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Abstract

The paper presents a particle method framework for simulating molec-

ular dynamics. For time integration, the implicit trapezoidal rule is em-

ployed, where an explicit predictor enables large time steps. Error es-

timators for both the temporal and spatial discretization are advocated

and facilitate a fully adaptive propagation. The framework is developed

and exemplified in the context of the classical Liouville equation, where

Gaussian phase-space packets are used as particles. Simplified variants

are discussed briefly. The concept is illustrated by numerical examples for

one-dimensional dynamics in double well potential.
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1 Introduction

The foundation of mathematical descriptions of molecular dynamics is provided
by quantum theory in form of the time dependent Schrödinger equation. This
partial differential equation, however, is defined on function spaces with a di-
mension proportional to the number of atoms involved. Already for medium
size molecules, the curse of dimensionality leads to an exponentially growing
computational cost of traditional grid discretization techniques based on finite
differences, finite elements, or the Fourier transform.

As a remedy for the curse of dimensionality, two alternatives to traditional
grid discretization techniques are available: sparse grids (cf. [1, 2]) and particle
methods (cf. [3, 4]), which both scale reasonably well to medium dimensional
problems. Sparse grids, however, are best suited for representing smooth densi-
ties with grid-aligned features.

Particle methods for simulating quantum mechanical systems tackle either
the time dependent Schrödinger equation directly [5, 6, 7, 8], or the Wigner–
transformed Liouville-von-Neumann equation, which casts the evolution into the
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phase space spanned by positions and momenta [9, 10, 11]. Approximations to
the Liouville-von-Neumann equation, e.g. the classical Liouville equation, have
also attracted interest [12, 13, 14, 15].

The Schrödinger equation and its reformulations and approximations can be
discretized by particle methods with different particle shape functions. A com-
mon approach is to approximate the phase space distributions by collections of
Dirac functional trajectories (cf. [16]). In this case, the dynamics is reduced to
Newton’s equations of motion, which are routinely solved in classical molecular
dynamics simulations. The attractive simplicity of such a local particle base has,
however, three major drawbacks. First, a Dirac function representation is hardly
appropriate for problems where quantum effects and hence non-local effects in
continuous distributions play an important role. In these situations, which in-
clude non-adiabatic population exchanges [17, 18, 19, 20], multi-dimensional
potential energy surfaces with high barriers [13], and non-classical forces occur-
ring in the ”Bohmian” formulation of quantum mechanics [21], approximating
the continuous Wigner distributions by collections of smooth particle shape
functions is far more appropriate. Second, the computation of correlations and
overlap integrals is difficult if only point values are available. A continuous rep-
resentation of the densities can be expected to simplify this task [13]. Third,
a singular representation of continuous quantum-mechanical distribution func-
tions makes error estimation difficult and thus complicates the construction of
spatially adaptive simulation algorithms.

Particle methods based on a superposition of Gaussian wave packets as in-
troduced by Heller [6, 22, 23, 24, 25] have become popular and inspired a
number of related methods, e.g. the multiple spawning method [17, 18, 19] and
the multithreads method [26, 27, 28]. Quite often, the proposed algorithms
rely on two simplifying assumptions, which have been discussed in detail by
Sawada, Heather, Jackson, and Metiu [7]: (1) the independent particle
approximation (IPA, also known as IGA — independent Gaussians approxima-
tion), which assumes that the particles can be propagated independently, and is
thus closely connected to the flow-conservation property of the dynamics, and
(2) the locally harmonic approximation (LHA), which assumes that the width
of each Gaussian is smaller than the length over which the potential deviates
significantly from a quadratic shape. Note that Dirac function representations
as commonly realized in molecular dynamics codes rely on flow conservation and
hence the IPA assumption. Both assumptions are sufficiently valid in a number
of practically relevant situations for short simulation times, a fact which has
been exploited by Heller to simulate such processes by a comparatively simple
numerical scheme.

There are, however, several situations where neither IPA nor LHA are valid,
e.g. reduced models or non-conservative systems violate the IPA, whereas the
LHA is in general violated for realistic potentials and propagation times. This
motivated the development of algorithms which do not depend on these as-
sumptions. The strategy proposed by Walkup et al. [29] and Prezhdo et
al. [30] exploits the idea of Taylor expansions by using higher–order derivatives
of the potential for propagating the distribution function. However in the case
of real–life applications (assuming many important degrees of freedom for the
underlying molecular system) the problem of calculation of this derivatives be-
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comes intractable. Sawada et al. [7] introduced the minimum error method
(MEM), which is essentially the method of lines [31], where the equations of
motion are derived by a least squares approximation to the continuous evolu-
tion. The method is successfully applied to processes violating both LHA and
IPA, but exhibits two weaknesses closely related to spatial adaptivity: (a) if the
initially chosen number of Gaussians is too large, the equations of motion can
become singular and hence intractable in the course of the propagation, and (b)
the number of Gaussians needed to represent the wave function later in time
can substantially increase in time. A heuristic strategy for adapting the number
of Gaussians based on monitoring eigenvalues of the overlap matrix has been
sketched, but seems to be inefficient.

The present paper addresses both weaknesses by advocating a Trapezoidal
Rule Adaptive Integrator for Liouville type equations (TRAIL). In a theoret-
ically backed way, the local approximation error is employed for creating new
Gaussians where needed, and the subcondition number of the least squares
system matrix is exploited for removing the Gaussians which are no longer nec-
essary for representing the continuous distribution. This fully adaptive scheme
blends smoothly with the implicit trapezoidal rule used for propagation in time.
In contrast to Wan and Schofield [26, 27, 28] the selection of a suitable set
of Gaussians aims at maintaining a user requested accuracy instead of a given
computational effort per time step.

The method is exemplified and demonstrated in the simple context of the
classical limit ~ → 0 of the Liouville-von-Neumann equation, the classical Liou-
ville equation (CLE), describing the dynamical behavior of a classical (quasi-)dis-
tribution function at constant energy in phase space. Note that the CLE simply
transports density values along classical trajectories — a structural property
which can be exploited for constructing efficient explicit methods. In contrast
to the adaptive propagation scheme presented here, such methods cannot be ex-
tended to the quantum-classical Liouville equation or the Schrödinger equation,
which do not exhibit a similar conservation property.

In the context of the CLE we can utilize Monte Carlo approximation and
explicit propagation methods for the CLE recently developed by Horenko,
Schmidt, and Schütte [20] as building blocks in the proposed numerical
scheme. Moreover, the presented method can easily be integrated into existing
MD codes, thus providing the advantages of adaptive propagation and error–
estimation for a wide spectrum of practical applications.

The remainder of the paper is organized as follows. Section 2 is devoted to
the time integration of the CLE dynamics by both implicit and explicit integra-
tors, together with error control by adapting the time step size. In Section 3, the
discretization of Wigner distributions by collections of Gaussians is described,
and the adaptive refinement and coarsening of the approximation is presented.
Finally, Section 4 contains numerical example.
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2 Time Integration of the CLE Dynamics

We consider the integration of linear time-dependent PDEs of the form

ρ = ρ(R, P, t), ∂tρ = Lρ, (1)

where ρ := Rndim × Rndim × R → RM is a function to be propagated. We
assume the differential operatorL has a purely imaginary spectrum. This setting
includes the classical and the quantum classical Liouville equations as well as the
Schrödinger equation. For the sake of simplicity, however, we will concentrate
on the classical Liouville equation

∂tρ(R, P, t) = −M−1P T∇R ρ(R, P, t)

+ (∇R V (R))T∇P ρ(R, P, t),

ρ(R, P, 0) = ρ0 ∀R, P, (2)

where the phase space consists of location R and impulse P , M is a symmetric
positive definite matrix of masses, V (R) is the potential energy function, and
ρ : Rndim ×Rndim ×R → R is the Wigner quasi density.

As it has been already mentioned, a number of approaches can be applied
in order to integrate the partial differential equation (2). But most of the
existing particle methods for the CLE, both with Dirac and Gauss functions as
a basis, share the lack of theoretically justified adaptivity in time and space. In
order to construct a fully adaptive method we employ the Rothe method [31] of
semidiscretization in time, which leaves us with a stationary PDE to be solved in
each time step. Spatial adaptivity can then be exploited for robust and efficient
solution of these stationary problems.

Since the spectrum of the differential operator L is purely imaginary, Gauss
methods are suited for time discretization. We choose the most simple scheme,
the well-known implicit trapezoidal rule

(

I −
τ

2
L

)

ρ̄(t + τ) =
(

I +
τ

2
L

)

ρ(t), (3)

where ρ̄ is the value obtained by the time-discrete evolution, starting from the
(exactly available) initial value ρ. Note that all Gauss integrators conserve first
integrals, which implies conservation of volume and energy for the CLE setting.

For adaptivity in time, we need three essential ingredients: an error estima-
tor, a step size selection scheme, and a desired tolerance. We briefly recollect
the standard methodology from integration of ODEs (cf. [32]).

Error estimator. Denoting the exact evolution by Φ, we estimate the un-
known error

ε̄t := ‖ρ̄(t + τ) − Φτρ(t)‖ (4)

by the difference between the trapezoidal rule and some easily computable com-
parison propagator Ψ̂τ of lower order, e.g. the explicit Euler method Ψ̂τ =
I + τL:

[ε̄t] := ‖ρ̄(t + τ) − Ψ̂τρ(t)‖. (5)
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The step is accepted if [ε̄t] is sufficiently small, i.e. [ε̄t] ≤ TOLt, where TOLt

is a user-prescribed accuracy requirement. Otherwise we reduce the step size
and repeat the step. Note that [ε̄t] necessarily estimates the error ε̂t of the less
accurate comparison propagator Ψ̂τ instead of the computationally unavailable
error of the trapezoidal rule.

A tempting idea would be to use efficient explicit second order particle propa-
gators, which have been developed under the LHA and IPA assumptions [22, 15],
as Ψ̂τ . However, in the case of nonharmonic potentials and Gaussians with
nonvanishing width, these propagators are of convergence order zero. Although
being a reasonable approximation to the exact evolution Φτ , such propagators
provide worse error estimates than the explicit Euler scheme, which is of con-
vergence order one.

Step size selection scheme. We assume the comparison propagator Ψ̂t is
of order one, such that

[ε̄t]=̇ε̂t=̇Cτ2 (6)

holds locally for some slowly varying constant C. Substituting [ε̄t] for ε̄t and
aiming at an error of σTOLt with some safety factor σ < 1, we obtain an optimal
step size

τopt =

√

σTOLt

[ε̄t]
τ, (7)

which is used for the next step or recomputing the current time step, respec-
tively.

3 Adaptive Phase Space Discretization

For approximating the distributions to be propagated, we use a linear combina-
tion

ρ(t) =

N∑

n=1

yn(t)g(R̄n(t), P̄n(t), Ḡn(t)) (8)

of particles g positioned at points (R̄n, P̄n)(t) in phase space, scaled by the
amplitudes yn(t). Additionally, the shape of the particles is allowed to depend
on a set of shape parameters Ḡn(t).

For the CLE, we use Gaussian phase space packets (GPPs) defined as

g(R̄, P̄ , Ḡ)(R, P ) := exp

[

−

(
R − R̄
P − P̄

)T

Ḡ

(
R − R̄
P − P̄

)]

, (9)

where the shape matrix Ḡ ∈ R4n2

dim is symmetric positive definite.

In order to propagate an initial Wigner density by means of the particle
discretization given above, two tasks have to be tackled. First an initial GPP
approximation of a given Wigner density has to be computed, and second, in
every time step a new GPP approximation to the exact propagation of the
current GPP approximation must be found.
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3.1 Initial GPP approximation

A method to approximate a given Wigner density ρ0 by a linear combination
ρ(0) of few GPPs has been recently proposed by Horenko, Schmidt, and
Schütte [33]. Since similar techniques are developed in Section 3.2 for spatial
adaptivity, we sketch the method here for convenience.

The aim is to achieve a sufficiently small spatial approximation error
∥
∥
∥ρ(0) − ρ0

∥
∥
∥
L1

≤ TOLx

subject to Ḡn symmetric positive definite with some number N of GPP’s to
be determined as small as possible. In order to make the task computationally
tractable, we substitute the L1-norm by a discrete Monte Carlo sampling at KN

points and simplify the positive definiteness constraint to fixing Ḡn = λI with
some λ > 0, obtaining the requirement

‖ρ(0) − ρ0‖
2
{Rk,Pk}

:=

KN∑

k=1

ωk

∣
∣
∣ρ0(Rk, Pk) − ρ(Rk, Pk, 0)

∣
∣
∣

2

≤ TOL2
x. (10)

For (10) not to be underdetermined we have to select at least as many sample
points as the representation (8) has degrees of freedom, and hence require KN ≥
]dof(N). For fixed N , the approximation error can be minimized by a Gauss-
Newton method. Initial centers (R̄n, P̄n) of the GPPs and sampling points
(Rk, Pk) are obtained by a Monte-Carlo sampling according to the absolute value
of the quasi–probability density ρ0. For computational feasibility we restrict the
sampling to the regions in phase space where |ρ0| exceeds a certain threshold.
For simplicity, we include the GPP’s centers into the set of sampling points by
setting (Rk, Pk) = (R̄n, P̄n) for 1 ≤ k ≤ N and generate at least ]dof(N) − N
more sampling points by the same Monte-Carlo process. In concordance with
the probabilistic density of the sampling points, the weights have to be chosen
as

ωk :=
‖ρ0‖L1

KNρ0(Rk, Pk)
.

If the local optimum computed by the Gauss-Newton method does not sat-
isfy (10), N is increased and additional GPP’s are created by Monte-Carlo
sampling. The process is then repeated until the accuracy requirement is ful-
filled.

3.2 Propagation of GPP approximations

Numerical propagation. The propagation of the Wigner density ρ by the
implicit trapezoidal rule (3) poses an approximation problem similar to that
encountered in Section 3.1, namely to find a new density ρ̄(t + τ) representable
by GPP’s such that

εx =
∥
∥
∥

(

I −
τ

2
Lc

)

ρ̄(t + τ) −
(

I +
τ

2
Lc

)

ρ(t)
∥
∥
∥
L1

≤ TOLx. (11)

6



Here, TOLx is a tolerance which now has to be matched with the user-prescribed
accuracy requirement TOLt — see below. By sampling at KN points (Ri, Pi),
we again reduce (11) to a computationally tractable least squares problem

[εx] =
∥
∥
∥

(

I −
τ

2
Lc

)

ρ(t + τ) −
(

I +
τ

2
Lc

)

ρ(t)
∥
∥
∥
{Ri,Pi}

≤ TOLx. (12)

Depending on how the degrees of freedom to be fitted by the least squares
procedure are selected, either only the amplitudes, or both amplitudes and
phase space positions of the GPPs’ centers, we arrive at a linear or nonlinear
least squares problem. In the linear version, the system has KN equations and
]dof(N) = N unknowns yn defining ρ(t + τ), and can be solved by a single QR
decomposition of the influence matrix

A =
∂

∂y

[(

I −
τ

2
Lc

)

ρ(t + τ)
]

.

In the nonlinear variant, the system has KN equations and ]dof(N) =
(1 + 2ndim)N degrees of freedom yn, R̄n, and P̄n defining ρ(t + τ). Due to
the better approximation capability offered by also adjusting the GPPs’ cen-
ters, the number of GPPs necessary to satisfy the accuracy requirement (12)
can be expected to be considerably smaller than for the linear approach. How-
ever, this does not necessarily translate into fewer degrees of freedom, or fewer
sample points. For solving the nonlinear least squares problem, a Gauss-Newton
method should be used, which may require multiple QR decompositions of the
influence matrix

A =
∂

∂(y, R̄, P̄ )

[(

I −
τ

2
Lc

)

ρ(t + τ)
]

.

Whether this is compensated by the better approximation capability is not clear
a priori.

Choice of GPP collection. There are several possibilities to choose the GPP
collection used to represent ρ(t+τ) in the beginning of each time step. Selecting
GPPs in unsuitable regions of the phase space will prevent the linear least
squares approach from meeting the accuracy requirement (12), thus triggering
the discretization refinement developed below. For the nonlinear least squares
approach, it will increase the number of Gauss-Newton steps and hence decrease
the computational efficiency. A sufficiently good initial guess for the solution of
the least squares problem is therefore necessary for computational efficiency in
both variants.

The Monte-Carlo generation of the centers (R̄n, P̄n) anew for every least
squares problem is possible, but too costly. Fortunately, it can be omitted here
due to the continuity of the evolution: Since for sufficiently small time steps τ
the new density ρ(t + τ) is close to the old one, we can expect that the Gauss-
Newton method starting at the old density ρ(t) converges quickly towards the
closest local minimum of the approximation error (12). Similarly, the linear
least squares solution can be expected to be sufficiently accurate. By cheaply
computable approximations to the evolution, even better initial guesses can be
provided, thus enabling larger time steps and reducing the need for additional
GPPs. Two such predictors are presented below.
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Choice of sample points. Another question which has to be addressed is
the choice of sample points (Ri, Pi), i = 1, . . . , KN . For the least squares
problem (12) not to be underdetermined, we require at least KN ≥ ]dof(N)
sample points, preferably distributed in accordance with the quasi-probability
density ρ(t). KN should be significantly larger than ]dof(N) in order to im-
prove the robustness of the least squares approximation and to provide a lo-
cal error estimator for spatial adaptivity — see below. Since performing a
Monte-Carlo sampling at every time step is prohibitively expensive, we sug-
gest to select the sampling points according to the following scheme: For the
first step at t = 0 we take the sample points from the initial GPP approxima-
tion outlined in Section 3.1. For subsequent steps, we suggest to take again
the centers of the GPP’s, i.e. (Ri(t + τ), Pi(t + τ)) = (R̄i(t + τ), P̄i(t + τ)),
i = 1, . . . , N , and additionally the remaining sampling points from the previous
step propagated independently of each other in time along classical trajectories,
i.e. (Ri(t + τ), Pi(t + τ)) = Φτ (Ri(t), Pi(t)), i = N + 1, . . . , KN .

Spatial adaptivity. It may happen that the number N of GPPs chosen to
fit the initial state ρ(0) becomes inadequate during the propagation, for three
different reasons. (a) A more complicated distribution ρ(t) arises later in time,
such that more GPPs are needed to represent the distribution ρ̄(t) with the
required accuracy. (b) Two or more GPPs can come close to each other, such
that the least squares problem (12) becomes ill conditioned. (c) The distribution
may develop a simpler structure, such that it is advisable to reduce the number
of GPP’s for computational efficiency. The first situation requires the generation
(spawning) of new GPPs, whereas the latter ones require the removal (pruning)
of existing GPPs.

Let us first consider the case that the number of GPPs is too small, such that
the accuracy requirement (12) cannot be satisfied. In this case, as few as possible
additional GPP’s have to be created in order to reduce the approximation error
sufficiently. Fortunately, the local residuals

εk =
∣
∣
∣

(

I −
τ

2
L

)

ρ(Rk, Pk, t + τ) −
(

I +
τ

2
L

)

ρ(Rk, Pk, t)
∣
∣
∣ (13)

provide a useful local error indicator suitable for extending the particle set. A
similar error indicator has been proposed by Iske and Levesley [34] in the
context of scattered data approximation. The following scheme is intended to
insert the new particles at positions in phase-space, where the approximation
error is largest, and hence to improve the approximation at a small cost.

Assume the sample points (Rk , Pk), k = N + 1, . . . , KN , (which are not also
centers of existing GPPs) are sorted descendingly by their local residual ωkεk.
Let j > N be minimal such that

KN∑

k=j+1

ωkεk ≤ TOLx (14)

holds, or j = KN if (14) cannot be satisfied. We then suggest to substitute
(or ”upgrade”) the sample points N + 1, . . . , j by newly created GPP’s with
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centers (Rk , Pk), k = N + 1, . . . , j, amplitude zero, and shape matrix λI , and
create at least 2ndim(KN − j) new sample points in the vicinity of the newly
created GPP’s by some Monte-Carlo method. N and KN should be increased
accordingly to j and KN + 2ndim(KN − j), respectively. With the enlarged
particle set at hand, the least squares problem is solved again in order to meet
the requirement (12). If necessary, the adaptive refinement is repeated until
finally (12) is met. Related greedy algorithms for spatial adaptivity in different
contexts have been proposed by Schaback et al. [35, 36].

Let us now turn to the case that the least squares problem (12) becomes
ill conditioned due to similarly shaped GPPs being too close to each other.
Sawada et al. [7] suggest to drop an arbitrary Gaussian and do a refitting of the
remaining ones whenever one eigenvalue of the overlap matrix becomes small.
While this criterion is reported to work, neither does it take the approximation
error into account nor does it indicate which Gaussian to drop or how small an
eigenvalue must become. Wan et al. [26] suggest to remove Gaussians with an
amplitude below 10−12 and to collapse any two Gaussians which are too close
to each other. While this can indeed cure the numerical stability problems, no
indication is given how close two Gaussians must be or how the cutoff value of
the amplitude was chosen.

As a pruning method oriented at the numerical stability and the approx-
imation error, we propose to use a column permutation strategy [37] for the
QR decomposition together with a numerical rank decision based on the sub-
condition number [38] in order to identify and remove exactly those columns
and their associated GPPs which make (12) numerically singular. Moreover,
a careful examination of the least squares residual enables the identification
of even more GPPs which are not necessary to obtain the requested accuracy,
and thus can be removed. Pruning of the GPP collection should be realized by
”downgrading” unnecessary Gaussians to sample points.

To be more precise, in the linear least squares setting, assume the columns
of A and correspondingly the rows of x of the linear least squares problem,
‖Ax− b‖ = min, have been sorted such that for the QR decomposition A = QR
the relations

|Rii| ≥ |Ri+1,i+1| for i = 1, . . . , ]dof(N) − 1

hold. Construct a partition

R =







R1 S1 S2

R2 S3

R3

0







, x =





x1

x2

x3



 , QT b =







b1

b2

b3

b4







, (15)

such that the following conditions are satisfied:

max
i

|(R3)ii| ≤
1

κ
|(R1)11| < min

i
|(R2)ii|

√

‖b2‖2 + ‖b3‖2 + ‖b4‖2 ≤ σTOLx

for κ being the maximal accepted least squares condition (somewhere around
κ = 108) and 0 < σ < 1 some safety factor which can be adjusted to balance
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pruning and spawning. A default value of σ = 0.9 is suggested. Note that ‖b4‖
is the smallest possible approximation error that can be achieved at all with the
present collection of Gaussians, and similarly

√

‖b3‖2 + ‖b4‖2 is the minimal
error that can be obtained in a numerically stable way.

The columns of A and GPPs corresponding to the degrees of freedom in x3

can be removed on the observation that they are numerically linearly dependent
on the columns corresponding to x1 and x2, and hence are redundant.

Furthermore, the degrees of freedom in x2 contribute least to the approxi-
mation capability of the remaining GPP collection. Sacrificing some accuracy
while still satisfying the accuracy requirement (12) allows to improve the com-
putational efficiency.

In case no such partition can be found, i.e. σTOLx <
√

‖b3‖2 + ‖b4‖2 ≤
TOLx, just the numerically linearly dependent degrees of freedom are pruned.
If the accuracy requirement (12) cannot be fulfilled at all, i.e.

√

‖b3‖2 + ‖b4‖2 >
TOLx, the spawning procedure described above has to be performed.

In the setting of the nonlinear least squares fitting, the correspondence of
columns in A to GPP’s is no longer one to one, such that the pruning proce-
dure described above has to be modified. Numerical stability even in the case
of linearly dependent columns can be maintained by setting x3 = 0 without
removing the corresponding degrees of freedom. We suggest to perform the last
Gauss-Newton step, when the GPP’s centers are already close to the solution,
in a reduced fashion by fitting only the amplitudes. In this way, the pruning
scheme developed for the linear least squares case can be transferred to the
nonlinear case as well.

Accuracy matching. Unfortunately, the time error estimator [ε̄t] = ‖ρ̄(t +
τ) − Ψ̂τρ(t)‖ from Section 2 is still computationally unavailable. As shown in
Figure 1, its canonical substitute [εt] := ‖ρ(t + τ) − Ψ̂τρ(t)‖{Ri,Pi} depends on
the spatial discretization error εx, which should not destroy the overall quality
of the error estimate. In view of [ε̄t]=̇Cτ2 and εt=̇Cτ3, and in order not to
destroy the second order convergence of the trapezoidal rule, we aim at εx=̇εt

and hence impose the accuracy matching TOLx = τTOLt.

Asymptotic conservation properties. The adaptive refinement described
above recovers the conservation of energy and volume featured by the exact
trapezoidal rule (3) asymptotically for TOLx → 0. Assuming the absolute
value of the potential V to be bounded by some polynomial p > 0 of degree at
least 2, the energy

〈E, ρ〉 =

∫
(
V (R) +

1

2
PM−1P T

)
ρ dP dR

is a continuous linear functional on the weighted L1-space Y defined by the
norm ‖y‖Y = ‖py‖L1

. Let p in turn be bounded by some constant C < ∞ on
the bounded region of the phase space where the GPPs are located. Then any
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sensible particle approximation ρ(t + τ) of ρ̄(t + τ) that satisfies (12) will also
fulfill

∥
∥
(
I −

τ

2
L

)
ρ(t + τ) −

(
I +

τ

2
L

)
ρ(t))

∥
∥

Y
≤ C TOLx.

Since the exact trapezoidal rule conserves quadratic first integrals, the energy
error of the approximate solution ρ(t + τ) can thus be bounded by

εE(t) := |〈E, ρ(t + τ) − Φτρ(t)〉|

≤ |〈E, ρ(t + τ) − ρ̄(t + τ)〉| + |〈E, ρ̄(t + τ) − Φτρ(t)〉|
︸ ︷︷ ︸

=0≤ ‖E‖ ‖ρ(t + τ) − ρ̄(t + τ)‖Y

≤ ‖E‖
∥
∥
(
I −

τ

2
L

)−1∥
∥

∥
∥
(
I −

τ

2
L

)
(ρ(t + τ) − ρ̄(t + τ))

∥
∥

Y

≤ ‖E‖
∥
∥
(
I −

τ

2
L

)
ρ(t + τ) −

(
I +

τ

2
L

)
ρ(t))

∥
∥

Y

≤ ‖E‖C TOLx.

Here we have used that the differential operator L has an unbounded, purely
imaginary spectrum, which implies ‖(I − τ

2
L)−1‖ = 1.

Analogously, asymptotic conservation of volume can be shown, or, for dif-
ferent evolutions, conservation of arbitrary quadratic first integrals.

Note that this result does not guarantee long term conservation of energy,
as has been established for the method of lines, i.e. semidiscretization in space,
by Hairer, Lubich, and Wanner [39].

Predictors. The simplest choice of the starting point for the Gauss-Newton
method is of course the current GPP collection ρ(t). However, since ρ(t + τ) −
ρ(t) = O(τ), the time step τ is limited by the requirement that the initial
guess should be sufficiently good such that the local Gauss-Newton iteration
converges quickly and reliably to the nearest local solution. Similarly, if only
the amplitudes yn are fitted by a linear least squares approach, a good initial
guess yields a particle set which is well suited to represent the solution. Thus,
the accuracy requirement (12) can be satisfied with fewer GPPs.

For these reasons, the employment of a cheaply computable predictor pro-
viding a better initial guess can be expected to improve the performance of the
propagation considerably, by allowing larger time steps (in the Gauss-Newton
case) and by decreasing the number of necessary GPPs (in the linear least
squares case).

For the CLE considered here we suggest to use an explicit symplectic mod-
ified Leap-Frog propagator Ψ recently proposed by Horenko, Schmidt, and
Schütte [33] as predictor.

In the simple case of both LHA and IPA holding, the Gauss-particles in
the ensemble can be propagated independently with evolution equations for the
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parameters Rn, Pn, and Gn derived from (2):

∂tR̄n = M−1P̄n (16)

∂tP̄n = −∇R V (R̄n) (17)

∂tḠn = C(R̄n)Ḡn + ḠnCT (R̄n), (18)

where

C(R̄n) =

(
0 ∇2

R(R̄n)
−M−1 0

)

.

For sufficiently narrow GPPs, the LHA holds at least approximately even for
nonharmonic potentials, such that the predictor solution Ψτρ(t) can be expected
to provide a good approximation of the exact solution Φτρ(t).

This scheme works well for low to medium dimensional problems, but re-
quires the second derivative of the potential to be evaluated. This evaluation
can become expensive for higher dimensional problems. For such cases, the
adaptive semidiscretization in time provides the freedom to use any sensible
predictor which promises an efficient representation of ρ(t+ τ). Even if the pre-
dictor is not physically justified, it will not impair the quality of the solution,
but may affect the efficiency of the algorithm. E.g. in the numerical example in
Section 4 we used a simple heuristic predictor which stretches particles along the
flow direction in order to represent the highly anisotropic density well. An even
simpler choice, of course, is to use ”frozen Gaussians”, where only the centers
of the particles are propagated by the predictor, but their shape remains fixed.

Algorithm. Overall, we end up with the following algorithm.

Initial phase-space distribution approximation (GPP decomposition):

N := TOL−1/2
x

direct Monte-Carlo generation of (R̄n, P̄n), n = 1, . . . , N
KN := 2Nndim

direct Monte-Carlo generation of (Rk, Pk), k = 1, . . . , KN

solve nonlinear approximation problem (10) for yn, R̄n, P̄n

while ‖ρ0 −
∑N

n=1 yng(R̄n, P̄n, λI)‖{Rk,Pk} > TOLx:
N := 1.1N
KN := 2Nndim

direct Monte-Carlo generation of new GPP’s and sample points
solve nonlinear approximation problem (10) for yn, (R̄n, P̄n)

Numerical propagation of GPP distribution:
while t < T :

compute predictor Ψτρ(t)
solve (non)linear approximation problem (12) for yn, (R̄n, P̄n)
remove unnecessary GPP’s using the partition (15)
while (12) not satisfied:

N := j with j from (14)
KN := 2Nndim

local generation of new GPPs and sample points
solve (non)linear approximation problem (12) for yn, (R̄n, P̄n)

12



compute error estimator [ε] from (5)
t := t + τ

τ :=
√

σTOLt/[ε] τ

4 Numerical Example

As an example for the application of the proposed TRAIL scheme we consider
a one-dimensional model of the Gauss-shaped density of unitary mass initially
centered at 0.5 a.u. of length with width parameter 0.5 and momentum 0.48
a.u. in a double well potential (Fig. 4). This model can for example qualita-
tively describe the proton-transfer process in proteins or liquids [41, 42]. In this
model covalent bonds are described as coupled harmonic oscillators which in
adiabatical representation produce a double-well potential for a lower adiabatic
state. Assuming tunneling and non-adiabatical coupling to be negligible, the
dynamics will be governed by classical transport along the adiabatical surface.
Reference solutions for such systems can be computed by standard Leap-Frog
propagation of classical trajectories, where the values of the quasi-density are
kept constant at the centers of the particles.

Despite its apparent simplicity, this example develops quasi-densities with
highly local features (see Fig 3) and is therefore quite challenging for any nu-
merical scheme.

In the numerical examples we found the linear least squares approach, where
only the amplitudes yn are fitted, more robust and efficient than the full non-
linear least squares method. The solutions shown below were therefore ob-
tained with the linear approach. A simple heuristic predictor has been used,
which stretches particles along the flow direction in order to represent the highly
anisotropic density well.

The numerical implicit trapezoidal rule (3) at different tolerances is com-
pared with an almost exact special purpose method exploiting the flow con-
servation property of this particular example. The initial Wigner density is
decomposed into an ensemble of 100 GPP’s with global error of 5%. Fig. 4
shows position representations of the density evolution on a time-span of 30 fs
as obtained from the special purpose (solid line) and adaptive (dashed lines)
methods.

Another numerical example shows the efficiency of the space-adaptive algo-
rithm in dependence of the predictor (Fig. 5). Not surprisingly, the pictures
clearly show that an effective predictor is a key ingredient for an adaptive par-
ticle method.

Conclusion. A particle method with full temporal and spatial error esti-
mation and adaptivity has been developed for Liouville type equations. Due
to adaptivity, the method is able to reliably represent sophisticated spatio-
temporal details of the dynamics under consideration.
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The computational cost of the method is increasing with the geometric com-
plexity of obtained solutions.

Closed dynamical systems develop more and finer details as the propagation
time increases. This property of Hamiltonian dynamics constricts virtually all
numerical schemes to comparably low spatial dimension and short propagation
times.

For open dynamical systems, e.g. with inclusion of stochastic influence, the
solution will typically be much smoother and therefore much more appropriate
for GPP approximation with wide GPPs even in higher dimension.

Acknowledgement. The authors would like to thank C. Schütte for help-
ful suggestions, and W. Huisinga and B. Schmidt for careful reading of the
manuscript. Partial funding by ”SFB 450: Ultraschnelle photoinduzierte Prozesse”
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Figure 1: Time and spatial discretization errors in the Rothe method for the
exact evolution Φτρ(t). The time step size control based on the difference [εt]

i

between explicit Euler Ψτρ(t) and discretized trapezoidal rule ρ(t+ τ)i requires
the spatial discretization error εi

x to be comparable to the time error εt of the
exact trapezoidal rule ρ̄(t + τ).

Figure 2: Potential energy surface V (R, P ) and initial Wigner density in
phase-space representation.

Figure 3: Quasi-distribution at t = 30fs, evaluated on a 700x800 grid. Con-
tour lines are drawn at levels 1, 5, 10, 15.

Figure 4: Snapshots of position space representation of the Wigner density
evolution at times 16fs and 30fs as obtained from the special purpose (solid line)
and adaptive methods (at different tolerances).

Figure 5: Time steps and number of GPPs in dependence of the predic-
tor. In case no predictor is employed to move the particles with the flow, the
adaptive spatial discretization is able to follow the flow just by creating new par-
ticles. However, the performance gain that can be obtained by using a suitable
predictor as outlined in Section 3.2 is dramatic.
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