to break the curse of
dimensionality, see Appendix A.3. In the following the meshless discretization approach,
i.e. a global Galerkin discretization of P τ , will be applied to conformation dynamics.

From set-based to function-based discretization. The set-based discretization of Ω
can also be seen as a function-based discretization of Ω with a basis consisting of piecewise
constant (characteristic) functions ξ = [ξ1, . . . , ξs]. The conceptual change of cluster
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identification from configuration space to function space can be extended to an arbitrary
and non-orthogonal set of basis functions, which is the main topic of this thesis. The key
is that we do not need orthogonality of ξ or any set-based descriptions of conformations
in order to compute important informations for drug design, like partition functions,
coupling matrices or visualization of conformations, see Section 3.1 and Fig. 12 on page
95.

For an arbitrary membership basis in Definition 3.1, the condition that χl should be
almost invariant w.r.t. the propagator P τ , can be written as

χl ≈ P τχl

⇔
s∑

j=1

ξj χdisc(j, l) ≈ P τ

s∑
j=1

ξj χdisc(j, l)

⇒
∫

Ω

s∑
j=1

ξi(q) ξj(q) χdisc(j, l) π(q) dq ≈
∫

Ω

s∑
j=1

ξi(q) P τξj(q) χdisc(j, l) π(q) dq

⇔
s∑

j=1

〈ξi, ξj〉π χdisc(j, l) ≈
s∑

j=1

〈ξi, P
τξj〉π χdisc(j, l), i = 1, . . . , s

⇔ Sχdisc ≈ Pχdisc, (35)

where the mass matrix S is defined as

S(i, j) := 〈ξi, ξj〉π, i, j = 1, . . . , s,

and the Galerkin discretization P of the transfer operator is defined as

P (i, j) := 〈ξi, P
τξj〉π, i, j = 1, . . . , s.

S is symmetric by construction, whereas P is symmetric because P τ is self-adjoint
w.r.t. the Boltzmann distribution π. In most cases, S and P are positive (semi-)definite,
but they need not be. The next Lemma presents some properties of S and P .

Lemma 4.1 The row-sums of P and S are identical. For i = 1, . . . , s:

wi =
s∑

j=1

P (i, j) =
s∑

j=1

S(i, j) = 〈ξi〉π.

If P and S are positive, then the vector w = (w1, . . . , ws)
> ∈ IRs

+ is the unique positive
left eigenvector with ‖w‖1 = 1 of the stochastic matrices

S = D−1S and P = D−1P ,

where D = diag(w1, . . . , ws).
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Proof: The identity of the row-sums of P and S is a simple consequence of the partition
of unity property of ξ and P τe = e for the constant function e : Ω→ {1}. It follows that
the corresponding diagonal matrix D transforms P and S into stochastic matrices. The
uniqueness of the eigenvector w follows from the scaling condition ‖w‖1 = 1 and Perron’s
Theorem, see Theorem 1.2.2. in [7], where w>P = w> and w>S = w> respectively. �

Construction of a membership basis. The choice of the membership basis ξ is very
important for meshless conformation dynamics. It depends on technical details of meshless
cluster identification and Hybrid Monte Carlo sampling. Therefore, more theory about
the construction of a suitable membership basis follows in Section 5.1.

4.2 Meshless Robust Perron Cluster Analysis

Generalized eigenvalue problem. For the Robust Perron Cluster Analysis only the
eigenvector data X ∈ IRs×nC for the first nC eigenvalues is important. In meshless meth-
ods, i.e. for a non-orthogonal membership basis, however, the eigenvalue problem becomes
generalized, see equation (35). In this situation, the input data X for the clustering is
obtained from the solution of

SXΛ = PX, (36)

where Λ = diag(λ1, . . . , λnC
) is the matrix of Perron cluster eigenvalues. In this case it is

important to analyze whether S is positive definite, strictly positive definite or positive
semi-definite.

S positive definite. If S is positive definite, then the following Lemma can be applied:

Lemma 4.2 (Corollary 8.7.2 in [44]) In the situation of (36) let P be symmetric and
S symmetric positive-definite, then there exists a nonsingular X = [x1, . . . , xs] ∈ IR(s,s)

such that both X>PX = diag(a1, . . . , as) and X>SX = diag(b1, . . . , bs) are diagonal and
real-valued. Moreover,

Pxi = λiSxi

for i = 1, . . . , s and λi = ai/bi.

Because of Lemma 4.2, the numerical approximation P appr. of P should be replaced by

a symmetric one, e.g. P appr. → 0.5 (P appr. +P
>
appr.), before applying further computations.

Recall that P is symmetric due to self-adjointness of P τ . If S is a diagonally dominant
matrix, then Lemma 4.2 implies the following

Corollary 4.3 In the above situation let ξ1, . . . , ξs : Ω → [0, 1] such that P and S are
symmetric and S is diagonally dominant, then the generalized eigenvalue problem (36)
has a real-valued spectrum. If, additionally, P is diagonally dominant, then the spectrum
is positive.
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Proof: In the corollary, S is a nonnegative diagonally dominant matrix. From Gerschgorin
estimation for its eigenvalues it follows that S is positive-definite, i.e. Lemma 4.2 holds
and b1, . . . , bs > 0. If P is also positive-definite, then a1, . . . , as > 0 and λi = ai/bi is
positive. �

Corollary 4.3 means that the generalized eigenvalue problem has a real-valued spec-
trum, if ξ1, . . . , ξs is a membership basis, for which

〈ξi, ξi〉π > 0.5 〈ξi〉π, i = 1, . . . , s,

and it has a positive spectrum, if additionally

〈ξi, P
τξi〉π > 0.5 〈ξi〉π, i = 1, . . . , s.

S strictly positive definite. The condition of the eigenvalue problem (36) may be
poor, although the numerical approximation of P is symmetrized. The reason is that S
may have rows i, which almost vanish: The i-th row-sum of S equals the weight 〈ξi〉π of
the i-th membership function ξi, which may be low. Almost vanishing rows also means
that S is almost singular. For the generalized eigenvalue problem this may lead to a
poor condition number w.r.t. the eigenvalues. Defining symmetric O(ε)-error matrices
∆P , ∆S ∈ IRs×s, for an eigenvalue λ of the generalized eigenvalue problem (36) with left
eigenvector x ∈ IRs and right eigenvector y ∈ IRs, where y>x = 1, the absolute error ∆λ
of the eigenvalue (presumed that the perturbed eigenvalue problem is solvable) can be
determined via

(P + ∆P )(x + ∆x) = (λ + ∆λ)(S + ∆S)(x + ∆x)

⇒ ∆λ =
y> ∆P x− λy> ∆S x + y> ∆P ∆x− λy> ∆S ∆x

y> S x + y> S ∆x + y> ∆S x + y> ∆S ∆x

=
y> ∆P x− λy> ∆S x

y> S x
+O(ε2). (37)

From this equation it is clear that the denominator may be small, i.e. the absolute error
of the eigenvalue λ may be high, if S is almost singular. Numerical problems do not occur
if we assume that S is diagonally dominant, such that

〈ξi, ξi〉π > (0.5 + δ) 〈ξi〉π, i = 1, . . . , s, (38)

with δ > 0. A Gerschgorin estimation yields

λ(S) ≥
( s∑

j=1

S(i, j)
)−1(

S(i, i)−
∑
j 6=i

S(i, j)
)
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=
( s∑

j=1

S(i, j)
)−1(

2S(i, i)
)
− 1

>
( s∑

j=1

S(i, j)
)−1(

2(0.5 + δ)
s∑

j=1

S(i, j)
)
− 1

= 2δ. (39)

Condition (38) avoids singularity of S and leads to a better error dependence in equation
(37).

Detour: Objective function. Like in Definition 3.2, the coupling matrix P ∈ IRnC×nC

for a clustering χdisc ∈ IRs×nC is given as

P =
(〈χi, P

τχj〉π
〈χi〉π

)
i,j=1,...,nC

= diag(w̃1, . . . , w̃nC
)−1 χ>disc P χdisc.

In this equation, w̃i are the partition functions defined in (17). Let D := diag(w̃1, . . . , w̃nC
).

The solution X of the eigenvalue problem (36) can be rescaled, such that XT SX = InC
,

see Lemma 4.2. With the generalized eigenvalue problem (36) and A>A = χ>discSχdisc we
get:

trace(P) = trace(D
−1

χ>disc P χdisc)

= trace(D
−1A> X> P X A)

= trace(D
−1A> X> S XΛA)

= trace(D
−1A>ΛA)

= trace(D
−1

χ>disc S χdisc︸ ︷︷ ︸
=S

A−1ΛA)

= trace(S A−1 ΛA). (40)

In this equation, the expression trace(P) = trace(D
−1A>ΛA) shows that the computa-

tion of I2 is exactly the same as in Section 3.4.2. Note that also Lemma 3.6 holds. The
last line in (40) shows that like in Theorem 3.4 the trace of P is bounded by the trace of
Λ ∈ IRnC×nC .

S positive semi-definite. If S is positive semi-definite, then computation of the eigen-
vector data according to (36) may be ill-conditioned. We have to look for an alternative
computation of X. Like in the proof of Theorem 3.4 equation (24), the reason for the
difference trace(P) 6= trace(Λ) in (40) is the stochastic matrix S ∈ IRnC×nC :

S =
(〈χi, χj〉π
〈χi〉π

)
i,j=1,...,nC

. (41)
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The diagonal of this stochastic matrix can be seen as a measure of crispness of the
conformations χi for i = 1, . . . , nC , see also equation (43). Due to the fact that the
spectrum of P τ has an upper bound λ1 = 1, metastability is not only bounded by the
spectrum Λ but also by the crispness of the corresponding conformations χi, i = 1, . . . , nC :

trace(P) =

nC∑
i=1

〈χi, P
τχi〉π

〈χi〉π
=

nC∑
i=1

〈χi, P
τχi〉π

〈χi〉π
〈χi, χi〉π
〈χi, χi〉π

=

nC∑
i=1

〈χi, P
τχi〉π

〈χi, χi〉π
〈χi, χi〉π
〈χi〉π

≤
nC∑
i=1

〈χi, χi〉π
〈χi〉π

=

nC∑
i=1

S(i, i) = trace(S). (42)

This means that metastability can only be high, if

〈χl, χl〉π
〈χl, e〉π

≈ 1 ⇔ 〈χl, χl〉π − 〈χl, e〉π ≈ 0, (43)

for all conformations χl, l = 1, . . . , nC .

Geometrical clustering. In geometrical clustering one computes the eigenvector data
X for the Robust Perron Cluster Analysis via

SX = XΛ (44)

instead of solving the generalized eigenvalue problem (36). The spectrum of (44) is real-
valued, because S is symmetric by construction. There is an advantage of using the
geometrical cluster method. If one is only interested in partition functions and not in
transition probabilities12, see (17), then one can avoid the numerical computation of P ,
because all information about statistical weights is contained in S also. This approach
halves the numerical effort, which will be seen later in Figure 4 on page 62 below.

Dynamical clustering. In the case of an ill-conditioned generalized eigenvalue prob-
lem, for a so-called dynamical clustering the stochastic eigenvalue problem

PX = XΛ (45)

12Theoretically, partition functions provide all thermodynamically important informations about the
molecular system. There is also a concept for the calculation of transition rates on the basis of partition
functions via the famous Eyring formula, which can be found in textbooks on physical chemistry. Note,
however, that w̃j =

∫
Ω

χj(q) π(q) dq is only the spatial part of the partition function with normalized
Boltzmann factor π.
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with P = D−1P and the symmetrized matrix P is solved instead of (36). The whole
toolbox of Section 3 is available in this case. The following equations show that the
difference between (36) and (45) is low in terms of almost characteristic functions. Assume
that χdisc is computed via Robust Perron Cluster Analysis for X of (45), i.e. DXΛ = PX,
with restricted matrices X ∈ IRs×nC and Λ = diag(λ1, . . . , λnC

), then

X>SXΛ = X>SXΛ−X>DXΛ + X>PX
(1∗) = X>SXΛ−X>diag(Se)XΛ + X>PX

= X>(S − diag(Se))XΛ + X>PX

= A−1> χ>disc (S − diag(Se)) χdisc︸ ︷︷ ︸
≈0

A−1Λ + X>PX

(2∗) ≈ X>PX. (46)

In (1∗) it is used that the diagonal matrix D = diag(Se) can be computed either from the
row-sums of P or from S due to Lemma 4.1. For the approximation in (2∗) equation (43)
is used, which is necessary if χl is metastable. Solving equation (45) in order to get input
data for the Robust Perron Cluster Analysis is therefore a useful alternative to (36).

4.3 Metastability vs. Holding Probabilities

4.3.1 Infinitesimal Generator

This subsection includes some introductory remarks for Section 4.3. In equation (13)
the propagator P τ is constructed according to a short-time Hamiltonian dynamics (MD)
simulation, which leads to L2(π)-self-adjointness of P τ . The time dependence of P τ is not
very realistic, however. In a realistic model of molecular transition probabilities in a heat
bath, one would expect that the underlying Markov process is homogenous and that the
famous Chapman-Kolmogorov equation

P (τ1+τ2) = P τ2 ◦ P τ1 (47)

for different simulation lengths τ1, τ2 > 0 is satisfied. This is not the case for Hamiltonian
dynamics with randomized start momenta, cf. [60]. Briefly stated, the disadvantage is
that in the definition (13) of P τ the momenta are only initial values for the dynamics
equations, whereas in reality, the heat bath contact of the molecule exchanges kinetic
energy all the time, which leads to the Chapman-Kolmogorov equation. In order to
circumvent this problem, one has to replace the MD-part with a dynamics having an
L2(π)-self-adjoint propagator P τ which meets (47) and which has the invariant density
µcan. An example for this dynamics is the so-called Smoluchowski equation of motion [60],
which is the high-friction limit solution of the well-known Langevin equation. For this
kind of dynamics, the Chapman-Kolmogorov property (47) implies semigroup properties
for the propagator P τ [71, 60] and the existence of an infinitesimal generator L with

P τ f = exp(τL) f (48)
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for f ∈ L1(µ). By this equation, for a transition matrix P , which is a discretization of P τ ,
there exists a transition rate matrix L, which is a discretization of L. With Hamiltonian
dynamics we do not have an infinitesimal generator in the strict sense, but we can simply
define L via P = exp(τL) as corresponding rate matrix. This is possible, because we do
not take different time-steps τ into account, i.e. we do not need the correctness of (48)
for arbitrary τ .

4.3.2 Explicit Upper and Lower Bounds for Metastability

A problem for finding explicit lower bounds for trace(P) in equation (40) is the fact that
the trace-function is not multiplicative. For explicit bounds in this case see Huisinga and
Schmidt [62]. The following theorem is based upon (40), but instead of metastability in
terms of trace(P) a similar measure of quality is used: If metastability is high, then the
determinant det(P) is nearly 1.

Theorem 4.4 If S in (41) is diagonally dominant13, then for the coupling matrix P the
following estimation holds

a

nC∏
i=1

λi ≤ det(P) ≤
nC∏
i=1

λi,

where
a = ( min

i=1,...,nC

{2S(i, i)− 1})nC .

Proof: From equation (40) we get

det(P) = det(S A−1 ΛA)
= det(S) det(A−1) det(Λ) det(A)
= det(S) det(Λ)

= det(S)

nC∏
i=1

λi. (49)

As the determinant of S is the product of its eigenvalues, a simple Gerschgorin estimation
implies

( min
i=1,...,nC

{2S(i, i)− 1})nC ≤ det(S) ≤ 1.

�

Remark 4.5 Equation (49) clarifies the necessary and sufficient conditions for metasta-
bility of a set of almost characteristic functions. Since det(P) = det(S)det(Λ), we need

13This is a natural condition, because the trace of S is an upper bound for the metastability, see
equation (42).
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a good discretization X of the eigenfunctions of P τ in order to maximize det(Λ) and a
linear combination χ = XA, which is as crisp as possible in order to maximize det(S).
The term det(Λ) motivates the spectral gap indicator for the number of clusters in Section
3.5.2, whereas det(S) motivates the minChi indicator for the simplex structure in Section
3.5.3.

Perturbation analysis. In contrast to Theorem 3.4, Theorem 4.4 allows for a direct
computation of upper and lower bounds for a metastability measure in terms of the
conformations χi, but it can also be used for a perturbation analysis: If S = I + O(ε2)
like in Theorem 3.4, then det(S) = 1 + O(ε2) and therefore the results of perturbation
analysis can directly be inserted into equation (49) of the above proof. For an application
of Theorem 4.4 in practice, a physical interpretation for det(P) is missing, which will be
motivated now.

Monomolecular transformations. Conformational changes can be modeled as mono-
molecular reactions. For all pairs of conformations χ1, . . . , χnC

we have a reaction of the
type

χi ⇀ χj, i, j = 1, . . . , nC ,

with a corresponding time-independent transition rate L(i, j) > 0 for i 6= j and L ∈
IRnC×nC . The diagonal elements of L are the negative exit rates, i.e.

L(i, i) = −
∑
j 6=i

L(i, j).

For a concentration vector x(t) ∈ IRnC , where the i-th component of x(t) is the concen-
tration of conformation χi in the ensemble at time t, the following differential equation
describes the reaction process:

∂ x(t)

∂t
= L> x(t). (50)

For t→∞ the equilibrium concentration is x(∞) ∝ (w̃1, . . . , w̃nC
)>. Due to metastability

equation (50) is a slow process.

Markov process. Let x̄ be a realization of equation (50) for one single molecule. This
molecule has a certain state x(t) ∈ {1, . . . , nC} at time t. The matrix L generates the
corresponding continuous-time Markov jump process, which is metastable if L ≈ 0, i.e.
trace(L) ≈ 0. From theory of Markov processes, see eq. (4.16) in [71], the matrix P of
transition probabilities according to τ time units can be calculated as

P = exp(Lτ), (51)
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where L is called the infinitesimal generator of P . With Theorem 4.4 one can transfer
the point of view from metastability and transition matrices to exit rates and transition
rate matrices. Inserting equation (51) into Theorem 4.4 yields:

a

nC∏
i=1

λi ≤
nC∏
i=1

exp(L(i, i)τ) ≤
nC∏
i=1

λi,

using det(exp(M)) = exp(trace(M)) for matrices M ∈ IRnC×nC . In this equation,
exp(L(i, i)τ) ∈ [0, 1] is the holding probability hi(τ) of conformation i corresponding to
time span τ :

Theorem 4.6 (see also Theorem 4.6 in [71]) Let L be a generator of a Markov process
with L(i, i) < 0 for every i ∈ {1, . . . , nC}. If x̄(t) ∈ {1, . . . , nC} is a realization of the
Markov process (50), then

hi(τ) := P(inf{t ≥ 0 : x̄(t) 6= i}︸ ︷︷ ︸
exit time

> τ | x̄(0) = i) = exp(L(i, i)τ)

is the holding probability of this process according to state i. The transition probability
after leaving state i is given by

pij := P( x̄(inf{t ≥ 0 : x̄(t) 6= i}) = j | x̄(0) = i) = −L(i, j)

L(i, i)
.

By Theorem 4.6, the product of holding probabilities of the conformations is bounded
by the product of the Perron cluster eigenvalues. If hi ≈ 1, then the conformation χi is
metastable. In terms of L1(π)- and L2(π)-norms of χi the result is the following

Corollary 4.7 With the above notations and in the situation of Theorem 4.4 the following
estimation holds:

a

nC∏
i=1

λi ≤
nC∏
i=1

hi ≤
nC∏
i=1

λi,

where the crispness factor is

a = ( min
i=1,...,nC

{2
‖χi‖L2(π)

‖χi‖L1(π)

− 1})nC .

Holding probability and metastability. For a realization x̄(t) of a continuous-time
Markov jump process the holding time hi(τ) is defined as the probability that a process
starting in x̄(0) = i stays in i during the whole simulation length τ . The metastabil-
ity P(i, i) of a conformation χi is defined as the probability that a process starting in
χi is again in conformation χi after time τ , which means, the process can also leave χi
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during simulation and return to it again. Therefore, hi ≤ P(i, i). But due to metasta-
bility, returning to conformation χi after entering another conformation is a rare event,
i.e. hi ≈ P(i, i). For further investigations of the correspondence between exit rates and
eigenvectors of P see also Huisinga et al. [61]. For the application of rate matrices out of
molecular simulations, see Weber and Kube [132].

4.4 Uncoupling in Function Space

Due to equation (36), for a meshless identification of molecular conformations the numer-
ical approximations of S and P are necessary. Assume, there is a given set Q of position
states Q = {q1, . . . , qN} ⊂ Ω sampled according to the Boltzmann distribution, then the
matrices can be approximated via Monte Carlo importance sampling like in equation (4).
For i, k = 1, . . . , s:

S(i, k) = 〈ξi, ξk〉π ≈ 1

N

N∑
l=1

ξi(ql)ξk(ql),

P (i, k) = 〈ξi, P
τξk〉π ≈ 1

N

N∑
l=1

ξi(ql)ξj(ql),

where ql ∈ Ω is a propagation of ql w.r.t. the equation of motion, where the start momenta
are distributed according to the Maxwell-Boltzmann distribution at the observation tem-
perature. At this stage, the task of conformation dynamics seems to be solved. One
can choose any method14 to generate an adequate importance sampling for the computa-
tion of S and P . Robust Perron Cluster Analysis from this point of view is a separated
post-processing routine. In practice, however, the generation of a sampling Q is a se-
vere problem. One possible sampling method is Hybrid Monte Carlo. In Hybrid Monte
Carlo sampling the proposal step is based on a short-time dynamics simulation of the
molecule. This, however, means that energy barriers are hardly crossed, i.e. the sampling
distribution is governed by rare events. This effect is called “critical slowing down”. An
enormous number of methods has been developed to tackle this problem, for an excellent
introduction into molecular simulation see Frenkel and Smit [38] or Allen and Tildesley
[2]. Additionally, the numerical error of Monte Carlo approximation mainly depends on
the variance of the integrand. One can imagine that there are also many possibilities to
accelerate Monte Carlo integration by variance reduction. In the following, a sampling
method is presented, which can tackle both, variance reduction and critical slowing down.
With this method it is possible to relate the sampling error of Q to a numerical error,
which corresponds to the approximation of almost characteristic functions by a given
membership basis, see Section 5.2.3.

14for example multi-canonical algorithm [54], adaptive temperature HMC [112], simulated tempering
[84], or other methods [10]
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4.4.1 Partitioning Methods

The well-known grid-based partitioning methods [52, 104, 103] have been developed in the
early 1960s. These methods can be used in order to decrease the variance of a standard
Monte Carlo estimator of an integral I

I =

∫
Ω

h(q) π(q) dq

which has a probability density function π. In these methods the domain Ω is decomposed
into a partition X1, . . . ,Xs̃ and the integral I is computed for each region Xi separately,
i.e.

I =
s̃∑

j=1

wj Ij, Ij =

∫
Xj

h(q) πj(q) dq, (52)

where the probability density πj : Ω → IR is the normalized restriction of π to Xj. wj is
the probability of partition Xj, i.e.

wj =

∫
Xj

π(q) dq.

wj is also called coupling weight or statistical weight. The aim of these methods is to find
a partition, such that the variance factors

vi :=

∫
Xi

(h(q)− Ii)
2 πi(q) dq (53)

of the Monte Carlo integration estimator is similar for each region Xi.
In our setting, the distribution πj inside the partition Xj is unknown a priori. An

importance sampling approach via Monte Carlo methods can be used for the evaluation
of the integrals Ij, j = 1, . . . , s̃. For this purpose, Fischer et al. [35, 34, 36] define a
modified potential for each partition Xj, which restricts the sampling accordingly, i.e. for
j = 1, . . . , s̃

Vj(q) :=

{
V (q), q ∈ Xj,
∞, q 6∈ Xj,

(54)

and use Hybrid Monte Carlo sampling. The disadvantage of this method is that the cou-
pling weights wj for equation (52) are unknown. In order to calculate them, Fischer [36]
uses a hierarchical uncoupling/coupling method. In this method the partition X1, . . . ,Xs̃

is constructed hierarchically using samplings at higher temperature for each stage of the
hierarchy in order to overcome energy barriers. Re-weighting to lower temperatures can
be done by a so-called bridge sampling strategy. For more details of set-based uncou-
pling/coupling methods see also Meyer [91] and Schütte et al. [113].

The disadvantage of these partitioning methods is that they need accurate integration
for each stage of the hierarchy, i.e. convergence of the hybrid Monte Carlo Markov chain
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at different temperatures. We will see that meshless partitioning methods overcome this
disadvantage. Although the meshless partition should also be computed hierarchically,
convergence of the samplings is only needed for the “finest” discretization at the lowest
temperature, see Section 5.3.

In the meshless partitioning approach, the weights wi are computed from the overlap
integrals of the “softly separated regions” Xi.

4.4.2 Meshless Partitioning Methods

In the meshless approach to conformation dynamics, the sets Xj are replaced by member-
ship functions. An adequate extension of the above uncoupling method can be done via
uncoupling functions. At first glance, concept consistency is the reason for this extension,
but Theorem 4.11 will show that this special “soft” uncoupling routine provides a method
for the computation of the unknowns wj.

Definition 4.8 A set of ansatz functions Φ1, . . . , Φs̃ ∈ C1(Ω) is called an uncoupling
basis if it is a partition of unity, i.e. for all q ∈ Ω

s̃∑
j=1

Φj(q) = 1

holds and Φi is positive
Φi(q) > 0 (55)

for all q ∈ Ω and i = 1, . . . , s̃.

This definition is quite the same as the Definition 3.1 for the membership basis, only
the positivity property and the C1(Ω) property are different. With these additional as-
sumptions the uncoupling basis can be used in order to define modified potential energy
functions Vj, i.e. a kind of continuation of (54) with exp(−β Vj) = Φj exp(−β V ):

Vj(q) = V (q)− 1

β
ln(Φj(q)), j = 1, . . . , s̃. (56)

These functions Vj are well-defined, because Φj meets the positivity condition (55) and
Vj ∈ C1(Ω), since V, Φj ∈ C1(Ω).

Importance sampling. Each modified potential Vj has a corresponding probability
density πj : Ω → IR given by its Boltzmann expression for the canonical ensemble.
In order to calculate observables according to these probability densities one can use
importance sampling like in equation (4) and HMC strategies. The only change in the
corresponding algorithms is the replacement of the original potential energy function V
with its modification Vj given in equation (56).
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Ergodicity. From the positivity constraint (55) it directly follows that the molecular
system associated with the modified potential Vj in equation (56) shares the same ergod-
icity properties like the original system according to V . This means that theoretically the
importance sampling of the modified potential covers the whole domain Ω. In practice,
however, the sampling is restricted to “windows”, because the Markov chains do not reach
high-energy regions in a low temperature simulation.

Umbrella sampling. Equation (56) is also the link between partitioning methods with
the well-known umbrella sampling methods invented in 1977, see Torrie and Valleau [123,
124]. In the original version, umbrella sampling was used in order to re-weight a non-
canonical ensemble sampling into the desired equilibrium distribution. Torrie and Valleau
suggested performing independent samplings with overlapping distributions like in the
above meshless partitioning method. In Theorem 4.11 it will be shown that in the present
context the statistical weights w1, . . . , ws̃ can easily be calculated due to the partition of
unity property, which does not hold for general umbrella algorithms.

Since the improvement of umbrella sampling by Berg and Neuhaus [9] in 1992 called
multi-canonical algorithm (MUCA), in most cases the potential energy V has been mod-
ified in order to eliminate barriers in the potential energy landscape, i.e. to get a flat
histogram ideally. In contrast to that, the meshless partitioning method introduces new
barriers into the potential and restricts the sampling to local “windows” of the configu-
ration space Ω.

In the last few years, combinations of the traditionally N -way sampling and the so-
called flat histogram method become more and more popular, see e.g. Virnau and Müller
[127, 128] using successive umbrella or Schulz et al. [110] using the famous Landau-Wang
method [129].

Out-of-cluster rejections. Due to the fact that for the set-based partitioning method
the potential energy Vj, j = 1, . . . , s̃, coincides with the original potential V for q ∈ Xj,
see equation (54), the MD steps in the Hybrid Monte Carlo routine are implemented with
the original forces −∇V . After the MD proposal step, however, the acceptance step is
not only based upon the total energy of the proposed molecular state (p̃, q̃). Additionally,
if its position coordinates q̃ meet q̃ 6∈ Xj, the proposed molecule is rejected (this is called
out-of-cluster rejection).

The decrease of the acceptance ratio due to this kind of rejection for less metastable
subsets Xj ⊂ Ω implies that the set-based uncoupling method needs a decomposition of
Ω into almost invariant subsets Xj, j = 1, . . . , s̃.

In the meshless approach there is no out-of-cluster rejection. For this reason, also
transition regions and saddle-point regions of the potential energy landscape can be fo-
cused via a suitable construction of an uncoupling basis. Moreover, the examination of
these regions may be important for the transition probabilities of the conformations. On
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page 101 the advantage of meshless partitioning methods is exemplified.

Restricted transfer operator. Like in Section 2.4, the sampling process for the mod-
ified potential Vj can be associated with a transfer operator P τ

j . The following lemma
collects some properties of this operator.

Lemma 4.9 For a given uncoupling basis Φ1, . . . , Φs̃ and for the uncoupled operators P τ
j ,

for j = 1, . . . , s̃, the following properties hold:

i) P τ
j e = e for the constant function e : Ω→ IR, e(q) ≡ 1.

ii) P τ
j : L2(πj)→ L2(πj) is self adjoint w.r.t. the probability measure µj(dq) = πj(q) dq

defined via

πj(q) =
Φj(q) π(q)

wj

, wj =

∫
Ω

Φj(q) π(q) dq. (57)

iii) The probability density π is a convex combination of the partial densities πj with

π =
s̃∑

j=1

wjπj. (58)

iv) P τ
j : L1(πj)→ L1(πj) is a Markov operator.

Proof: The properties i),ii) and iv) are a consequence of Theorem 2.2, because P τ
j is the

transfer operator of a Hamiltonian differential equation with a modified potential energy
function Vj.

For ii) it is only left to show that πj meets equation (57). From the Boltzmann
distribution we know that the following terms are proportional:

πj(q) ∝ exp(−β Vj(q))

= exp(−β V (q) + ln(Φj(q)))

= Φj(q) exp(−β V (q)).

∝ Φj(q) π(q).

Clearly the normalization constant for this relation is wj defined in (57). The positivity
of πj as a probability density follows from the positivity of Φj. From (57) to (58) we use
the fact that Φ1, . . . , Φs̃ is a partition of unity.
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Finally, the linear combination factors wj are convex combination factors, i.e. they
are positive and the sum of them is 1, because π is a normalized probability density:

s̃∑
j=1

wj =
s̃∑

j=1

〈Φj〉π = 〈e〉π = 1,

where e : Ω→ IR is the constant function e(q) ≡ 1. �

4.5 Coupling in Function Space

Coupling condition. The calculation of an observable 〈A〉π can be done via a coupling
of partial densities, like in equation (52),

〈A〉π =
s̃∑

j=1

wj〈A〉πj
, (59)

if the probability densities π1, . . . , πs̃ meet the coupling condition

π =
s̃∑

j=1

wjπj.

Equation (58) in Lemma 4.9 has shown that the coupling condition holds for the
partial densities obtained by the uncoupling method via modified potential energies Vj

defined in (56).

Importance sampling for S and P . In order to use importance sampling, one gener-
ates a Markov chain qj

1, . . . , q
j
N ∈ IR3n of position coordinates according to the distribution

πj via Hybrid Monte Carlo method (see Section 2.3) with the modified potential Vj. For

j

HMC

MD MD

q

q

1

HMC

MD MD

q
HMC

MD MD

q

HMC

MD MD

1 2

q2

q3

3

q q4

q4

5

q5

j j j j j

j j j j

Figure 4: For each modified potential energy Vj a HMC trajectory is computed and for each
point qi of this trajectory a MD-simulation with the original potential energy and the randomly
generated momenta is computed.
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an approximation of P τ , however, transitions with the original potential V are necessary.
One therefore constructs a sampling in configuration space qj

1, . . . , q
j
N ∈ R3n, where the

position coordinates qj
i are obtained by a molecular dynamics simulation with the original

potential energy V for a time span τ with initial position vector qj
i and initial momenta

coordinates p distributed according to η. In practice, i.e. in the Hybrid Monte Carlo
setting, at each step of the Markov chain one randomly chooses a vector p according to
η and propagates the vector qj

i ∈ Ω with the original force field (to get qj
i ) and with

the modified force field (to get a proposal q̃j
i for the acceptance step) using p as initial

momenta. Figure 4 shows the sampling scheme, which has to be applied to each modified
potential.

Remark 4.10 Sampling according to Figure 4 seems to double the numerical effort. In
my opinion, there is no computationally efficient way to perform both steps (discretize
P τ and sample the right distribution π) together in only one Markov chain. The reason
is that numerically efficient sampling of the Boltzmann distribution needs rapidly mixing
Markov chains, whereas the discretization of P τ needs the opposite – low transition rates
between the conformations of the molecule. If one wants to obtain the distribution π and
the discretization of P τ in only one sampling, then either the chain converges very slowly
or the transfer operator is not discretized correctly. From this point of view, separating
these two tasks is necessary.

Different integrators. The advantage of the splitting in Figure 4 is that one may
choose different integrators for the HMC and the MD part. For the HMC part a reversible
and area-preserving integration method can be used in order to satisfy the requirements
for the detailed balance condition (6). For the MD part a different integrator can be
chosen, e.g. the extrapolation method DIFEX2 [22, 23]. A motivation for a different
integrator is that for the calculation of P τf for some function f ∈ L2(π) the error of
the numerical integrator with respect to the position coordinates is important, because
f is evaluated at a propagated point in configuration space, f(Π1Φ

τ
h(q, p)). One can also

replace the MD equation of motion in Fig. 4 with a heat bath dynamics, a mathematical
motivation for this change is given in Section 4.3.

qj
i is a Markov chain. The computation of qj

i out of qj
i only depends on the choice

of the corresponding momenta p ∝ η. Due to Bayes’ rule for the conditional probability
P(qj

i |q
j
i ) = P(qj

i → qj
i ) there is a reverse probability P(qj

i |q
j
i ). Taking the route

qj
i → qj

i → qj
i+1 → qj

i+1

in Figure 4 shows that qj
1, . . . , q

j
N is also a realization of a Markov chain by the Chapman-

Kolmogorov equation:

P(qj
i+1|q

j
i ) =

∫
Ω

∫
Ω

P(qj
i |q

j
i )P(qj

i+1|q
j
i )P(qj

i+1|q
j
i+1) dqi dqi+1.
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One can therefore apply Markov chain convergence results to the q-chain, too.

Computation of S and P . After these preparations, we now compute S and P for
the membership basis ξ1, . . . , ξs. With equation (59) the matrices P and S are given as

P (i, k) = 〈ξi, P
τξk〉π =

s̃∑
j=1

wj〈ξi, P
τξk〉πj

=
s̃∑

j=1

wjP j(i, k),

S(i, k) = 〈ξi, ξk〉π =
s̃∑

j=1

wj〈ξi, ξk〉πj
=

s̃∑
j=1

wjSj(i, k). (60)

If we normalize the rows of these matrices S and P , we get the desired stochastic matrices
S and P . Like in equation (4), the matrices Sj and P j can be approximated by the
importance sampling, i.e. for i, k = 1, . . . , s and j = 1, . . . , s̃

Sj(i, k) = 〈ξi, ξk〉πj
≈ 1

N

N∑
l=1

ξi(q
j
l )ξk(q

j
l ),

P j(i, k) = 〈ξi, P
τξk〉πj

≈ 1

N

N∑
l=1

ξi(q
j
l )ξk(q

j
l ). (61)

Computation of wj. It is only left to compute wj for j = 1, . . . , s̃, if we want to apply
equation (60). From equation (57) we know

wj = 〈Φj, e〉π = 〈Φj〉π. (62)

This means, one might also approximate wj as an observable. But it cannot be computed
with the same methods used for S and P , because this would already require the knowledge
of wj. Here is a trick, how to compute wj out of the data collected for S and P : If the
uncoupling basis and the membership basis are identical, i.e. s̃ = s and

ξj = Φj, j = 1, . . . , s, (63)

then the vector w = (w1, . . . , ws)
> ∈ IRs is the unique normalized positive left eigenvector

of S and of P for the Perron eigenvalue λ1 = 1, see Lemma 4.1. For both cases, either
M = S and M = S or M = P and M = P , the following equation holds

w> = w>M = w> diag(w1, . . . , ws)
−1 M =

s∑
i=1

M(i, :).

Furthermore, we get from equation (60)

w> =
s∑

i=1

s∑
j=1

wj M j(i, :) =
s∑

j=1

wj (
s∑

i=1

M j(i, :)) = w>M, (64)
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whereM is a positive matrix with

M(j, k) :=
s∑

i=1

Sj(i, k) or M(j, k) :=
s∑

i=1

P j(i, k), (65)

which can be computed approximately by equation (61). Because of Perron’s TheoremM
has a unique positive left eigenvector. This eigenvector is obviously w and the eigenvalue
is 1, see (64). We now collect the main propositions about the relationship between π
and the partial densities πj made so far in the following

Theorem 4.11 The probability density function π is a convex combination of the partial
probability density functions πj, j = 1, . . . , s, with the convex combination factors w =
(w1, . . . , ws)

>. Herein, w is the unique positive normalized left eigenvector of the stochastic
matrix M∈ IR(s,s) w.r.t. its Perron eigenvalue λ1(M) = 1, where

M(j, k) := 〈Φk〉πj
,

or respectively
M(j, k) := 〈P τ Φk〉πj

.

These matrices15 can be approximated via equation (61) and (65), if the membership basis
ξ and the uncoupling basis Φ are identical.

Proof: A simple calculation shows thatM defined in (65) meets

M(j, k) =
s∑

i=1

〈Φi, Φk〉πj
= 〈Φk〉πj

,

or respectively

M(j, k) =
s∑

i=1

〈Φi, P
τ Φk〉πj

= 〈P τ Φk〉πj
,

and thatM is stochastic, because πj is normalized. AsM is positive and stochastic, its
Perron eigenvalue is 1. From Perron’s Theorem, see Theorem 1.2.2. in [7], we conclude
that λ1 = 1 is geometrically simple and that any positive left eigenvector is a scalar
multiple of w, which completes the proof. �

Alternative proof. Theorem 4.11 becomes clear due to Lemma 4.1, if we show that
M equals S or P respectively. For the case M = S:

M(j, k) = 〈Φk〉πj
=

∫
Ω

Φk(q)
Φj(q) π(q)

wj

dq =
1

wj

〈Φj, Φk〉π = S(j, k).

The result for M = P follows analogously.

15In general, 〈Φk〉πj 6= 〈P τ Φk〉πj , because P τ is not self-adjoint w.r.t. the probability measure µj(dq) =
πj(q) dq.
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Theorem 4.11 in practice. Although, M is an approximation of S or P and can be
used for a Perron Cluster Analysis, in practice we use M only for the computation of w
according to the above theorem. Then the calculation of S and P is done via (60) and
(61). The reason for this two step computation is that because of numerical errors M
might have complex eigenvalues, which is inconvenient for the Perron Cluster Analysis.
Whereas within the two step calculation, the approximation of S in (60) is symmetric
by construction. After normalization of the rows, the stochastic counterpart S of this
matrix S has a real-valued spectrum. On the other hand, the approximation of P in (60)
should be symmetric by theory. If P is not symmetric, one can use this information for
an identification of badly resolved transition samplings, see Section 5.3.

Using parallel computers. Theorem 4.11 provides a method that allows a parallel
sampling of the modified potentials on different computers and a concluding computation
of wj afterwards. As M is a stochastic matrix, Markov chain sensitivity analysis can be
applied to this kind of weight computation, see Section 5.2.2.

Well-conditioned Robust Perron Cluster Analysis. On page 60 it has been shown
that meshless partitioning cannot have out-of-cluster rejections, which means that the
uncoupling basis functions need not be metastable. This still holds, if membership basis
and uncoupling basis are identical. For a well-conditioned Robust Perron Cluster Analysis
according to a generalized eigenvalue problem, however, condition (38) should be satisfied,
which means S(i, i) > 0.5 for i = 1, . . . , s. The interpretation of this condition is: The
softly restricted sampling should mainly take place “inside” the corresponding uncoupling
basis function. Or: The potential modification Vi in (56) should “really” restrict the
sampling to a region, where Φi is approximately 1.
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5 Design of Algorithmic Details

5.1 Construction of Shape Functions

5.1.1 Partition of Unity Methods

In order to apply Theorem 4.11 for the computation of the vector w ∈ IRs of weights,
the uncoupling basis and the membership basis must be identical. The basis functions
Φ1, . . . , Φs : Ω → [0, 1] are also referred to as shape functions in meshless methods.
The creation of shape functions is the central issue in meshless methods. Only shape
functions, which are created according to the partition of unity (PU) methods, meet the
requirements of Definition 4.8. The PU methods are further developments of the partition
of unity finite element methods of Babuška and Melenk [4, 5] in 1996 and hp-clouds of
Duarte and Oden [31] in 1995. The main idea of this approach is the construction of a
partition of unity in function space using Shepard’s method [117], i.e. for given weight
functions Wj : Ω→ IR, j = 1, . . . , s, define the shape functions Φj : Ω→ IR via

Φj(q) =
Wj(q)∑s
i=1 Wi(q)

. (66)

Obviously the shape functions Φj meet the partition of unity property and, if each Wj is
a positive and continuously differentiable function, the shape functions are also positive
and continuously differentiable and meet Definition 4.8.

Zero-th order of consistency. For the solution of partial differential equations the
order of consistency of the function basis is important. An order k of consistency denotes
the capability of the function basis to reproduce complete polynomials of order k at any
point of Ω. Shape functions, which meet the partition of unity property, are therefore zero-
th order consistent, see Liu [80]. Theorem 5.10 will show that zero-th order consistency is
sufficient for the approximation of membership functions. For a detailed approximation
error analysis of meshless interpolants with p-th order of (differential) consistency see
Section 4.2 and 4.3 in [79].

Higher order of consistency. Griebel and Schweitzer [45, 115] increase the order of
consistency by multiplying the shape functions Φj in equation (66) with multi-dimensional
polynomials to get a higher order function basis. The curse of dimensionality enters the
method, because the number of basis functions for an n-dimensional polynomial represen-
tation of order k increases exponentially with (k + 1)n. The idea of higher-order Shepard
methods of Fasshauer [32] leads to similar shape functions and also suffers from the curse
of dimensionality. For this reason, approximation of membership functions is done with
a zero-th order consistency function basis given by equation (66).
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Choice of the weight functions. In the algorithmic realization, each Wj is a radial
basis function (RBF). This kind of shape functions fits into the HMC particle sampling
concept. A radial basis function is associated with a particle qj ∈ Ω, which is called a
node. The function value Wj(q) of an RBF depends on the distance d(q, qj) between its
node qj and the evaluation point q ∈ Ω.

Definition 5.1 For a subset Q∗ = {q1, . . . , qs} ⊂ Ω of nodes and a monotone decreasing
continuously differentiable function ω : IR≥0 → IR≥0 with ω(0) = 1 define a set of radial
basis functions W1, . . . ,Ws : Ω→ IR≥0 via

Wj(q) := ω(d(q, qj)).

Macrostate dissection. Shalloway et al. [99, 116, 15] in 1994 also use this kind of mesh-
less partitioning into macrostates, which are defined according to the modified potential
in (56). They apply Shepard’s method to Gaussian type weight functions. However, the
aim of their work is different. Shalloway et al. try to fit the Boltzmann distribution (i.e.
the canonical ensemble) with a set of Gaussians in order to calculate thermodynamical
properties analytically. For the identification of the corresponding Gaussian parameters a
self-consistent iteration method is provided in [99]. This requires some knowledge about
the number of macrostates and the Boltzmann distribution, which in our case is not given
a priori.

5.1.2 Unimodal and Strictly Quasi-Concave Functions

For Definition 5.1 any decreasing C1-function ω is suitable. There is a detailed overview of
radial basis functions used in practice in [80]. Among all possible functions ω, the Gaussian
type radial basis functions play the most important role. There is a mathematical reason
for this kind of function basis, which will be derived now:

Shepard’s method destroys some properties of the weight function, e.g. the local
maximizer of Φj is in general different from the maximizer of Wj, i.e. different from the
node qj. A priori one cannot even assume that Φj has a unique local maximizer. However,
this is an important property. A function Φj of the uncoupling basis is supposed to stamp
out a certain “window” of the configuration space Ω, i.e. it should at least not have
different local maximizers. The class of strictly quasi-concave functions meet this propery
which is called unimodality. For an introduction into fundamental results on concave
functions and maximization see e.g. Horst et al. [58, 59]. In this section, it will be shown
that special shape functions meet unimodality.

Definition 5.2 A function f : Ω → IR on a convex set Ω ⊂ IRm is called strictly quasi-
concave if it meets

f(λx + (1− λ)y) > min{f(x), f(y)}
for all x, y ∈ Ω with x 6= y and 0 < λ < 1, see Fig. 5.
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Figure 5: A strictly quasi-concave function f meets f(λx + (1 − λ)y) > min{f(x), f(y)} for
λ ∈ (0, 1).

Lemma 5.3 If x, y ∈ Ω are local maximizers of a strictly quasi-concave continuous func-
tion f : Ω→ IR, then x = y.

Proof: Obviously, a strictly quasi-concave function f cannot have different local maxi-
mizers along any arbitrary line segment in Ω, which is the proof for the above Lemma.
Moreover, unimodality is not the only consequence of this fact, e.g. f cannot have saddle
points or local minima inside Ω either. This is only possible at the boundaries ∂Ω. And
even more, the level sets of f are convex in Ω, see Lowen [81]. �

Eliminating trivial degrees of freedom. For Gaussian type weight functions we
need a distance measure between different position states of a molecule. In the molecular
dynamics part of the sampling algorithm the position states are described by Cartesian
coordinates. For the calculation of the distance d : Ω×Ω→ IR between two position states
in Ω, however, the Cartesian coordinates are not appropriate. Rotational and translatory
degrees of freedom of the molecule have to be eliminated first, only the geometry of the
molecule itself is important. For this purpose, the configuration space of the molecule
is projected to a (sub)space Ω via a continuously differentiable projection function ϕ :
Ω→ Ω. For a continuously differentiable metric d̄ : Ω× Ω→ IR in Ω define the distance
function d via

d(q, q̃) = d̄(ϕ(q), ϕ(q̃)). (67)

This distance function is nonnegative and symmetric, because d̄ is a metric. Furthermore,
a triangular inequality holds for the distance function d:
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Lemma 5.4 For all q0, q1, q̃ ∈ Ω

d(q0, q1) ≤ d(q0, q̃) + d(q1, q̃).

Proof:

d(q0, q1) = d̄(ϕ(q0), ϕ(q1))

≤ d̄(ϕ(q0), ϕ(q̃)) + d̄(ϕ(q̃), ϕ(q1))

= d(q0, q̃) + d(q1, q̃).

�

With these preparations, we consider Φj as a mapping Φj : Ω → IR and show in
the following theorem that Φj is strictly quasi-concave for Gaussian type radial basis
functions.

Theorem 5.5 Let Ω be an m-dimensional vector space and d̄ the euclidian metric, i.e.
for the components x(k), y(k), for k = 1, . . . ,m, of the vectors x, y ∈ Ω

d̄(x, y) =

√√√√ m∑
k=1

(x(k)− y(k))2.

Define ω as a Gaussian type function ω(d̄) := exp(−α d̄2) with α > 0. Furthermore, for
a set of linearly independent nodes q1, . . . , qs ∈ Ω and i = 1, . . . , s (s > m) define the
projections yi := ϕ(qi) ∈ Ω. With the above notations, the basis functions Φj : Ω→ [0, 1],
which are given by

Φj(x) =
ω(d̄(x, yj))
s∑

i=1

ω(d̄(x, yi))
,

are strictly quasi-concave for j = 1, . . . , s.

Proof: Note that the functions lij(x) := d̄2(x, yi)−d̄2(x, yj) are linear for all i, j = 1, . . . , s
due to cancellation of the quadratic terms and that ω is strictly convex for α > 0. Φj is
positive and therefore its reciprocal exists. With these preparations it is shown that Φ−1

j

is strictly convex. For x, y ∈ Ω and 0 < λ < 1:

Φ−1
j (λx + (1− λ)y) =

s∑
i=1

exp(−α d̄2(λx + (1− λ)y, yi))

exp(−α d̄2(λx + (1− λ)y, yj))
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=
s∑

i=1

exp(−α lij(λx + (1− λ)y))

= 1 +
∑
i6=j

exp(−α [λlij(x) + (1− λ)lij(y)])

< 1 +
∑
i6=j

λ exp(−α lij(x)) + (1− λ) exp(−α lij(y))

= λΦ−1
j (x) + (1− λ)Φ−1

j (y). (68)

The above inequality is implied by the fact that s > m and that the nodes are linearly
independent, because in this case for every j there exists an index i ∈ {1, . . . , s} such that
for the corresponding linear function lij(x) 6= lij(y). In order to show that Φj is strictly
quasi-concave, we use that Φ−1

j is strictly convex and f(r) = 1/r is a strictly monotone
decreasing function for r > 0:

Φj(λx + (1− λ)y) =
1

Φ−1
j (λx + (1− λ)y)

>
1

λΦ−1
j (x) + (1− λ)Φ−1

j (y)

> min
{ 1

Φ−1
j (x)

,
1

Φ−1
j (y)

}
= min{Φj(x), Φj(y)}.

�

For the proof it is essential that ω is an exponential function and that d̄ is the euclidian
metric. Therefore Gaussian type functions ω play an important role in the following
sections.

Kabsch projection. A possible projection ϕ preserving all intramolecular informations
is the well-known Kabsch algorithm [66, 67] to align molecules. In this method one fixes
a reference molecule first and aligns each molecule to this structure. For the distance
between two aligned molecules the euclidian metric can be used to meet the assumptions
of Theorem 5.5, i.e. this method yields the unimodality.

Cyclic coordinates. In practice, however, the Kabsch algorithm is computationally
expensive and the gradient of this projection ϕ can only be computed numerically. An-
other possibility is a description of the molecule via internal coordinates like bond lengths,
angles and dihedrals. In this context it is a frequently-used working hypothesis that the
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dihedrals16 of a molecule comprise all conformational information, e.g. see Cordes et
al. [17]. Therefore one can use a distance measure based only on the dihedrals of the
molecule.

Assume a molecule described by m dihedrals, then the configuration space Ω of this
molecule is mapped into Ω∗ := (−π, π]m. Its elements are m-tuples δ ∈ Ω∗ of the dihedrals
δ(1), . . . , δ(m) ∈ (−π, π] of the molecule. Dihedrals are cyclic coordinates, which lead to
different distance functions in Ω∗ and to a different definition of unimodality.

π = −π

�����

�����

0

Figure 6: Different distance functions of cyclic coordinates. Dotted line: Mapping of a cyclic
coordinate to IR2 and using the euclidian metric, see (69). Dashed line: Using the shortest arc
length measured in radians between the two cyclic data points, see (70).

Distance functions for cyclic coordinates. One possible distance function is based
on a proposal of Galliat et al. in [41], see dotted line in Figure 6. For two points
δ1, δ2 ∈ Ω∗ define d̄ : Ω∗ × Ω∗ → IR≥0 as

d̄(δ1, δ2) =

√√√√ m∑
i=1

( sin[δ1(i)]− sin[δ2(i)])
2 + ( cos[δ1(i)]− cos[δ2(i)])

2. (69)

d̄ is the euclidian metric in Ω, where Ω ⊂ IR2m and the projection ϕ : Ω∗ → Ω is defined
via

ϕ(δ) := (sin[δ(1)], cos[δ(1)], . . . , sin[δ(m)], cos[δ(m)])> ∈ IR2m.

However, for the Definition 5.2 of strictly quasi-concave functions the domain has to be
convex, which is not the case for Ω = ϕ(Ω∗). This means that the distance function (69)
meets the assumptions of Theorem 5.5 and that the corresponding shape functions Φi are

16Four atoms in a molecule which are connected to one another end-to-end form a dihedral angle. The
first three atoms span one plane, the last three span another one. The angle between these two planes is
defined as dihedral angle.
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strictly quasi-concave in IR2m, but they might have different local maximizers in a subset
Ω ⊂ IR2m. The problem is that the 2m “coordinates” are not independent.

For the numerical routines, a more natural distance function for cyclic coordinates is
used, see dashed line in Fig. 6: The convex domain in this case is Ω∗ = (−π, π]m itself.
For cyclic coordinates z, x ∈ Ω∗ one defines the shortest path euclidian distance

d̄(z, x) :=

√√√√ min
σ∈{−2π,0,+2π}m

m∑
l=1

(z(l)− x(l) + σ(l))2. (70)

Remark 5.6 The distance function d̄ in (70) is independent of the choice of the basis
interval, i.e. instead of (−π, π] one can choose any 2π-interval for representation of the
dihedrals. One can also choose different intervals for different dihedrals.

Unimodality for cyclic coordinates. Unimodality in the presence of periodic coordi-
nates is defined as unimodality per period. For cyclic coordinates, unimodality is satisfied
for a function Φj if there is a basis interval representation of Ω∗ (see Remark 5.6) for which
the function is strictly quasi-concave. It will be shown that the representation of Ω∗, for
which the node yj is the central point, meets this property. The convexity assumption in
Definition 5.2 is satisfied for Ω∗. For the estimation (68) in the proof of Theorem 5.5 it is
sufficient that the functions lij are concave. For the special choice of Ω∗ we get

lij(z) = d̄2(z, yi)− d̄2(z, yj)

=
(

min
σ∈{−2π,0,+2π}m

m∑
l=1

(z(l)− yi(l) + σ(l))2
)
−

m∑
l=1

(z(l)− yj(l))
2

= min
σ∈{−2π,0,+2π}m

( m∑
l=1

a(l) z(l) + b(l)
)
,

where
a(l) = 2(yj(l)− yi(l) + σ(l))

and
b(l) = y2

i (l)− y2
j (l) + σ2(l)− 2σ(l) yi(l).

lij is concave because it is the minimum of a set of linear (concave) functions in z. There-
fore, the distance function d̄ defined via (70) is unimodal. This distance function is used
for the numerical routines.

Gradient of the modified potential. If we are not as strict as in Theorem 5.5 and
take a look at the potential modification connected to the shape function Φj from a
molecular dynamics point of view, then the following observations can be made. With
the special choice of ω the gradient (force) of the modified part of the potential functions
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Vj defined in (56) is always “acting”, because due to Lemma 5.3 minima and saddle-points
of Φj only occur at the boundary of the special representation Ω∗. The gradient is (see
Appendix A.1):

∇(−β−1 ln(Φj(q))) =
α

β
(− [

s∑
i=1

Φi(q)∇d2(q, qi)] +∇d2(q, qj)). (71)

For arbitrary distance functions the qualitative behavior of the gradient in equation
(71) for α, β > 0 again goes well with the claimed property to stamp out a certain window
of the configuration space: For i 6= j the gradient ∇d2(·, qi) has a contribution to (71)
with a negative sign. In the dynamics steps of the HMC this “pushes” the molecule away
from the nodes qi, for i 6= j. Whereas ∇d2(·, qj) in (71) has a positive sign tending to
minimize the distance d(q, qj). Note that for the calculation of the gradient it is important
that ω is an exponential function, whereas the properties of d are less important.

5.1.3 Sensitivity Analysis of Shape Functions

Unimodality has been a motivation for the use of Gaussian type radial basis functions. In
view of clustering and restricted sampling, the interfaces between different membership
functions are important. In this section these interfaces are studied. It will be explained
why Gaussian type radial basis functions together with Shepard’s method can also be
seen as a generalized Voronoi Tessellation of the configuration space Ω. And it is shown
that α is a soft parameter with regard to cluster analysis.

Definition 5.7 (Voronoi Tessellation, see e.g. Kohonen [73]) For a given distance func-
tion d : Ω × Ω → IR≥0 and a set of nodes Q = {q1, . . . , qs} ⊂ Ω define the following
characteristic functions Φi : Ω→ {0, 1}, i = 1, . . . , s,

Φi(q) :=

 1, if ∀j 6=i d(q, qi) < d(q, qj)

0, otherwise,

The partition X1, . . . ,Xs with Xi = Φ−1
i ({1}) is a Voronoi Tessellation of Ω.

Convexity of generalized Voronoi Tessellation. In a Voronoi Tessellation a point
q ∈ Ω is assigned to its most proximate node. Interfaces are subsets of hyperplanes having
the same distance to different nodes, like perpendicular bisectors in two dimensional linear
spaces. Convexity of the partition sets Xi is not so easy to show in the presence of cyclic
coordinates. It will be shown by using the level sets of the shape functions Φi defined
according to the last section. The α-dependent shape functions Φ

[α]
j : Ω → IR≥0, i =
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1, . . . , s, are

Φ
[α]
i (q) =

exp(−αd2(q, qi))
s∑

j=1

exp(−αd2(q, qj))
. (72)

In the notations of the last section, the projected level sets L(Φ
[α]
i , γ) ⊂ Ω∗ of these

functions are
L(Φ

[α]
i , γ) := {y ∈ Ω∗; Φ

[α]
i (q) ≥ γ, q ∈ Ω, y = ϕ(q)}

for γ ∈ [0, 1]. Equation (72) defines a generalized Voronoi Tessellation. This is motivated
by the following

Lemma 5.8 For all q ∈ Ω with d(q, qi) < d(q, qj), j 6= i, the following equation holds:

lim
α→∞

Φ
[α]
i (q) = 1.

The level sets of Φ
[α]
i for the special choice of Ω∗ having yi = ϕ(qi) as central point (see

Remark 5.6) are convex w.r.t. Ω∗. Especially, the convexity of level sets together with the

pointwise convergence of Φ
[α]
i implies convexity of the Voronoi Tessellation for a suitable

choice of basis intervals Ω∗ for each set Xi.

Proof: Let q ∈ Ω with d(q, qi) < d(q, qj), j 6= i. After a suitable permutation of indices
one can assume that d(q, ql) ≤ d(q, qj) for l ≤ j. Define γ as γ = d(q, qi+1)

2 − d(q, qi)
2.

Then the following inequality holds

1 ≥ Φ
[α]
i (q)

=
exp(−αd2(q, qi))

s∑
j=1

exp(−αd2(q, qj))

≥ exp(−αd2(q, qi))

exp(−αd2(q, qi)) + (s− 1) exp(−αd2(q, qi+1))

=
exp(−αd2(q, qi))

exp(−αd2(q, qi)) + (s− 1) exp(−αd2(q, qi)) exp(−αγ)

=
1

(s− 1) exp(−αγ) + 1
.

Hence,

1 ≥ lim
α→∞

Φ[α](q) ≥ lim
α→∞

1

(s− 1) exp(−αγ) + 1
= 1.

For the special choice of Ω∗ the shape function Φ
[α]
i is strictly quasi-concave, see Theorem

5.5. This directly implies convexity of its level sets. �
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Structure of meshless partitioning. Lemma 5.8 gives an idea of the structure of the
function basis and its interfaces. The shape functions (72) define a generalized Voronoi
Tessellation of the configuration space Ω. The corresponding shape functions can be seen
as convex fuzzy sets, see [81]17.

α-dependence of the shape functions. The dependence of the basis Φ[α] on a single
parameter α opens access to results of perturbation theory from Section 3.3. For every
basis function Φ

[α]
i , i = 1, . . . , s we have (see Appendix A.2)

∂

∂α
Φ

[α]
i

∣∣∣
α=α∗

=
s∑

j=1,j 6=i

(d2(q, qj)− d2(q, qi)) Φ
[α∗]
i (q) Φ

[α∗]
j (q). (73)

This equation shows that α-dependence mainly arises at the interfaces between different
basis functions, because only in those regions the factor Φ

[α∗]
i (q) Φ

[α∗]
j (q) has significant

values. α-dependence of P
[α]

and S
[α]

can be estimated by the following inequality, where
the self-adjoint operator M : L2(π) → L2(π) either equals the propagator P τ or the
identity operator; furthermore, define dk := d2(·, qk) and dmax := maxi,k |di(q)− dk(q)|:

| ∂

∂α
〈Φ[α]

i , MΦ
[α]
j 〉π| = |〈 ∂

∂α
Φ

[α]
i , MΦ

[α]
j 〉π + 〈 ∂

∂α
Φ

[α]
j , MΦ

[α]
i 〉π|

= |〈
s∑

k=1

(dk − di) Φ
[α]
i Φ

[α]
k , MΦ

[α]
j 〉π+

〈
s∑

k=1

(dk − dj) Φ
[α]
j Φ

[α]
k , MΦ

[α]
i 〉π|

≤ dmax(〈Φ[α]
i

s∑
k=1

Φ
[α]
k , MΦ

[α]
j 〉π+

〈Φ[α]
j

s∑
k=1

Φ
[α]
k , MΦ

[α]
i 〉π)

= 2dmax〈Φ[α]
i , MΦ

[α]
j 〉π. (74)

Although (74) is only a rough estimation, it shows that a given block-like structure of

P
[α]

and S
[α]

is less affected by the α-parameter, because small entries stay small when
α changes. Keeping the block structure also preserves the Perron cluster eigenvalues and
the space of Perron cluster eigenvectors. In other words: α is a “soft parameter”. Changes

only take place inside the blocks of P
[α]

and S
[α]

.

17Fuzzy sets Φ : Ω∗ → [0, 1] are called convex iff Φ is (strictly) quasi-concave.
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Figure 7: Perturbation scheme for the stochastic matrices S and P . Via ε-perturbation the
matrices are transformed into uncoupled, block structured matrices S̃ and P̃ . In this case, α-
perturbation has no effect on the first nC eigenvectors and eigenvalues, because zero-entries are
kept.

α-dependence of spectra of S and P . Figure 7 shows the associated perturbation
scheme. The block structures of the unperturbed matrices S̃[α] and P̃ [α] are not affected
by α and therefore these matrices have the nC-fold Perron eigenvalue λ = 1. In contrast
to that, further eigenvalues and eigenvectors are affected, because α changes the entries
of S̃[α] and P̃ [α] inside the blocks. For an example of the α-dependence of shape functions
also see Section 6 on page 96.

5.2 Error Analysis

Via Definition 5.1 the shape functions Φ1, . . . , Φs : Ω → IR are determined by the choice
of the nodes Q∗ ⊂ Ω, the distance function, and the decreasing function ω : IR≥0 → IR≥0.
In order to construct shape functions explicitly, they have to meet some conditions:

• Φ1, . . . , Φs should have good approximation properties w.r.t. the desired member-
ship functions χ1, . . . , χnC

, see Section 5.2.1.

• The calculation of the weights wj should be well-conditioned, see Section 5.2.2.

• The restricted samplings with the modified potentials Vj should converge in reason-
able time, see Section 5.2.3.

5.2.1 Approximation Error of Membership Functions

Using Shepard’s method (66), the quasi-interpolant

χ(q) ≈
N∑

i=1

χ(qi)
Wi(q)∑s

j=1 Wj(q)

of a function χ : Ω→ IR converges to χ linearly according to a decreasing maximal “diam-
eter” θ of the compactly supported weight functions Wi [117]. However, the compactness
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argument becomes invalid in the presence of the positivity constraint (55). Therefore,
some changes are necessary for the approximation theory of Shepard’s method in this sit-
uation. First, a kind of Lipschitz continuity is defined for the approximated membership
functions with respect to the new distance function d:

Definition 5.9 A function χ : Ω→ IR is said to be d-Lipschitz continuous if there is an
L ∈ IR>0 such that

|χ(q1)− χ(q2)| ≤ L d(q1, q2)

for all q1, q2 ∈ Ω, where d is a distance function defined above.

2

θ

q

q

q

q

1
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4

5

q
6

2θB

A6
q

Figure 8: Sketch of the sets B and Ai defined in Theorem 5.10 for s = 6.

With these preparations the following theorem can be shown, which provides a similar
approximation order O(θ) for a kind of discretization constant θ as in the original method
of Shepard.

Theorem 5.10 Let χ : Ω→ [0, 1] be a d-Lipschitz continuous membership function with
Lipschitz constant L > 0. Further, let {q1, . . . , qs} = Q∗ ⊂ Ω be the set of nodes, where

B := {q ∈ Ω; ∃q̄∈Q∗ d(q, q̄) ≤ θ} (75)

and for i = 1, . . . , s,

Ai := {q ∈ Ω; d(q, qi) ≤ 2θ}

with a discretization constant θ > 0. If

µ(Bc) = 1−
∫

B

π(q) dq = ε1 (76)
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and
Φi(q) ≤ s−1ε2, for q ∈ B, q 6∈ Ai, (77)

for some ε1, ε2 > 0 and Φi defined via (66), see Fig. 8. Then the following error es-
timation holds for the best approximating membership function χ̃ ∈ L1(π) with χ̃ ∈
span{Φ1, . . . , Φs}:

‖χ− χ̃‖L1(π) ≤ ε1 + ε2 + 4θL. (78)

In contrast to Shepard’s method, in Theorem 5.10 the compactness of the support
of the shape functions is replaced by a condition forcing the shape functions to decrease
rapidly, see (77). The fact that it is numerically impossible to “cover” the whole domain Ω
with nodes is expressed by a condition that measures the uncovered part with a parameter
ε1, see (76).

Proof: Define Ci := Ai ∩ B and 〈f〉Ci
:=

∫
Ci

f(q)π(q) dq. With these preparations the
following estimation holds

‖χ− χ̃‖L1(π) =

∫
Ω

|χ(q)− χ̃(q)|π(q) dq

(1∗) ≤ ε1 +

∫
B

|χ(q)− χ̃(q)|π(q) dq

≤ ε1 +

∫
B

|χ(q)−
s∑

i=1

〈χ, Φi〉Ci

〈Φi〉Ci

Φi(q)|π(q) dq

= ε1 +

∫
B

|
s∑

i=1

(χ(q)− 〈χ, Φi〉Ci

〈Φi〉Ci

) Φi(q)|π(q) dq

≤ ε1 +

∫
B

s∑
i=1

|χ(q)− 〈χ, Φi〉Ci

〈Φi〉Ci

|Φi(q) π(q) dq

= ε1 +
s∑

i=1

∫
B

|χ(q)− 〈χ, Φi〉Ci

〈Φi〉Ci

|Φi(q) π(q) dq

(2∗) ≤ ε1 + ε2 +
s∑

i=1

∫
Ci

|χ(q)− 〈χ, Φi〉Ci

〈Φi〉Ci

|Φi(q) π(q) dq

= ε1 + ε2 +
s∑

i=1

〈Φi〉−1
Ci

∫
Ci

|χ(q)〈Φi〉Ci
− 〈χ, Φi〉Ci

|Φi(q) π(q) dq

(3∗) ≤ ε1 + ε2 +
s∑

i=1

max
q∈Ci

|χ(q)〈Φi〉Ci
− 〈χ, Φi〉Ci

|

(4∗) ≤ ε1 + ε2 + 4θL. (79)

More detailed:
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(1∗): The inequality holds, because maxq∈Ω |χ − χ̃| ≤ 1. And for the complement Bc of
B: µ(Bc) = ε1.

(2∗): The value of the nominator 〈χ, Φi〉Ci
is always less than 〈Φi〉Ci

. Therefore, the whole
integrand can be estimated by Φi. For q 6∈ Ai the condition Φi ≤ s−1ε2 holds.

(3∗): This inequality holds due to the definition

〈Φi〉Ci
=

∫
Ci

Φi(q) π(q) dq.

(4∗): Let qa ∈ Ci with χ(qa) = max
q∈Ci

χ(q) and qb ∈ Ci with χ(qb) = min
q∈Ci

χ(q), then

max
q∈Ci

|χ(q)〈Φi〉Ci
− 〈χ, Φi〉Ci

| ≤ 〈Φi〉Ci
|χ(qa)− χ(qb)|.

Furthermore, 〈Φi〉Ci
≤ 〈Φi〉Ω and the partition of unity property holds. Because of

Lemma 5.4 the maximal distance of two points in Ai is 4θ.

�

Theorem 5.10 directly implies some requirements w.r.t. the choice of the shape func-
tions. These requirements are described in the following.

Restriction to µ(Bc) = ε1. For the selection of nodes Q∗ = {q1, . . . , qs} ⊂ Ω for the
radial basis functions W1, . . . ,Ws it is important to have some insights into the structure of
the potential energy landscape V (q) of the molecule. For this purpose, an HMC trajectory
Q = {Q1, . . . , QN} ⊂ Ω, N � s, of position states is generated at a high temperature to
overcome energy barriers. After this pre-sampling one examines the set Q. Ergodicity
of the pre-sampling implies that one can select nodes as a subset Q∗ ⊂ Q, because for
N →∞ the pre-sampling comprises all position states of the molecule. The aim, however,
is not to “cover” the whole domain Ω, but to construct nodes Q∗, such that µ(B) = ε1 is
small with B defined in equation (75). The advantage of a pre-sampling is that within this
procedure the points Qi, i = 1, . . . , N, are collected with a low probability for physically
nonsensical position states. One can therefore assume that the pre-sampling covers the
relevant part of Ω.

Node selection using θ. If we assume that Q covers the relevant part of Ω sufficiently,
then the selection of Q∗ ⊂ Q has to ensure that Q ⊂ B using the construction rule (75)
for B, i.e. for every Q ∈ Q there is a q ∈ Q∗ such that d(Q, q) ≤ θ. This directly implies
a possible selection method:
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Algorithm 5.11 Node selection - initial discretization

0. Select an arbitrary node q ∈ Q. Add q to Q∗.

1. Out of the set

B = {Q ∈ Q; ∀q∈Q∗ d(Q, q) > θ}

select q ∈ B having a minimum distance to Q∗. If B is empty STOP, else

2. Add q to Q∗. Go on with 1).

Determination of θ. For a good approximation result due to the term 4θL in the error
estimation (78), θ has to be as small as possible. But for decreasing θ the value µ(Bc) = ε1

in (78) increases via (75).

For an estimation of θ, note that the dynamics part of the pre-sampling is a continuous
process, i.e. Q is a set of “snapshots” of some dynamically coherent superset. A reasonable
choice for θ is therefore the smallest θ, which assures the coherence of B ⊃ Q.

Rapidly decreasing ω-function. Good approximation properties of the shape func-
tions correspond to a rapidly decreasing function ω in Theorem 5.10. This can be shown
as follows.

Lemma 5.12 In the situation of Theorem 5.10 the inequality

Φi(q) ≤
ω(2θ)

ω(θ)

holds for q ∈ B ∩ Ac
i .

Proof: Let q ∈ B ∩ Ac
i , then

Φi(q) =
ω(d(q, qi))∑s

j=1 ω(d(q, qj))

≤ ω(2θ)∑s
j=1 ω(d(q, qj))

≤ ω(2θ)

ω(θ)
.
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The first inequality holds, because d(q, qi) > 2θ and ω is a decreasing function. The
second inequality holds, because there is a qj ∈ Q∗ with d(q, qj) ≤ θ and ω is nonnegative.
�

The condition Φi(q) ≤ s−1ε2 for q ∈ B∩Ac
i in Theorem 5.10 follows from Lemma 5.12,

if ω meets the rough sufficient condition

ω(2θ)

ω(θ)
= s−1ε2.

A possible choice for ω is an exponential function ω(d) = exp(−α d2) with

α = − 1

3θ2
ln(s−1ε2). (80)

This special choice of a rapidly decreasing ω is also reasonable from the viewpoint of
Theorem 5.5. Note that Lemma 5.12 is only a rough estimation. In practice, a much
smaller α is possible, because in Lemma 5.12 it is assumed that each q ∈ B has at least
one neighbor in Q∗ with distance θ. Whereas in high dimensional spaces the number of
neighbors is much more than one.

Summarizing the algorithmic issues of Theorem 5.10. Several algorithmic issues
are implied by Theorem 5.10. The algorithm used for computer experiments in Section
6 is based on a distance function d using the dihedrals of the molecule, see (70). The
radial basis functions are rapidly decreasing exponential functions ω(d) = exp(−α d2)
with an input parameter ε2 > 0 and α according to (80). The node selection method uses
Algorithm 5.11, where θ is an input parameter.

Computation of the discretization error. For the computation of the discretization
error 4θL + ε1 + ε2 some problems remain.

• The Lipschitz constant L > 0 is unknown.

• The computation of ε1 = µ(BC) is not possible or at least as difficult as the com-
putation of the partition function Zq in equation (2).

For these reasons, Theorem 5.10 is only qualitative and not quantitative. It only shows
that it is possible to approximate arbitrary membership functions with the given set of
basis functions. In conformation dynamics a defining equation for χ does not exist. Thus,
not only approximation properties are important which will be shown in the next section.
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5.2.2 Truncation Analysis of Statistical Weight Computation

The approximation of the almost characteristic functions is only a subproblem of confor-
mation analysis. The problem of a correct calculation of the statistical weights w1, . . . , ws

is harder and eventually needs more hierarchical refinements of the uncoupling basis. In
this section a quantitative error estimation for the statistical weights is presented.

Stationary distribution of the matrix M. In Theorem 4.11 the calculation of the
weights wj, j = 1, . . . , s, can be seen as a calculation of the stationary distribution of
a stochastic, positive matrix M. The quality of this solution is determined by some
condition number κ ∈ IR and the estimated error of the Monte Carlo integration for the
elements ofM.

Condition number of the stationary distribution. We now derive an error estima-
tion for the weights wj from the condition number of the stationary distribution of M.
This error estimation is similar to the sensitivity analysis for finite Markov chains. The
stationary distribution ofM∈ IRs×s is the unique positive vector w ∈ IRs with

w>M = w>,
s∑

i=1

wi = 1. (81)

Numerically, we can only compute an approximationMapp. ofM, which defines an error
matrix E =Mapp. −M and a stationary distribution wapp. via

w>
app.Mapp. = w>

app.,

s∑
i=1

wapp.,i = 1. (82)

The corresponding condition number κ ∈ IR depending on Mapp. is the smallest number
for which

‖w − wapp.‖∞ ≤ κ ‖E‖∞ (83)

holds for allM∈ IRs×s and w,wapp. ∈ IRs defined via (81) and (82) respectively.

Estimation of κ. In 2001 Cho and Meyer [13] give an overview of eight different possi-
bilities for an upper bound of κ for various norms in (83). It turns out, that two of these
possibilities, the condition number κIM of Ipsen and Meyer [63, 72] and the condition
number κHH of Haviv and van der Heyden [56, 72], provide sharper bounds than the
others. Note that in the present context the roles of M and Mapp. are exchanged with
regard to [13].
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The condition number κIM . For simplicity we assume that the Perron eigenvalue
λ1 = 1 ofMapp. is simple and therefore A := I −Mapp. for the unit matrix I ∈ IRs×s has
rank s − 1. Further, let A(j) ∈ IR(s−1)×(s−1) be the principal submatrix of A obtained by
deleting the j-th row and column from A, then the condition number κIM is defined as

κIM =
min

j=1,...,s
‖A−1

(j)‖∞

2
. (84)

The best error bounds in (83) are often given by this condition number in the numerical
experiments of Section 6.

The condition number κHH. The second condition number κHH in its original def-
inition is obtained from the group inverse of A. But in [13] it has been shown that it
can also be computed in terms of the principal submatrices A(j). In this context κHH is
defined as

κHH =
max

j=1,...,s
wapp.,j ‖A−1

(j)‖∞

2
. (85)

Sometimes κHH provides better error bounds than κIM .

Best synthesis of condition numbers. The condition number κHH in (85) for an
error estimation of the statistical weights wi, i = 1, . . . , s, can be written as a component-
wise error bound given by Ipsen and Meyer [63] and Cho and Meyer [13]:

|wi − wapp.,i| ≤ wapp.,i ‖A−1
(i) ‖∞ ‖E‖∞. (86)

Summarizing (84),(85), and (86), we use the following synthesis of these condition numbers
for the numerical routines, i = 1, . . . , s:

|wi − wapp.,i| ≤ min{κIM , κHH , wapp.,i ‖A−1
(i) ‖∞} ‖E‖∞.

Error of the partition functions. More interesting than the detailed statistical weights
are the partition functions defined in (17) as a result of the conformation analysis. The
partition functions w̃1, . . . , w̃nC

of the conformations χ1, . . . , χnC
: Ω → IR can be trans-

formed via (63) and (62) into

w̃i = 〈χi〉π =
s∑

j=1

〈χdiscr.(j, i) ξj〉π

=
s∑

j=1

χdiscr.(j, i) 〈ξj〉π =
s∑

j=1

χdiscr.(j, i) 〈Φj〉π
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=
s∑

j=1

χdiscr.(j, i) wj. (87)

By equation (87) the error estimation can be extended to the sensitivity analysis of w̃i.
Let w̃app.,i denote the numerical approximation of w̃i and assume χdiscr. to be calculated
without numerical error, then

|w̃i − w̃app.,i| =
∣∣∣ s∑

j=1

χdiscr.(j, i) (wj − wapp.,j)
∣∣∣

≤
s∑

j=1

χdiscr.(j, i) |wj − wapp.,j|

≤
s∑

j=1

χdiscr.(j, i) min{κIM , κHH , wapp.,j ‖A−1
(j)‖∞} ‖E‖∞.

Estimation of ‖E‖∞. For an error analysis via (83) an estimation of ‖E‖∞ is left to
compute. From equation (11) in Theorem 2.1 we can conclude with a probability of 84%
that for a finite HMC simulation of “large” length Ni and variance σ2(i, j) of the element
(i, j) of the matrixM ∣∣∣Mapp.(i, j)−M(i, j)

∣∣∣ ≤ σ(i, j)√
Ni

.

For the norm ‖E‖∞ this means

‖E‖∞ ≤ max
i=1,...,s

s∑
j=1

σ(i, j)

√
Ni

. (88)

The value of σ(i, j) can be estimated by the sample standard deviation, i.e.

σ(i, j) ≈

√√√√ 1

Ni − 1

Ni∑
k=1

(Φj(qi
k)−Mapp.(i, j))

2, (89)

forM = S, see Section 4.5, or

σ(i, j) ≈

√√√√ 1

Ni − 1

Ni∑
k=1

(Φj(q
i
k)−Mapp.(i, j))

2, (90)

forM = P .
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Equation (89) can be simplified. Because Ni is large, one can replace (Ni − 1) by Ni.
A further simplification can be done, if we recall equation (61) and use

Si(j, j) ≈
1

Ni

Ni∑
k=1

Φj(q
i
k)

2.

Summarizing, for M = S we can estimate the error ‖E‖∞ directly from the sampling
data:

‖E‖∞ =0.84 max
i=1,...,s

s∑
j=1

√
Si(j, j)−M2

app(i, j)

√
Ni

, (91)

where “ =0.84 ” means that this estimation can only be understood from a probabilistic
point of view. For a convergence check during the sampling algorithm, ‖E‖∞ can better
be approximated by using different random numbers and starting points and by comparing
these results, see Section 5.2.3.

Better error bounds for S or P? The condition number κ in (83) forM = P might
be better than for M = S, because the block structure of M = P is more perturbed.
But whereas the sampling points qi

j are restricted to “windows” by the modification of
the potential, the sampling points q̄i

j of the pure MD part are not restricted. That
means that the error estimation ‖E‖∞ is much worse for M = P than for M = S.
Therefore the statistical weights are calculated from the approximation ofM = S in the
numerical examples. If one uses S for a geometrical clustering χdiscr., one can determine
the statistical weights and the partition functions w̃j in equation (17) without any pure
MD simulation, see Fig. 4 on page 62.

The importance of correct sub-samplings. The condition numbers κIM and κHH

are optimal in the sense that they are always smaller than a set of condition numbers
examined in [13]. For one of the sub-optimal condition numbers κME, Meyer [92] provided
the following bounds

1

s |1− λ2|
≤ κME ≤

2(s− 1)

Πs
i=1(1− λi)

, (92)

see also (3.3) in [13]. Here is a consequence of this estimation:

1. λ2 ≈ 1 is a necessary condition for high metastability inside a molecular system, see
upper bounds for det(P) in Theorem 4.4 and for trace(P) in Theorem 3.4. (“high
metastability” ⇒ λ2 ≈ 1)

2. On the other hand the estimates (92) of Meyer have shown that if λ2 ≈ 1, then the
eigenvalue problem for the weight computation in terms of (83) is ill-conditioned.
(λ2 ≈ 1 ⇒ “ill-conditioned weight computation”)
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Even small entries in M are very important for the computation of w and cannot be
neglected. Therefore, it is necessary to focus on transition regions during the sampling,
too, in order to get enough information about the rare event of conformational changes
(i.e. in order to get the small entries right). Due to out-of-cluster rejections in algorithms
for which the basis functions Φ1, . . . , Φs are strict (characteristic functions of some sets
Xj), it is impossible to focus the sampling on transition regions, because after the proposal
step of the HMC one has to check if the propagated position coordinates are still within
the range of the observed basis function. In transition regions this mostly will not be the
case causing the acceptance ratio of the HMC method to decrease. See also equation (54)
and page 60. In meshless partitioning methods with a general uncoupling basis out-of-
cluster rejections do not occur. In our numerical examples the improvement gained by
the use of meshless methods can be seen on page 101, where the acceptance ratio of a
transition region sampling is still about 80%, although the dynamics tend to leave the
transition region in most cases.

5.2.3 Convergence Indicator

In short, this section shows that a restricted sampling converges badly, if there is a bar-
rier inside the corresponding modified potential. And if all restricted samplings converge
fast18, then the corresponding shape functions are suitable for approximating almost in-
variant membership functions χl.

Convergence diagnostics. From equation (83) arise two major sources of error for
the weight computation. One is the condition κ of M, which mainly depends on the
number and the location of nodes and the α-parameter. The other source is the error
of the Monte Carlo integration approach. This error mainly depends on the variance
of the elements of M and the number of Monte Carlo steps, see (88). As the variance
for M = P is assumed to be worse than the variance for M = S one may restrict
the test of convergence to M = P . The norm ‖M −Mapp‖∞ = ‖E‖∞ ≤ εE in (88)
is small, if the sum of the absolute elements of each row of E is less than εE, because
‖E‖∞ = maxi=1,...,s ‖E(i, :)‖1. Each row E(i, :) is related to one sampling of a modified
potential Vi, see index j in equation (65) for the calculation ofM. This fact can be used
to check for convergence. The sampling procedure based on the modified potential Vi can
be stopped if

‖E(i, :)‖1 ≤ εE, (93)

where ‖ · ‖1 is the sum of the absolute elements of the vector E(i, :). In order to estimate
this error during the sampling one starts c well dispersed Markov chains for each modified

18It is not sufficient that the samplings only converge. It is important that convergence is fast. In the
sense of eq. (88), this means that the corresponding variance is small. Or: The sampling converges in a
predefined “small” number of steps. If the number of steps until convergence is similar for each modified
potential, then the partitioning was successful in terms of similar variance factors, see equation (53).
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potential Vi. Then after a predefined number of steps one computesMapp,k(i, :) for all of
these chains k = 1, . . . , c, and estimates

‖E(i, :)‖1 ≈ max
k,l=1,...,c

‖Mapp,k(i, :)−Mapp,l(i, :)‖1 (94)

for the mean valueMapp = 1
c

∑c
k=1Mapp,k.

Metastability of χl. If χl is a metastable membership function, then

P τχl ≈ χl.

This means for the pure MD-part of the sampling algorithm (see Fig. 4 on page 62) with
a high probability qi

k stays in conformation l. In other words:

χl(q
i
k) ≈ χl(q

i
k)

for every sampling point k = 1, . . . , Ni and every sampling i = 1, . . . , s performed with
a modified potential Vi. In Fig. 9 this situation is exemplified. If a point qi

k ∈ Ω is in a
region where χl(q

i
k) ≈ 1, then the probability that χl(q

i
k) ≈ 1 is high. Also low χl values

should stay low after a short dynamics simulation. If the node of a shape function Φi is
located in the transition region of χl, then this leads to a water shed behavior. Recall that
the shape functions can be seen as convex fuzzy sets, see Lemma 5.8. Therefore, taking
different “directions” from within Φi “leads into” different neighboring shape functions
Φj, i.e. different Markov chains have different Φj-patterns, which causes bad convergence
according to (94). Only if the HMC-part of the algorithm for the restricted sampling
according to Vi easily overcomes the probability barrier between high and low χl-values,
convergence can be fast. As this barrier crossing is a rare event for the original potential
function, this situation only takes place in an overall unprobable region, i.e. wi would be
small.

L1-definition of variance. In summary, convergence of the restricted sampling in the
situation of Fig. 9 is bad, if the statistical weight wi of Φi and the variance of χl w.r.t.
Φi are not small, i.e. if the integral

Iil :=

∫
Ω

|χl(q)−
〈χl, Φi〉π
〈Φi〉π

|Φi(q) π(q) dq (95)

is not small. Note that wi ≥ Iil for i = 1, . . . , s and l = 1, . . . , nC . The integral Iil in (95)
is denoted as L1-variance of χl inside Φi.
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Figure 9: The variance of χl “inside” a shape function Φi is high (the shape function is illustrated
by a convex polyeder similar to a Voronoi set, see Lemma 5.8). The pure MD part of the sampling
algorithm (i.e. application of P τ ) hardly crosses the barrier between high and low membership
values of metastable conformations χl in the configuration space Ω. This can be seen as a kind
of water shed behaviour.

Good approximation results. High metastability of χl together with high L1-variance
of χl inside a particular restricted sampling window implies bad convergence properties for
the Monte Carlo integration method. On the other hand, if convergence of the restricted
samplings is fast, although there are metastable membership functions χl : Ω→ [0, 1], we
can therefore conclude that the L1-variance of χl inside the sampling windows is low, i.e.
there is a small ε > 0 with ε > Iil.

Lemma 5.13 In the situation of Theorem 5.10 let ε > 0 such that ε > Iil, for some
l ∈ {1, . . . , nC} and for all i = 1, . . . , s. Then sε > ‖χl − χ̃l‖L1(π).

Proof: From the assumption

ε >

∫
Ω

|χl(q)−
〈χl, Φi〉π
〈Φi〉π

|Φi(q) π(q) dq, for all i = 1, . . . , s,

we arrive at

sε >

s∑
i=1

∫
Ω

|χl(q)−
〈χl, Φi〉π
〈Φi〉π

|Φi(q) π(q) dq
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=

∫
Ω

s∑
i=1

|χl(q)−
〈χl, Φi〉π
〈Φi〉π

|Φi(q) π(q) dq

=

∫
Ω

s∑
i=1

|χl(q)Φi(q)−
〈χl, Φi〉π
〈Φi〉π

Φi(q)|π(q) dq

≥
∫

Ω

|
s∑

i=1

(χl(q)Φi(q)−
〈χl, Φi〉π
〈Φi〉π

Φi(q))|π(q) dq

=

∫
Ω

|χl(q)−
s∑

i=1

〈χl, Φi〉π
〈Φi〉π

Φi(q)|π(q) dq

≥ ‖χl − χ̃l‖L1(π). (96)

For the last transformation compare (96) with the proof of Theorem 5.10. �

Lemma 5.13 shows that in the case of low L1-variance the membership function is also
well approximated by the given shape functions. In words, the important result is: The
approximation of the almost invariant membership functions is good, if each restricted
sampling converges fast.

-
q

6V

-
q

6V

Figure 10: The original potential function V (q) (thick line) with two modified potentials V (q)−
β−1 ln(Φi(q)), i = 1, 2 (thin lines). The intersection point x of the modified potentials meets
0.5 = Φ1(x) = Φ2(x). Left: If Φ1 and Φ2 approximate the corresponding almost characteristic
functions well, then the modified potentials do not include metastable substructures. Right: If
the approximation is bad (see intersection point of thin lines), then a modified potential may
include metastable substructures, which leads to bad convergence properties of the HMC.

Variance reduction. Convergence of the HMC part of the algorithm according to
(89) or (91) is a prerequisite for good convergence properties of the MD part according
to (90). If the MD part has good convergence properties, then the modified potentials
cannot include almost invariant substructures, see Fig. 10. With Lemma 5.13 two kinds
of result errors, i.e. the error w.r.t. the calculation of the statistical weights (see Section
5.2.2) and the error w.r.t. the approximation of almost invariant membership functions
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(see Section 5.2.1), are summed up in only one indicator, namely that for the convergence
properties of the restricted samplings according to (94). The speed of convergence can
be determined by the variance of the elements of M, see (89) and (90). In other words,
variance reduction by partitioning methods is the key for both: good approximation of
statistical weights and good approximation of almost invariant membership functions.

5.3 Hierarchical Refinement

Algorithm 5.11 is only an initial guess for a function-based decomposition of Ω. In this
section the results of a meshless partitioning method are improved by further refinements
of the uncoupling basis. In this section, a hierarchical refinement method is presented
which allows a detailed reconstruction of P and S like in Section 4.5.

Performing a hierarchical refinement. For a given uncoupling basis

{Φ1, . . . , Φs} : Ω→ [0, 1]

we want to replace a basis function (without loss of generality Φ1) with a set {Φ11, . . . , Φ1s̃}
of s̃ new basis functions, such that the basis expansion {Φ11, . . . , Φ1s̃, Φ2, . . . , Φs} is an
uncoupling basis again. This can be done via the following method. First, find an
uncoupling basis Φ̃11, . . . , Φ̃1s̃ : Ω→ [0, 1], i.e. basis functions which meet the partition of
unity and the positivity constraint. Then, construct the basis expansion via:

Φ1i(q) := Φ1(q) Φ̃1i(q), q ∈ Ω.

The coupling methods of Section 4.5 can be applied to the basis expansion, too, such
that the expanded Galerkin discretization P, S ∈ IR(s−1+s̃)×(s−1+s̃) can be constructed.
For the restricted sampling in equation (56) we have to replace Φ1 with its hierarchical
refinement, such that the new modified potentials V1i : Ω → IR for i = 1, . . . , s̃ are given
as19

V1i := V − 1

β
log(Φ1i)

= V − 1

β
log(Φ1Φ̃1i)

= V − 1

β
log(Φ1)−

1

β
log(Φ̃1i)

= V1 −
1

β
log(Φ̃1i). (97)

Comparing equation (97) with (56) shows that a hierarchical refinement is nothing else
but applying all above theory and methods to V1 as “original potential” instead of V .
E.g. for the selection of nodes this means that one can interpret the HMC sampling for
V1 as pre-sampling for V1i and construct the partition of unity Φ̃11, . . . , Φ̃1s̃ accordingly.

19Recall the definition of the modified potential V1 in (56).
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Advantage of meshless partitioning. With the above hierarchical refinement method
it is possible to get P and S for the “finest” uncoupling basis without using information
of the preceding hierarchy steps. That means convergence of the samplings restricted ac-
cording to the modified potentials is only necessary for the “leaves” of the discretization
tree. If convergence of a restricted sampling is not reached in a predefined number of
steps, then hierarchical refinement of the corresponding modified potential is necessary
due to Section 5.2.3 for a better approximation of the conformations and for better con-
vergence properties. Even if convergence is reached for every modified potential within
the predefined number of steps, hierarchical refinement may also be desirable. Here are
some refinement indicators.

Equilibrium state meets the detailed balance condition. The statistical weights
of the modified potentials are computed incorrectly, if the transition probabilities in P
do not meet the detailed balance condition. Recall that P is a symmetric matrix due
to momentum-reversibility of Hamiltonian dynamics. Calculation of the approximated
weights wapp.,1, . . . , wapp.,s according to Theorem 4.11 yields an approximation P app. for P
via equations (60) and (61). If this matrix is not symmetric, i.e. for some i, j ∈ {1, . . . , s}
we have

|P app.(i, j)− P app.(j, i)| > γ,

for a predefined γ ∈ IR>0, then the transition probabilitie P (i, j) and P (j, i) are not well
calculated. This means, one has to discretize the space between node i and node j in a
better way, i.e. replace Φi and Φj by hierarchical refinements.

Condition of weight computation. A direct refinement indicator which is based
on the error of the weight computation can be given by equation (86). If we assume
that the contribution to the deviation ‖E‖∞ is almost equal for every sampling of a
modified potential due to the convergence check in Section 5.2.3, then the error of weight
computation |wi −wapp,i| is governed by the expression wapp,i ‖A−1

(i) ‖∞. The sampling run
with index i which maximizes this expression is also “responsible” for a poor condition
number κHH , see equation (85). The corresponding shape function Φi should be subjected
to further refinements.
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6 Numerical Experiments

The following results are based upon an HMC sampling method according to Section
4.4. The construction of the uncoupling basis is described in Section 5.1 and Section
5.2.1, Algorithm 5.11. As a result of this sampling one gets the two matrices S and
P , see equation (35). The HMC sampling method is part of a software package called
ZIBgridfree [94]. Further results in the present section are computed with Matlab [43] on
the basis of S and P . These results may differ from those obtained from the analysis
routines of ZIBgridfree20.

6.1 Interpretation of Function-Based Conformations

In this section we will investigate the molecules n-pentane and cyclohexane, which are
shown in Fig. 11. The conventional view of conformations is a point concept. In most
cases critical points, such as minima and saddle points, of the potential energy surface
of the molecules are called “conformations”, which does not include their flexibility and
thermodynamically correct weighting according to entropical effects. In order to get
a mathematically rigorous definition of conformations, Deuflhard et al. [25] introduced
conformations as almost invariant sets in conformational space. From this point of view
conformations are given by partial densities in configuration space, where these densities
are restricted to separate sets. In terms of this set-based concept, the interpretation and
visualization of “transition states” is difficult, because each spatial state is assigned to
exactly one conformation. In the function-based concept each position state q is assigned
to different conformations with a different degree of membership, such that transition
regions can be extracted, if we define them as sets of points in configuration space which
have a significant degree of membership w.r.t. more than one conformation.

Example: n-Pentane. The conformational space of n-pentane can mainly be described
by two central dihedrals, see Fig. 11 left. For each of the dihedrals the values 180◦, −120◦

and +120◦, denoted as t, g- and g+, are preferred. Therefore, in chemical literature the
nine combinations

(t/t),(g+/t),(g-/t),(t/g+),(g+/g+),(g-/g+),(t/g-),(g+/g-),(g-/g-)

of the two dihedrals are said to be “the conformations” of n-pentane. In contrast to this
point concept, ZIBgridfree computes metastable conformations together with their flexi-
bility and weights in conformational space. For the current example, a 300K computation
of n-pentane with 60 basis functions and α = 11.3712 has been taken from [93]. Since the
numerical solution of the generalized eigenvalue problem (36) does not give λ1 = 1 (S̄ is

20In ZIBgridfree the matrix S is used for a geometrical clustering according to (44) with Robust Perron
Cluster Analysis as described in Section 3 (local optimization of I2(A)).
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Figure 11: Left: n-Pentane with two dihedrals spanning the conformational space. Right:
Cyclohexane with three dihedrals spanning the conformational space.

positive semi-definite), the dynamical clustering (45) is used for Robust Perron Cluster
Analysis as derived in Section 3. In order to identify nC = 9 as the number of confor-
mations, the spectrum of the transition matrix P (see also Fig. 14 on page 97) has been
examined like in Section 3.5.2. The result is a significant gap between the 9th and 10th
eigenvalue: λ9 = 0.8948, λ10 = 0.6630. An example for the visualization of the main con-
formation is given in Fig. 12 left. The weights and the density plots of the conformations
agree21 with the results of Schütte et al. [112], which are based on metastable sets in-
stead of membership functions. The difference between our function-based approach and
the set-based one is that a function-based description of conformations allows an overlap
between different conformations. In this case, an assignment of position states to confor-
mations based on membership functions provides a simple method for the visualization
of transition states, too: E.g. in order to compute transition states for a (t/t)→(g+/t)
transition of n-pentane one simply extracts the states in configuration space, which are
assigned to both of the conformations with a degree of membership which is about 0.5. An
example of such a transition state is shown in Figure 12 right. Obviously the clustering
in terms of almost characteristic functions not only asigns membership values to position
states, but also provides dynamical information about the molecule.

Example: Cyclohexane. Cylcohexan in Fig. 11 right is a 3-dimensional example.
The values of three consecutive dihedral angles of the ring determine the conformation
of cyclohexane. There are many differences between the n-pentane and the cyclohexane
example.

21For a detailed numerical evaluation and justification of ZIBgridfree see Meyer [93]
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Figure 12: Example: n-pentane. Left: 300K volume rendering in amira/amiraMol[122, 109]
of the main (t/t)-conformation of n-pentane, which covers about 45% of the conformational
space. Right: Transition state. 300K volume rendering of spatial states of n-pentane, which are
assigned to the (t/t)- and to the (g+/t)-conformation with a degree of membership between 0.4
and 0.6.

• Taking a 2-dimensional domain, the density functions for the different conforma-
tions of n-pentane based on the two dihedral angles in Fig. 11 are bell-shaped and
can sufficiently be approximated with Gaussians. Due to the ring structure, the
density functions of the conformations of cyclohexane according to the three dihe-
drals in Fig. 11 are not bell-shaped. The conformational space includes much more
complexity and higher energy barriers as n-pentane.

• The chair position state as local minimum of the energy surface of cyclohexane
is characterized by an alternating dihedral angle value of +55.9◦ and −55.9◦ for
dihedrals defined via 4 consecutive carbon atoms of the ring. With ρ := 55.9◦, there
are two different possibilities for this pattern

(+ρ,−ρ, +ρ,−ρ, +ρ,−ρ)

and
(−ρ, +ρ,−ρ, +ρ,−ρ, +ρ).

According to [133], these two minima and their “attraction basin” cover about
99.99% of the conformational space. Cyclohexane is an example for a molecule
having two deep local minima with an high energy barrier between them, which
also consists of some more local minima. I.e. in contrast to n-pentane, cyclohexane
is an example for a conformation analysis in the presence of a transition region, see
Fig. 1 (b) on page 5.
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Figure 13: Volume rendering of the two cyclohexane conformations of a 300K sampling with
ZIBgridfree in amira/amiraMol[122, 109].

The result of ZIBgridfree with s = 10 is indeed a 2-clustering. In Fig. 13 the density plot of
the two conformations is shown. These conformations also look like the position state of
minimal energy of the chair conformation, but with the data provided by ZIBgridfree and
amiramol the inflexibility of these chairs can be visualized. Due to symmetry, the weights
of the two chair conformations should be equal. The robustness of ZIBgridfree with regard
to the weight computation of w̃1 and w̃2 using different random number sequences will be
examined in Section 6.4 on page 102. As mentioned above, the conformational space Ω
of cyclohexane is discretized into 10 shape functions. In comparison with n-pentane, this
means that not the dimension of the problem guides the number of basis functions, im-
portant is the number of conformations and their orientation in Ω. Complexity reduction
may avoid the curse of dimensionality.

6.2 Parameter Sensitivity of the Spectrum of P

The spectrum of P depends on the properties of the shape functions Φ
[α]
i , especially on the

parameter α, which controls the overlap between these basis functions. In Section 5.1.3 it
has been shown that α is a “soft parameter”. In order to exemplify the dependence of the
spectra of P [α] and S[α] on the parameter α described in Section 5.1.3, one computes P [α]

and S[α] for different α. Plotting the eigenvalues λ of these matrices for different α shows,
which eigenvalues are sensitive w.r.t. α. In Figure 14, an example is given which is taken
from a 300K sampling of pentane [93] with 60 shape functions for 3 different α-values22

(11.3712, 12.8332, 14.2951). One can clearly see that the 10-th eigenvalue is the first one,

22These strange values arise from equation (80) for diffrent ε2.
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which changes significantly with α. The first 9 eigenvalues are nearly constant, i.e. for
nC ≤ 9 the parameter α is soft w.r.t. the spectrum of P .
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Figure 14: The first 12 eigenvalues of P [α] for three different α. Whereas, the first 9 eigenvalues
do not depend so much on α, the 10-th eigenvalue changes with α.

Example for different degrees of α-dependence. Example (33) has shown that
some rows of the transition matrix P might not fit into the “almost block-structure”
concept in Section 3.3. These rows represent transition states. The perturbation scheme
in Figure 7 may be invalid for them, because deviation from block structure is not small
for the corresponding rows of P , see Section 3.5.1. The following example shows that
,in fact, transition states may be affected by the α parameter. This is not alarming,
because in Section 5.2.3 it has been shown that this kind of states has a small statistical
weight or leads to bad convergence properties of the restricted samplings and, therefore,
needs further refinements of the shape function basis anyway. In ε-perturbation analysis
an O(ε2) perturbation result has been shown for almost characteristic functions, whereas
eigenvectors are perturbed of order O(ε). In the above context one can assume

∂

∂α
χ

[α]
i ≈ 0, i = 1, . . . , nC . (98)

To find out, which shape function mainly affects a change of the block structure of P [α]

or S[α] w.r.t. α, one can e.g. evaluate the following finite difference approach ∆ ∈ IRs×nC :

∆ :=
1

h

∣∣∣(M [α∗+h] −M [α∗−h]) χ
[α∗]
disc

∣∣∣. (99)
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In this expression M [α] is either S[α] or P [α] for the corresponding parameter α and χ
[α∗]
disc

is the result of a Robust Perron Cluster Analysis, which should be almost independent
from α due to (98). ∆ can be seen as an approximation of

∆ ≈ ∂

∂α
M [α]χ

[α]
disc|α=α∗ .

The key is: ∆ should almost vanish, because M [α] is a stochastic matrix for every α, i.e.
the row-sums of the difference matrix (M [α∗+h] −M [α∗−h]) are zero. Furthermore, due to
the assumption that α does not effect outer block elements, row-sums can be restricted
to the particular blocks, which is done by multiplication with χ

[α∗]
disc. The interpretation of

∆ is the following: If ∆(i, j) is high, then in the i-th row of M for the j-th block there
is a significant change of block structure. Therefore, one should e.g. refine the shape
function Φi. In the example of Figure 14 ∆ has been evaluated for M = P . In this
example, the partition function of the 9-th cluster is w̃9 = 44%, i.e. j = 9 is the main
conformation. The maximum entry in the column ∆(:, 9) is ∆(46, 9) = 0.0164 followed
by ∆(12, 9) = 0.0142 and some minor entries. In Figure 15 this situation is exemplified23.
The selected shape functions Φ12 and Φ46 obviously represent transition states.
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Figure 15: Voronoi Tessellation in dihedral space of pentane with 60 nodes. The central square
indicates the “boundaries” of the main conformation. Two nodes are marked, which tend to
effect the block structure of P , when α changes.

23In the spirit of Lemma 5.8 and for the reason of simplicity, a “real” Voronoi Tessellation for the 60
nodes has been generated in Matlab [43] to illustrate the situation α→∞.
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6.3 Epigallocatechin(-3-gallate)

Figure 16: Epigallocatechin with three aromatic rings (R1, R2, R3) and one non-aromatic ring
(R0). Its conformational space can be described by 7 dihedral angles. Like in cyclohexane, three
dihedrals determine the form of the ring R0, one of these dihedrals is marked. Three dihedrals
at the oxygen atom (Oxy) determine the position of the ring R3, one of these is marked. One
dihedral determines the orientation of the ring R2.

For a line formula and for some remarks about the mode of action of epigallocatechin
as a drug see Appendix A.4. Epigallocatechin in Fig. 16 has got different rings, three
aromatic rings R1, R2, and R3, and one non-aromatic ring R0. This central non-aromatic
ring consists of five carbon atoms and one oxygen (in Fig. 16 on the left side of the
ring). ZIBgridfree has been applied to this molecule with s = 158 and s = 398 basis
functions. With a total number of about 1.5 million resp. 1 million sampling points. Both
approaches lead to the same results, therefore we only give the results for s = 158. In
order to justify the correctness of the weight computation w ∈ IRs according to Theorem
4.11, note that a rotation of the rings R3 and R2 by an angle of 180◦ in Figure 16 leads to a
chemically equivalent molecule. In Fig. 17 one can see a w-weighted histogram plot of the
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Figure 17: In Fig. 16, the two marked dihedrals at the aromatic rings R2 (left histogram) and
R3 (right histogram) have a two-fold symmetry, which is almost preserved in a histogram plot
of the 300K sampling result.

corresponding dihedral angles at R3 and R2 as they have been computed via ZIBgridfree.
The 180◦-symmetry is indeed preserved.

After weight computation, S and P can be determined via formula (60). Due to
numerical errors, the evaluation of the generalized eigenvalue problem (36) does not lead
to a Perron eigenvalue λ1 = 1. Therefore, the Robust Perron Cluster Analysis with the
dynamical clustering (45) has been applied to P . Like for cyclohexane, we get nC = 2
metastable conformations. In this case the partition functions for the conformations are
w̃1 = 0.6 and w̃2 = 0.4 for both experiments, s = 158 and s = 398. In Figure 18
left one can see that these conformations can be described by the dihedral angle at the
oxygen atom of the ring R0 in Fig. 16. The dihedral angle either prefers values at about
+50◦ (for conformation 1) or at about −50◦ (for conformation 2). This means that the
conformations differ in the geometry of the non-aromatic ring R0. But this observation
does not explain the different weights of the conformations. A closer look at the molecule
shows that there is another indicator separating the two conformations, the distance
between the oxygen atom marked as “oxy” in Fig. 16 and the oxygen atom of the ring
R0. In Fig. 18 right one can see that for conformation 2 the oxygen atoms are closer
than for conformation 1. Since both oxygen atoms carry negative partial charges, there is
a repulsive force preferring a higher distance between them, which explains the different
weights.

Figure 18 also shows that for conformation analysis a point concept is not adequate:

• In order to respond to the steric stress of two negative charges at a low distance of
about 3Å in conformation 2, epigallocatechin compensates the unfavorable geome-
try by means of more flexibility than in conformation 1, where the partial negative
charges are more separated from each other. In other words, in Figure 18 the his-
togram for conformation 2 is low but broad, whereas the histogram for conformation
1 is high and narrow. This “natural entropical response” leading to more flexibility
cannot be modeled with conformation analysis based upon a point concept. The
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Figure 18: The separation of the two conformations of epigallocatechin are at best indicated
by the different values of the marked dihedral in the ring R0 in Fig. 16, see left histogram, or
by the distance of the oxygen atom of the ring R0 and the oxygen atom marked as “Oxy”, see
right histogram. Dashed line: Distribution of the values for conformation one, covering 60% of
the overall histogram. Dotted line: Distribution for conformation two (40%).

difference of the global potential energy minima of the two conformations in Figure
18 is about 14 kJ/mol, with exp(−β 14) ≈ 0.004 for 300K, which does not provide
any information about the correct ratio of thermodynamical weights.

• The coarseness of the clustering of epigallocatechin into two dynamically separated
conformations cannot be achieved with geometry based cluster algorithms. The
euclidian distance between two local minima of the energy surface does not include
informations about the similarity of the corresponding position states or about the
number, height and expansion of the energy barriers between them.

6.4 Acceptance and Convergence Properties

Out-of-cluster rejections. In ZIBgridfree the acceptance ratio of the HMC routine
is always high. The so-called out-of-cluster rejections of a set-based approach like the
one described on page 60 do not occur. In order to exemplify the advantage of meshless
partitioning, remember that in the matrix P , element P (i, i) denotes the overlap of a
distribution sampled according to basis function Φi with its propagated distribution. If
propagation did not “take place”, then the entry P (i, i) would equal the entry S(i, i)
of the mass matrix, which is the discretization of the identity operator. The relative
difference between P (i, i) and S(i, i) can be seen as the expected out-of-cluster rejection
ratio of a set-based approach. For the 12th basis function in the example of Figure 15 this
relative difference is 50% for the 46th it is 33%, which means that a restricted sampling
according to these basis functions has got a high tendency to leave the corresponding
regions. The acceptance ratio of a set-based HMC-approach would decrease accordingly
and convergence of the HMC method would be worse. In the given examples for n-pentane
and cyclohexane, the acceptance ratio of the meshless approach was always above 80%.
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“normE” convergence indicator (93) vs. Gelman-Rubin indicator. The next
numerical example motivates the actual choice of the convergence indicator, which differs
from indicators given in literature. In [133] Meyer and Weber computed the statistical
weights for a 2-clustering of cyclohexane via ZIBgridfree with four different random num-
ber sequences. The two clusters mainly consist of the different chair conformations of
cyclohexane and should be equally weighted because of the symmetry of the molecule.
ZIBgridfree has been started with a constant step number (namely 40000) for each of the
s = 10 modified potential samplings. The result is a mean deviation from symmetry of
about 5%. Details are shown in Table 2.

random seed % weight 1 % weight 2 % deviation

12 49.1 50.8 1.7
123 54.3 45.7 8.6
1234 49.4 50.6 1.2
12345 54.2 45.8 8.4

Table 2: ZIBgridfree experiment for cyclohexane with 10 basis functions and two clusters.
ZIBgridfree has been started with different random seeds and each modified potential has
been sampled with 40000 points.

random seed % weight 1 % weight 2 % deviation

12 52.2 47.8 4.4
123 47.5 52.5 5.0
1234 53.7 46.3 6.4
12345 49.1 50.9 1.8

Table 3: ZIBgridfree experiment for cyclohexane with 10 basis functions and two clusters.
ZIBgridfree has been started with different random seeds. The convergence of the modified
potential samplings has been tested with the criterion (93).

random seed % weight 1 % weight 2 % deviation

123 43.6 56.4 12.8
1234 33.9 66.1 32.2
12345 62.5 37.5 25.0
123456 60.1 39.9 20.2

Table 4: ZIBgridfree experiment for cyclohexane with 10 basis functions and two clusters.
ZIBgridfree has been started with different random seeds. The convergence of the modified
potential samplings has been tested with the standard Gelman-Rubin criterion.
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For a second experiment, in the normE-criterion (93) the value εE has been chosen,
such that the mean number of steps for the four different random sequences was 399500 ≈
s · 40000 and therefore comparable to the constant step number experiment. The result
is shown in Table 3, which provides a slightly lower mean deviation of the weights as in
the first experiment.

The third experiment was performed with the standard Gelman-Rubin convergence
indicator [42] instead of the normE-criterion. The result in Table 4 shows that the conver-
gence diagnostics of Gelman and Rubin does not fit into the meshless partitioning concept.
The mean deviation from symmetry is more than 20%, although the mean number of steps
was 545500 and therefore much more than in Table 3.

6.5 Error Analysis

In this section one problem connected to the equilibrium sampling of high dimensional
conformational spaces Ω is exemplified.

Small overlap. In the calculation of pentane and cyclohexane, the normE convergence
indicator (93) has been used. As shown in Section 5.2.3, the restricted sub-samplings only
converge, if there is no metastability inside the proposed uncoupling basis functions. In
order to meet this condition for the samplings of pentane and cyclohexane, the α-value has
been chosen high enough to separate the sub-samplings well. If the overlap between the
sub-samplings is small, the condition numbers κIM in (84) and κHH in (85) become poor,
since M is nearly the identity matrix. E.g. the minimal condition number for pentane
was higher than κ = 200. Combined with an error estimation of ‖E‖∞ ≈ 0.01 this means
that the error of weight computation (83) is higher than the weights themselves.

High overlap. In the example of epigallocatechin, a small α-value has been chosen24.
In this case, the overlap between the sub-samplings increases, which leads to a condition
number of min{κHH , κIM} = 2.03 and therefore to a meaningful weight computation.
But, these results have also a drawback. Although, the total samplings of epigallocatechin
comprise of about 1.5 million (for s = 158) or 1 million (for s = 398) sampling points,
it has not converged according to the normE-criterion (93) with εE = 0.3, which means
that the error estimation of ‖E‖∞ ≈ 0.028 according to (91) may be too optimistic.

Systematic problem. The systematic problem of equilibrium sampling is the excluding
relation between a well-conditioned weight computation and a fast converging sampling
method. Meshless methods do not circumvent this problem, as the examples have shown.

24First experiment for epigallocatechin: α = 1.05 with ε2 = 0.001, θ = 1.948, s = 158 via equation
(80), see Section 5.2.1. Second experiment for epigallocatechin: α = 1.62, ε2 = 0.001, θ = 1.63, s = 398.
Whereas for the experiments with pentane and cyclohexane α > 10 has been used.
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Hierarchical function refinements like in Section 5.3 or more sophisticated sampling meth-
ods for the restricted sub-samplings can be further steps for improving the results. An
advantage of the meshless approach is that there is a parameter α which can be used in
order to either increase accuracy with worse convergence properties or in order to accel-
erate convergence getting a less accurate weight computation. Here it is important to
mention that α has been shown to be a soft parameter corresponding to the computation
of the conformations, see Section 5.1.3 equation (74).
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7 Conclusion

In this thesis the conformation dynamics approach has been extended to a cluster anal-
ysis in terms of almost characteristic functions. This “soft” clustering concept can be
applied whenever objects25 occur that have to be assigned to different clusters with a
non-vanishing degree of membership. For this purpose, we derived Robust Perron Cluster
Analysis (PCCA+) from perturbation theory of stochastic matrices, which are computed
as discretizations of some transfer operator here. For other applications, however, these
matrices can also be based on any pairwise similarity measure. In contrast to other spec-
tral clustering methods, PCCA+ exploits the simplex structure of the eigenvector data
of the stochastic matrix, which leads to a simple, fast, and robust algorithm. Robustness
has been shown by an O(ε2) perturbation result. PCCA+ is not only useful for molec-
ular conformation analysis, but it is a multi-purpose algorithm used for various further
applications in life sciences, see also [132] and [135].

An advantage of PCCA+ is that it defines transition states, i.e. objects which are as-
signed to different clusters with a significant degree of membership. In molecular dynamics
these are states q ∈ Ω which have a low Boltzmann factor exp(−β V (q)). Although, a
change of the assignment of transition states w.r.t. the conformations does not have a
significant influence in the thermodynamical weight computation, the memership values
χi(q), i = 1, . . . , nC , provide important information about the dynamical structure of the
molecular system. In Section 3.4.5 it has been shown that this soft kind of clustering can
be unique w.r.t. the degrees of membership.

The computation of membership functions implies a new interpretation of confor-
mations as macrostates having their own modified potential energy functions which are
defined for the complete set Ω of spatial states. Since a molecular system is uniquely
defined by its potential energy function, one can compute any thermodynamical property
for conformations, too, like observables, dynamics, and partition functions. From this
point of view, conformations are more than only points or subsets of Ω.

The change of the point of view for conformation dynamics from a set-based concept
to a function-based concept allows the use of meshless methods with overlapping basis
functions. Only this kind of methods can break the curse of dimensionality in high-
dimensional spaces in future.

Geometrical conformation analysis algorithms focus on minima of the potential energy
landscape. However, from error analysis we derived that a balanced sampling of local
minima and transition regions is necessary for a correct computation of thermodynamical
weights, which led to an improved error-related convergence indicator in Section 5.2.3.
This insight also implies that sampling of Ω and its analysis are two parts of the algorithm
which cannot be separated from each other.

25In our case these objects are spatial states q ∈ Ω.
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A Appendix

A.1 Gradient of a Modified Potential

Equation (71) is shown. For the reason of simplicity, define the nodal square distance
functions dj : Ω → IR as dj(q) := d2(q, qj) for the nodes q1, . . . , qs ∈ Ω. The following
equations hold:

∇(−β−1 ln(Φj(q)))

= − 1

β Φj(q)
∇Φj(q)

= − 1

β Φj(q)

( ∇ exp(−α dj(q))
s∑

k=1

exp(−α dk(q))
− Φj(q)

s∑
i=1

∇ exp(−α di(q))

s∑
k=1

exp(−α dk(q))

)

= − 1

βΦj(q)

(−α exp(−α dj(q))∇dj(q)
s∑

k=1

exp(−α dk(q))
− Φj(q)

s∑
i=1

−α exp(−α di(q))∇di(q)

s∑
k=1

exp(−α dk(q))

)

= − 1

βΦj(q)
(− α Φj(q)∇dj(q)− Φj(q)[

s∑
i=1

−α Φi(q)∇di(q)])

=
α

β
(− [

s∑
i=1

Φi(q)∇di(q)] +∇dj(q)).

A.2 Parameter Dependence of a Membership Basis

Equation (73) is shown.

∂

∂α
Φ

[α]
i (q)

∣∣∣
α=α∗

=
∂

∂α

exp(−αd2(q, qi))
s∑

j=1

exp(−αd2(q, qj))

∣∣∣
α=α∗

=
∂

∂α
exp(−αd2(q, qi))|α=α∗

s∑
j=1

exp(−α∗d2(q, qj))
− Φ

[α∗]
i (q)

∂
∂α

s∑
j=1

exp(−αd2(q, qj))|α=α∗

s∑
k=1

exp(−α∗d2(q, qk))

= −d2(q, qi) Φ
[α∗]
i (q) +

s∑
j=1

Φ
[α∗]
i (q) d2(q, qj) Φ

[α∗]
i (q)

= −
s∑

j=1

Φ
[α∗]
j (q) d2(q, qi) Φ

[α∗]
i (q) +

s∑
j=1

Φ
[α∗]
i (q) d2(q, qj) Φ

[α∗]
j (q)
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=
s∑

j=1

(d2(q, qj)− d2(q, qi)) Φ
[α∗]
i (q) Φ

[α∗]
j (q).

A.3 Monte Carlo Integration vs. Randomized Function Approx-
imation

An example for breaking the curse of dimensionality is the Monte Carlo integration
method, where the numerical effort does not depend on the dimension of the problem
but on the variance of some integrand. Assume a sample set Q = {q1, . . . , qs} of points
qi ∈ Ω, which are distributed according to the Boltzmann distribution π, and uncoupling
basis functions Φi(q) : Ω → [0, 1] associated with these sampling points via Shepard’s
method applied to radial basis functions. Then 〈Φi〉π = 1/s for all i = 1, . . . , s. For
a sufficiently smooth function f : Ω → IR and for this function basis {Φi} the error of
Monte Carlo integration is:

eint =
∣∣∣ ∫

Ω

f(q) π(q) dq − 1

s

s∑
i=1

f(qi)
∣∣∣

=
∣∣∣ ∫

Ω

f(q) π(q) dq −
s∑

i=1

〈Φi〉π f(qi)
∣∣∣

=
∣∣∣ ∫

Ω

(f(q)−
s∑

i=1

f(qi) Φi(q)) π(q) dq
∣∣∣. (100)

eint does not suffer from the curse of dimensionality due to Monte Carlo integration
theory. That the use of randomization is not only sufficient but also necessary for breaking
the curse in numerical quadrature has been shown by Novak [98], where an exponential
(w.r.t. the dimension of the function space) lower bound is derived for the integration
error via positive quadrature formulas.

The weighted L1(π)-error of randomized function approximation is:

eapprox =

∫
Ω

|f(q)−
s∑

i=1

f(qi)Φi(q)|π(q) dq. (101)

Note that the equations (101) and (100) only differ in a permutation of integration and
absolute value calculation. Therefore, the integration error eint is always smaller than
the approximation error eapprox. This leads to the conjecture that deterministic function
approximation also suffers from the curse of dimensionality and only randomization can
be the key to solve this problem in future. Here is the motivation for the conjecture

eint(deterministic) ≤ eapprox(deterministic)
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“curse of dimensionality′′ “surely curse of dimensionality′′

eint(randomized) ≤ eapprox(randomized)
“no curse′′ “possibly no curse′′

A.4 Epigallocatechin

Epigallocatechin is an important substance of content of green tea. Empirical observa-
tions have shown that an ingestion of epigallocatechin together with other polyphenolic
agents boosts the anti-oxidative activity in humans and animals and reduces cell death,
cf. Kurihara et al. [75] pp. 441-442 and BBC News “Green tea ’may protect the heart’ ”
from February 28th 2005 (available via http://news.bbc.co.uk/2/hi/health/4298403.stm).
Anti-oxidative activity is important in order to prevent from cancer, heard disease, Parkin-
son’s disease, reumatoid arthritis and Alzheimer’s. For more detailed informations I
recommend an introductory textbook of Montagnier et al. [96] on the relation between
oxidative stress and diseases.

Figure 19: Line formula of epigallocatechin-3-gallate. For a 3D representation see Fig. 16.
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Thema der Arbeit: “Die Gaußtransformation als
Homotopiemethode zur globalen Optimierung von
Molekülpotentialfunktionen”.

1999-2001
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C Zusammenfassung

Die vorliegende Arbeit untersucht den Einsatz gitterfreier Methoden zur Beschreibung und
zur Analyse von molekularen Konformationen. Einen Vorteil dieser Methoden hinsichtlich
der Beschreibung von Konformationen stellt die Behandlung von Übergangszuständen
dar. Hier kann der Zugehörigkeitsgrad eines Übergangszustandes zu verschiedenen Kon-
formationen analysiert werden. Die Zugehörigkeitsgrade werden dabei mit Hilfe der Ro-
busten Perron Cluster Analyse (PCCA+) ermittelt, die in dieser Arbeit detailliert unter-
sucht wird.

Neben der Clusterung von Simulationsdaten widmet sich die vorliegende Arbeit auch
der Durchführung von so genannten Monte-Carlo-Simulationen unter Einhaltung des git-
terfreien Konzeptes und zeigt eine gitterfreie Partitionierungsmethode auf, mit deren
Hilfe thermodynamische Gewichte der einzelnen Konformationen adaptiv ermittelt wer-
den können.

Eine entsprechende Fehleranalyse hinsichtlich der thermodynamischen Gewichtsbe-
rechnung und der Approximation der Zugehörigkeitsfunktionen führt dabei zu einem
ergebnisorientierten Abbruchkriterium für die Monte-Carlo-Simulation.
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