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In mixed quantum–classical molecular dynamics few but important degrees of freedom of a dy-
namical system are modeled quantum-mechanically while the remaining ones are treated within the
classical approximation. Rothe methods established in the theory of partial differential equations
are used to control both temporal and spatial discretization errors on grounds of a global tolerance
criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I.
Horenko, M. Weiser, J. Comp. Chem. 24, 1921 (2003) ] has been extended to account for non-
adiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In
the context of particle methods, the quality of the spatial approximation of the phase-space distri-
butions is maximized while the numerical condition of the least-squares problem for the parameters
of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation
of moving particles (Gaussian and Dirac delta-like trajectories) in phase space employing a fully
adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians
to Dirac-like trajectories. This allows for the combination of Monte-Carlo-based strategies for the
sampling of densities and coherences in multi-dimensional problems with deterministic treatment of
non-adiabatic effects.

Numerical examples demonstrate the application of the method to spin-boson systems in different
dimensionality. Non-adiabatic effects occuring at conical intersections are treated in the diabatic
representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL
scheme are shown to converge towards exact results.

Quantum–classical models in molecular dynamics treat only few important degrees of freedom quantum–
mechanically, while the remaining ones are approximated as classical many–body systems. In this way non–adiabatic
effects, which are known to be of great importance for the correct description of many photochemical, photophysical
and biochemical applications, can be accounted for [1–3]. For the case of interaction between heavy (classical) and
light (quantum) particles, such models have been mathematically justified by the partial Wigner–transform technique
[4] in the context of the quantum–classical Liouville equation (QCLE) [5–10]. The main advantage of such an approach
is the mathematically consistent coupling of few decisive quantum degrees of freedom with the remaining classical
ones.

In order to solve this equation for a realistic problem, one should apply a numerical method that can handle
multidimensional dynamics. Such numerical approaches are based on the application of sparse grids [11, 12] or on
particle methods [13, 14]. In contrast to frequently used conventional grid methods, they both scale reasonably well
for medium dimensional problems. Sparse grids work best for smooth anisotropic densities with the grid being aligned
to the propagated objects. In the context of molecular dynamics this grid alignment can be violated which drastically
decreases efficiency. In the context of particle methods, the molecular system under consideration is represented as an
ensemble of localized, moving basis functions, e. g., Dirac or Gaussian trajectories. Particle methods are especially
convenient in this respect because: (1) they represent multidimensional objects statistically by ensembles of particles,
(2) the spatio–temporal dynamics of these objects can be described by a collective motion of an ensemble of particles.
Particle methods are especially useful for the simulation of almost adiabatic processes, where the molecular system is
evolving adiabatically most of the time except for rare non-adiabatic transitions in the form of stochastic hops which
are localized in time and space. Previous applications tackle either the time–dependent Schrdinger equation directly
[15–18], or hybrid quantum–classical models, such as quantum–classical molecular dynamics (QCMD) [19–27].

The simplest class of particle approaches for non–adiabatic molecular dynamics was first proposed by J.C. Tully:
the empirically based surface–hopping trajectory technique (SHT) in which the propagated objects are modeled by
an ensemble of classical Dirac–like trajectories [28–30]. In the course of the dynamical simulation, the particles may
undergo “hops” between different eigenstates of the quantum subsystem in order to model non–adiabatic transitions
in a stochastic manner. Many applications of this method are reported in the field of molecular dynamics, even for
very large systems, e. g., vibronic processes [31, 32] or reactions in enzymes [19, 33–36].

Particle methods based on a superposition of Gaussian wave packets for adiabatic quantum dynamics as first
introduced by E.J. Heller [16, 37–40] have become popular and inspired a variety of methods for the description of
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non–adiabatic effects, e.g. the multiple spawning method [41–43] and the multithreads method [44–46]. Quite often,
the proposed algorithms rely on two simplifying assumptions: (1) the independent particle approximation (IPA,
also known as IGA — independent Gaussians approximation), which assumes that the particles can be propagated
independently, and (2) the locally harmonic approximation (LHA), which assumes that the ”width” of each particle is
smaller than the length over which the potential deviates significantly from a quadratic shape. Note that Dirac function
representations as commonly realized in classical molecular dynamics codes propagate trajectories independently and
so far rely on the IPA assumption. Both assumptions are sufficiently valid in a number of practically relevant situations
for short simulation times.

There are, however, several situations where neither IPA nor LHA are valid, e. g., non–adiabatic effects and
reduced models violate the IPA, whereas the LHA is in general violated for realistic potentials and propagation
times. This motivated the development of algorithms which do not depend on these assumptions. The strategy
proposed by R. Walkup et al. [47] and O. Prezhdo et al. [48] employs higher–order derivatives of the potential
for propagating the distribution function. However, in the case of realistic multidimensional applications the problem
of calculating these derivatives becomes intractable. Alternatively, S.-I. Sawada et. al. suggested a least squares
particle approximation of the underlying dynamics in terms of the minimum error method (MEM) [17]. These
concepts were further developed resulting in multiconfigurational Gaussian methods [49–51]. A similar concept was
also proposed by G. Billing [52, 53], where products of a Gaussian and orthogonal polynomials, e. g., eigenfunctions
of a harmonic oscillator, were used for the space discretization of the PDE in a moving grid fashion. Heuristic
strategies for adapting the number of particles based on monitoring eigenvalues of the overlap matrix were described
in the literature [17, 18, 41–43], but are not numerically justified. In all those approaches there is no possibility to
control the spatial approximation error during the integration which can have two consequences. First, the equations
of motion can become ill-conditioned and hence intractable in the course of the propagation. Second, the number and
position of particles needed for a reliable representation of solution is changing in time.

All of the existing particle methods can be divided into two groups depending on the discretization scheme for
partial differential equation (Schrdinger, QCLE, etc.) [54]. The first group is known under the name methods of lines
and all of the above–mentioned approaches belong to that class. The common idea is that equations of motion are
derived in the form of a system of ordinary differential equations (ODEs) by, e. g., a least squares approximation to the
continuous evolution given by the partial differential equation (PDE). The resulting ODEs can then be solved best with
the help of explicit symplectic ODE–integrators which allow stable propagation for long simulation times. However,
the method of lines is hampered by a crucial shortcoming: It does not allow to control the space–discretization error
once the spatial particle discretization has been fixed at the initial timestep.

This problem is circumvented in the second group of numerical methods for dynamical PDEs, also known as Rothe
methods. It presumes a primal time–discretization of the PDE followed by a solution of stationary PDEs at each
timestep. This concept provides a possibility of controlling both space– and time– discretization errors and allows for
a fully adaptive integration of the respective dynamics. In the context of adiabatic molecular dynamics this was first
achieved in the TRAIL method (trapezoidal rule for adaptive integration of Liouville dynamics) [55]. In the current
paper we present an extension of the TRAIL–framework to the numerical solution of the quantum–classical Liouville
equation thus allowing to include non–adiabatic effects.

In most molecular dynamics simulations, an adiabatic representation of the electronic problem is chosen. However,
the presence of conical intersections induces numerical problems in particle methods due to the singularity in the non-
adiabatic coupling. In contrast, the diabatic coupling is not localized in time and space. Hence, diabatic propagations
are numerically more demanding and are not particularly amenable for the surface–hopping schemes. Although most
quantum chemical methods provide PESs and couplings in adiabatic representation, there are ways of diabatization
recently presented in the literature [56, 57].

The remainder of the paper is organized as follows. Section I is devoted to the description of the QCLE model and
the comparison of different representations from a numerical point of view. In Section II, the principles of the TRAIL–
method and its application to QCLE are discussed. Finally, Section III contains numerical examples, describing the
application of the method to prototypical model systems.

I. QUANTUM–CLASSICAL LIOUVILLE EQUATION

Consider a bi–component physical or chemical quantum system composed of a heavy particle with mass M , position
R̂, momentum P̂ and a light particle characterized by m, r̂, p̂ . Typically, in molecular problems, heavy and light
particles are nuclei and electrons, respectively. Alternatively, they can be also interpreted as slow and fast nuclear
degrees of freedom, e. g., in the case of proton transfer processes [33, 58, 59]. The corresponding Hamiltonian contains
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an interaction potential Û as well as kinetic energy associated with the two particles

Ĥ(r̂, R̂, p̂, P̂ ) = Û(r̂, R̂) +
1

2m
p̂2 +

1

2M
P̂ 2 (1)

where generalization to the case of several heavy and/or several light particles and/or to the use of non-Cartesian
coordinates is straightforward. Casting this Hamiltonian into coordinate representation and adopting the scaling
procedure introduced in earlier work [20] results in

Ĥ(r̂, R̂,−i∇r,−iε∇R) = U(r, R) +
1

2
∆r +

ε2

2
∆R (2)

where the dimensionless smallness parameter

ε =

√

m

M
� 1 (3)

shall be used throughout the rest of this work to indicate the deviation from adiabatic behavior.
The diabatic representation of the total Hamiltonian is obtained by using an orthonormal, complete basis set to

represent the light–particle states

Hd(R,∇R) = V (R) −
ε2

2
∆R (4)

where V (R) stands for a matrix representation of the light–particle Hamiltonian, i. e., the first two terms on the r.h.s.
of (2). Alternatively, an adiabatic representation is obtained by diagonalizing V (R) yielding the following expression
for the Hamiltonian

Ha(R,∇R) = E(R) −
ε2

2
(∆R + 2C(R) · ∇R + T (R)) (5)

where the eigenvalues E(R) are the adiabatic potential energy (hyper–)surfaces and where non–adiabatic coupling is
due to the parametric R–dependence of the adiabatic light–particle states |φi(R)〉. In particular, the matrix elements
of the first and second order non–adiabaticity operators are given by

Cij(R) = 〈φi(R)|∇R|φj(R)〉

Tij(R) = 〈φi(R)|∆R|φj(R)〉 (6)

where the first tensor is anti–Hermitian while no symmetry relation holds for the second one. Note, that both in the
diabatic (4) and adiabatic case (5), the expansion in terms of light–particle states results in matrix valued operators
acting on the heavy–particle degrees of freedom. The density operator ρ̂ can be treated in an analogous way [60]. We
restrict ourselves to the treatment of pure states, but generalization to mixed states is possible [8, 61].

The full quantum dynamics is governed by the Liouville–von Neumann equation

∂tρ̂(t) = −
i

ε
[Ĥ, ρ̂(t)] (7)

For a one–component system it is well known that the classical Liouville equation can be derived as the h̄ → 0 limit
of the quantum Liouville equation by means of the Wigner transform [4, 62]. In close analogy, a partial Wigner
transform for a bi–component system can be defined which acts only on the heavy–particle degrees of freedom while
leaving the light–particle dynamics unchanged [6]. Application to the quantum Liouville equation (7) readily yields
the Quantum–Classical Liouville Equation (QCLE)

∂tρW = −
i

ε
((Hρ)W − (ρH)W )

= −
i

ε
[HW , ρW ]− −

1

2
({HW , ρW } − {ρW , HW })

+O(ε) (8)

where all higher–order terms in the expansion of the Wigner transform of a commutator have been neglected [62].
The structure of the equation already suggests the existence of a purely quantum–mechanical (commutator) evolution
as well as classical or quantum–classical connected with the Poisson brackets which are defined in the usual way,
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{A, B} = ∇P A · ∇RB −∇RA · ∇P B. Inserting the diabatic representation (4) into (8), we obtain the diabatic QCLE
for the dynamics of the Wigner–transformed density matrix Xd = ρW

∂tXd(R, P, t) = −
i

ε
[V (R), Xd(R, P, t)]−

−P · ∇RXd(R, P, t)

+
1

2
[∇RV (R),∇P Xd(R, P, t)]+ + O(ε)

(9)

Alternatively, by inserting (5) into (8) the adiabatic QCLE is derived

∂tXa(R, P, t) = −
i

ε
[E(R) − iεP · C(R), Xa(R, P, t)]−

+
1

2

[

E(R), [C(R),∇P Xa(R, P, t)]+
]

−

−P · ∇RXa(R, P, t)

+
1

2
[∇RE(R),∇P Xa(R, P, t)]+ + O(ε)

(10)

As discussed in detail in other work [5, 60], the first term on the r.h.s. describes the purely quantum mechanical
evolution giving rise to phase oscillations of the coherences (off–diagonal elements of density matrix, X(R, P )) only.
In contrast, the last two terms describe purely classical evolution of the densities and coherences along the adiabatic
potential energy surfaces or arithmetic means thereof respectively. The remaining two terms involving the coupling
function, C(R), are of genuinely quantum–classical nature and describe the non–adiabatic exchange of densities and
coherences. Using existing particle methods, e. g., stochastically surface hopping trajectories [28] or Gaussian packets
[60], the adiabatic formulation of the QCLE is more amenable to numerical solution than the diabatic one. This is
because typically the non–adiabatic coupling, C(R), is large only for a limited part of coordinate space, i. e., near
avoided intersections while non–adiabatic effects may become negligible outside these regions.

In the present work, however, the quantum–classical dynamics in the presence of conical intersections is to be
investigated. A consistent numerical treatment using the adiabatic formulation is not possible because of singularities
of the non-adiabatic coupling, C(R), as well as discontinuities of the classical forces, −∇E(R), at the intersections.
Hence, there is a strong motivation for developing efficient and accurate integrators for the diabatic QCLE (9). In
particular, the (typically non–localized) coupling through the off–diagonal elements of V (R) are expected to render
the evolution strongly non–classical. Consequently, there is a need for development of adaptive methods which can
dynamically create or annihilate particles according to preset accuracy criteria.

II. APPLICATION OF THE TRAIL–SCHEME TO QCLE

A number of approaches can be applied in order to integrate the QCLE. The standard method of lines particle
strategy implies some initial space discretization of such an equation in terms of some basis functions, such as Dirac
trajectories [10], (frozen) Gaussian particles [41–43, 60, 63] or frozen Gaussians multiplied with some orthogonal
polynomials [53]. This produces a system of ordinary differential equations for the parameters of basis functions (such
as amplitudes, centers etc.) which can be integrated with the help of standard ODE tools for a long propagation
times. A major drawback of such a methodology is that the quality of a space–discretization and the exactness of the
expectation values calculated remains uncontrolled. In order to construct a fully adaptive method we follow another
strategy and employ the Rothe method [64] of implicit semidiscretization in time. This leaves us with a stationary
PDE to be solved in each time step and allows for the control of the global error, which consists of space and time
discretization errors.

A. Adaptive time discretization

Let us denote the operator in the RHS of (9) or (10) as L. In order to select a proper time discretization scheme one
should take into account the two following facts: (1) The predominantly imaginary spectrum of the QCLE operator
L will cause instability using explicit time–discretization schemes. (2) Evaluation of the QCLE operator can become
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expensive for multidimensional problems (each evaluation of L will mean a solution of the multidimensional variation
problem connected with the electronic structure calculation). That is why we consider here the simplest implicit
scheme demanding only one evaluation of the operator L for a given X per time step, the well-known trapezoidal rule

(

I −
τ

2
L

)

X̄(t + τ) =
(

I +
τ

2
L

)

X(t), (11)

where X̄ is the value obtained by the discrete evolution, starting from the (exactly available) initial value X and
where I denotes the identity operator. Moreover, the trapezoidal integrator conserves first integrals, which implies
conservation of volume and energy for the QCLE setting.

For adaptivity in time we need three essential ingredients: an error estimator, a step size selection scheme, and a
desired tolerance. We briefly recollect this ingredients of the TRAIL–scheme (cf. [55]).

a. Error estimator. Denoting the exact evolution of (9) or (10) by Φ, we estimate the unknown error

εt := ‖X̄(t + τ) − ΦτX(t)‖ (12)

by the difference between the trapezoidal rule and some easily computable comparison propagator Ψ̂τ of lower order,
e. g., the explicit Euler method:

[ε̄t] := ‖X̄(t + τ) − Ψ̂τX(t)‖. (13)

The step is accepted if [ε̄t] is sufficiently small, i.e. [ε̄t] ≤ TOLt, where TOLt is a user-prescribed accuracy requirement.
Otherwise we reduce the step size and repeat the step. Note that [ε̄t] necessarily estimates the error ε̂t of the less

accurate comparison propagator Ψ̂τ instead of the computationally unavailable error of the trapezoidal rule.
A tempting idea would be to choose Ψ̂τ from efficient explicit particle propagators, which have been developed

under the LHA and IPA assumptions for locally harmonic potentials [37, 60]. However, in the case of strongly
nonharmonic potentials and GPPs with nonvanishing width, these propagators are of order zero and don’t represent
the dynamics adequately. Although being a reasonable approximation to the exact evolution Φτ , such propagators
provide worse error estimates than the explicit Euler scheme.

b. Step size selection scheme. We assume the comparison propagator Ψ̂t is of order one, such that

ε̂t=̇Cτ2 (14)

holds locally for some slowly varying constant C. Substituting [ε̄t] for εt and aiming at an error of σTOLt with some
safety factor σ < 1, we obtain an optimal step size

τopt =

√

σTOLt

[ε̄t]
τ, (15)

which is used for the next step or recomputing the current time step, respectively [54].

B. Adaptive Phase-Space Discretization

Consider arbitrary particles g(R̄i,j
n (t), P̄ i,j

n (t), Ḡi,j
n (t)) in phase space. We will distinguish between particles (being

some smooth moving basis functions) and sample points (Dirac delta–trajectories). For approximating the (i, j)
element of matrix X to be propagated, we use a linear combination of such particles g:

X i,j(t) =

Ni,j

∑

n=1

yi,j
n (t)g(R̄i,j

n (t), P̄ i,j
n (t), Ḡi,j

n (t)) (16)

centered at (R̄i,j
n , P̄ i,j

n )(t) in phase space, scaled by the amplitudes yi,j
n (t) being real–valued functions for i = j

(densities) and complex–valued for i 6= j (coherences). Additionally, the shape of the particles is allowed to depend
on a set of shape parameters Ḡi,j

n (t).
The Rothe method for propagation of the partially Wigner transformed density X by the implicit trapezoidal

rule (11) leads to a stationary PDE–problem to be solved in each time step. Spatial dicretization of this PDE
turns (11) into the approximation problem of finding a new density X̄(t + τ) representable by particles such that

εx =
∥

∥

∥

(

I −
τ

2
L

)

X̄(t + τ)

−
(

I +
τ

2
L

)

X(t)
∥

∥

∥

L2

≤ TOLx. (17)
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Here, TOLx is a tolerance which now has to be matched with the user-prescribed accuracy requirement TOLt —
for details see below. By introducing KN test points (Ri,j

n , P i,j
n ), we reduce (17) to a computationally tractable

approximation problem

[εx] =
∥

∥

∥

(

I −
τ

2
L

)

X(t + τ)

−
(

I +
τ

2
L

)

X(t)
∥

∥

∥

{Ri,Pi}
≤ TOLx. (18)

where
∥

∥

∥ ·
∥

∥

∥

{Ri,Pi}
denotes the discretized L2–norm taken at the test points {Ri, Pi}. In view of computational

efficiency we aim at a representation with a minimal number of particles, and hence derive the particles’ parameters
from the minimization problem [εx] → min. Depending on which parameters in (16) are to be chosen (either only
the amplitudes Ai,j

n , or both amplitudes and phase space positions (R̄i,j
n , P̄ i,j

n ) of the particles’ centers), we arrive at
a linear or nonlinear least squares problem. In the linear version, the system has KN equations and ]dof(N) = N
unknowns Ai,j

n for the particles’ amplitudes defining X(t+ τ), and can be solved by a single QR decomposition of the
influence matrix [65]

A =
∂

∂y

[(

I −
τ

2
L

)

X(t + τ)
]

(19)

In the nonlinear variant, the system has KN equations and ]dof(N) = (1 + 2ndim)N degrees of freedom Ai,j
n , R̄i,j

n ,
and P̄ i,j

n defining X(t+τ). Due to the better approximation capability offered by also adjusting the particles’ centers,
the number of particles necessary to satisfy the accuracy requirement (18) can be expected to be considerably smaller
than for the linear approach. However, this does not necessarily translate into fewer degrees of freedom, or fewer
sample points. For solving the nonlinear least squares problem, a Gauss-Newton method should be used, which may
require multiple QR decompositions of the influence matrix

A =
∂

∂(y, R̄, P̄ )

[(

I −
τ

2
L

)

X(t + τ)
]

(20)

Whether this is compensated by the better approximation capability is not clear a priori.
There are several possibilities to choose the particle collection used to represent X(t + τ) in the beginning of the

time step. Selecting particles in unsuitable regions of the phase space will prevent the linear least squares approach
from meeting the accuracy requirement (18), thus triggering the discretization refinement developed below. For
the nonlinear least squares approach, it will increase the number of Gauss-Newton steps and hence decrease the
computational efficiency. A sufficiently good initial guess for the solution of the least squares problem is therefore
necessary for computational efficiency in both variants.

Another question which has to be addressed is the choice of sample points (Ri, Pi), i = 1, . . . , KN . For the
least squares problem (18) not to be underdetermined, we require at least KN ≥ ]dof(N) sample points, preferably
distributed in accordance with the quasi-probability density X(t). KN should be significantly larger than ]dof(N) in
order to improve the robustness of the least squares approximation and to provide a local error estimator for spatial
adaptivity — see below. Since performing a Monte-Carlo sampling at every time step is prohibitively expensive,
we suggest to select the sampling points according to the following scheme: For the first step at t = 0 we take the
sample points from the initial particle approximation. For subsequent steps, we suggest to take again the centers
of the particles, i.e. (Ri(t + τ), Pi(t + τ)) = (R̄i(t + τ), P̄i(t + τ)), i = 1, . . . , N , and additionally the remaining
sampling points from the previous step propagated independently of each other in time along classical trajectories,
i.e. (Ri(t + τ), Pi(t + τ)) = Φτ (Ri(t), Pi(t)), i = N + 1, . . . , KN . This implies two types of basis functions, namely
Dirac trajectories and smooth particles being propagate simultaneously.

It may happen that the number N of particles chosen to fit the initial state X(0) becomes inadequate during the
propagation, for three different reasons. (a) A more complicated distribution X(t) turns up later in time, such that
more particles are needed to represent the distribution X̄(t) with the required accuracy. (b) Two or more particles can
come close to each other, such that the least squares problem (18) becomes ill conditioned. (c) The distribution may
develop a simpler structure, such that it is advisable to reduce the number of particles for computational efficiency.
The first situation requires the upgrade of new smooth particles from Dirac trajectories, whereas the latter ones
require the downgrading of particles to trajectories.

Let us first consider the case that the number of particles is too small, such that the accuracy requirement (18)
cannot be satisfied. In this case, as few as possible additional particles have to be created in order to reduce the
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approximation error sufficiently. Fortunately, the local residuals

εk =
∣

∣

∣

(

I −
τ

2
L

)

X(Rk, Pk, t + τ)

−
(

I +
τ

2
L

)

X(Rk, Pk, t)
∣

∣

∣ (21)

provide a useful local error indicator suitable for extending the particle set. A similar error indicator has been proposed
by Iske and Levesley [66] in the context of scattered data approximation. The following scheme is intended to
insert the new particles at positions in phase-space, where the approximation error is largest, and hence to improve
the approximation at a small cost.

Assume the sample points (Ri,j
k , P

i,j
k ) (which are not also centers of existing particles) with corresponding statistical

weights ω
i,j
k , k = N + 1, . . . , KN , are sorted descendingly by their local residual ω

i,j
k εk. Let j > N be minimal such

that

KN
∑

k=j+1

ω
i,j
k εk ≤ TOLx (22)

holds, or j = KN if (22) cannot be satisfied. We then suggest to upgrade the sample points N + 1, . . . , j to particles

with centers (Ri,j
k , P

i,j
k ), k = N + 1, . . . , j, amplitude zero, and shape matrix λI , and create at least 2ndim(KN − j)

new sample points in the vicinity of the newly created particles by some Monte-Carlo method. N and KN should be
increased accordingly to j and KN + 2ndim(KN − j), respectively.

With the enlarged particle set at hand, the least squares problem is solved again in order to meet the require-
ment (18). If necessary, the adaptive refinement is repeated until finally (18) is met.

Related greedy algorithms for spatial adaptivity in different contexts have been proposed by Schaback et al. [67,
68].

Let us now turn to the case that the least squares problem (18) becomes ill conditioned due to similarly shaped
particles being too close to each other. Sawada et al. [17] suggest to drop an arbitrary Gaussian and do a refitting of
the remaining ones whenever one eigenvalue of the overlap matrix becomes small. While this criterion is reported to
work, neither does it take the approximation error into account nor does it indicate which Gaussian to drop or how
small an eigenvalue must become. Wan et al. [44] suggest to remove Gaussians with an amplitude below 10−12 and
to collapse any two Gaussians which are too close to each other. While this can indeed cure the numerical stability
problems, no indication is given how close two Gaussians must be or how the cutoff value of the amplitude was chosen.

As a pruning method oriented at the numerical stability and the approximation error, we propose to use a column
permutation strategy [69] for the QR decomposition together with a numerical rank decision based on the subcondition
number [65] in order to identify and remove exactly those columns and downgrade their associated particles which
make (18) numerically singular to sample points. Moreover, a careful examination of the least squares residual enables
the identification of even more particles which are not necessary to obtain the requested accuracy, and thus can be
removed. Pruning of the particles collection should be realized by downgrading unnecessary particles to sample points.

To be more precise, in the linear least squares setting, assume the columns of A and correspondingly the rows of x
of the linear least squares problem ‖Ax − b‖ = min have been sorted such that for the QR decomposition A = QR
the relations

|Rii| ≥ |Ri+1,i+1| for i = 1, . . . , ]dof(N) − 1

hold. Construct a partition

R =







R1 S1 S2

R2 S3

R3

0






, x =





x1

x2

x3



 , QT b =







b1

b2

b3

b4






, (23)

such that the following conditions are satisfied:

max
i

|(R3)ii| ≤
1

κ
|(R1)11| < min

i
|(R2)ii|

√

‖b2‖2 + ‖b3‖2 + ‖b4‖2 ≤ σTOLx

for κ being the maximal accepted least squares condition (somewhere around κ = 108) and 0 < σ < 1 some safety
factor which can be adjusted to balance pruning and spawning. A default value of σ = 0.9 is suggested. Note that
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‖b4‖ is the smallest possible approximation error that can be achieved at all with the present collection of particles,

and similarly
√

‖b3‖2 + ‖b4‖2 is the minimal error that can be obtained in a numerically stable way.
The columns of A and the particles corresponding to the degrees of freedom in x3 can be removed on the observation

that they are numerically linearly dependent on the columns corresponding to x1 and x2, and hence are redundant.
Furthermore, the degrees of freedom in x2 contribute least to the approximation capability of the remaining par-

ticle collection. Sacrificing some accuracy while still satisfying the accuracy requirement (18) allows to improve the
computational efficiency.

In case no such partition can be found, i.e. σTOLx <
√

‖b3‖2 + ‖b4‖2 ≤ TOLx, just the numerically lin-
early dependent degrees of freedom are cancelled. If the accuracy requirement (18) cannot be fulfilled at all, i.e.
√

‖b3‖2 + ‖b4‖2 > TOLx, the spawning procedure described above has to be performed.
In the setting of the nonlinear least squares fitting, the correspondence of columns in A to particles is no longer

one to one, such that the pruning procedure described above has to be modified. Numerical stability even in the
case of linearly dependent columns can be maintained by setting x3 = 0 without removing the corresponding degrees
of freedom. We suggest to perform the last Gauss-Newton step, when the particles’ centers are already close to the
solution, in a reduced fashion by fitting only the amplitudes. In this way, the pruning scheme developed for the linear
least squares case can be transferred to the nonlinear case as well.

Unfortunately, the time error estimator [ε̄t] = ‖X̄(t+τ)−Ψ̂τ X(t)‖ is still computationally unavailable. Its canonical

substitute [εt] := ‖X(t + τ)− Ψ̂τX(t)‖{Ri,Pi} depends on the spatial discretization error εx, which should not destroy

the overall quality of the error estimate. In view of [ε̄t]=̇Cτ2 and εt=̇Cτ3, and in order not to destroy the second
order convergence of the trapezoidal rule, we aim at εx=̇εt and hence impose the accuracy matching TOLx = τTOLt.

C. Gaussian phase–space packets

We suggest to use Gaussian phase–space packets (GPPs) [70, 71] as smooth particles in TRAIL method:

gn(R, P ) = exp

[

−

(

R − Rn

P − Pn

)T

Gn

(

R − Rn

P − Pn

)

]

(24)

where Gn is the real, symmetric, positively definite 2D2D matrix defining the elliptic phase–space contour of GPP.
The simplest choice of the starting point for the Gauss-Newton method is the current GPP collection X(t). However,
the time step τ is limited by the requirement that the initial guess should be sufficiently good such that the local
Gauss-Newton iteration converges quickly and reliably to the nearest local solution. Similarly, if only the amplitudes
yn are fitted by a linear least squares approach, a good initial guess yields a particle set which is well suited to
represent the solution. Thus, the accuracy requirement (18) can be satisfied with fewer GPPs.

For these reasons, the employment of a cheaply computable predictor providing a better initial guess can be expected
to improve the performance of the propagation considerably, by allowing larger time steps (in the Gauss-Newton case)
and by decreasing the number of necessary GPPs (in the linear least squares case).

As a predictor for the QCLE considered here one can use any kind of explicit surface–hopping algorithm or even
a classical transport process of GPPs realized by the modified Leap-Frog propagator [63]. In the simple case of both
LHA and IPA holding, the Gauss-particles in the ensemble can be propagated independently with evolution equations
for the parameters Rn, Pn, and Gn of (16):

∂tR̄n = M−1P̄n (25)

∂tP̄n = −∇R V (R̄n) (26)

∂tḠn = C(R̄n)Ḡn + ḠnCT (R̄n), (27)

where

C(R̄n) =

(

0 V (2)(R̄n)
−M−1 0

)

.

where V (2)(R̄n) denotes the Hesse-matrix of the potential V .
This scheme works well for low to medium dimensional problems, but requires the second derivative of the potential

to be evaluated. This evaluation can become expensive for higher dimensional problems. Another problem is connected
to the validity of LHA and IPA for anharmonic potentials. For sufficiently narrow GPPs, the LHA holds at least
approximately even for nonharmonic potentials, such that the predictor solution can be expected to provide a good
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approximation of the classical part of the QCLE. It is desirable to choose the shape matrixes Gn in such a way that
the position space width of GPPs doesn’t exceed some threshold. As it can be seen from Fig. 1, even when the initial
GPPs are narrow in position space, they become increasingly wide and oscillate around the fixed point of (27) (which
in the case of

∫

XdRdP = 1 describes the evolution of a squeezed state, i. e., a displaced quantum–mechanical ground
state in phase–space [72]). This produces phase–space errors and can be avoided in the case when all shapes Gn of
GPPs are selected as

Ginv =

(

αinv 0
0 γinv

)

(28)

and both αinv and γinv are diagonal matrixes derived as solutions of the following system:

αinv = M−1〈V (2)〉γinv ,

√

det(γinv) det(αinv) =
πdn

∫

XdRdP

{γinv}i,i = γ, (29)

where n is a number of GPPs in the representation of X , d is a spatial dimension of the problem, γ is some positive
real number and 〈V (2)〉 =

∫

XV (2)dR is a mean Hesse matrix. The first of above equations gives the fix point solution
of (27), whereas the second imposes a fixed volume of GPP being equal to n−1

∫

XdRdP .
This allows to apply the classically transported frozen GPPs as predictor for QCLE integration, i. e., GPP’s centers

are propagated accordingly to Newtonian equations of motion while fixed shapes are chosen from (29). This strategy
can represent only the adiabatic transport of densities. In such a case the non–adiabatic effects of the QCLE are
reproduced by the corrector part of the TRAIL–method alone. This does not impair the quality of the solution, but
may affect the efficiency of the algorithm.

D. Volume and energy conservation

An advantage of the trapezoidal rule is its property of conserving first integrals of linear dynamics exactly. This
encloses conservation of volume and energy of the Wigner densities. In connection with a straightforward least-squares
approximation as a spatial discretization of the quasi-densities, however, this favorable property is lost for finite spatial
tolerances, and only recovered in the limit TOLx → 0. Such a significant reduction of the spatial tolerance, however,
increases the computational complexity substantially and is in general not feasible.

In view of the conservation property of the exact trapezoidal rule, the minimization of the approximation error may
be constrained to the affine subspace of discretized quasi-densities with exactly the same volume and energy:

min
∥

∥

(

I −
τ

2
L

)

X(t + τ) −

(

I +
τ

2
L

)

X(t)
∥

∥

{Ri,Pi}
(30)

subject to

V (X(t + τ)) = V (X(t)) (31)

and

E(X(t + τ)) = E(X(t)). (32)

An efficient and numerically stable algorithm for solving such equality constrained least squares problems results
from a slight modification of the usual QR decomposition [73]. The restriction of the discretized quasi-densities to
the affine subspace of constant volume and energy is consistent with the time discretization and allows for exact
conservation even for moderate spatial tolerances.

III. NUMERICAL EXAMPLE

In this section we want to investigate the performance of the TRAIL approach for the numerical treatment of
quantum-classical dynamics in a fully adaptive manner. The prototypical one- or higher-dimensional systems chosen
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here are characterized by crossings or conical intersections of potential energy surfaces, respectively, are known to play
a key role in many photochemical processes [1–3]. Moreover, the strongly non-adiabatic dynamics encountered at the
singularities necessitates a propagation of the QCLE (9) in the diabatic representation thus providing a much more
demanding test for the numerical integration scheme. Finally, note that – except for the single crossing case – all
systems studied here are spin boson systems, which are widely used as a simple model for open quantum systems. In
a diabatic picture, they are described as linearly coupled harmonic oscillators. For these class of systems, the diabatic
quantum-classical dynamics exactly coincides with fully quantum dynamics [10]. This facilitates a comparison of the
TRAIL/QCLE results with numerically exact solutions of the Schrdinger equation using FFT methods [74]

A. One–dimensional examples.

a) Single Crossing As a first test for the QCLE–based implementation of the adaptive strategy we choose the
adiabatic representation of the single crossing example described in [60]. The propagated object X(t) is a matrix–
valued quasi–distribution function (elements of the matrix can become negative or complex–valued). As it follows
from the structure of the adiabatic QCLE, in the regions where the non–adiabatic coupling is small, the dynamics of
diagonal elements of the matrix X(t) is governed by a classical transport along the corresponding adiabatic surfaces.
The non–diagonal elements acquire oscillations with a frequency depending on the energy gap between the surfaces. In
the crossing region the non–adiabatic transitions can occur, transferring density between different diagonal elements
of X(t). Each of the density–matrix elements is represented as a linear combination of GPPs, which can be updated
during the propagation according to the tolerance criterion as described above. As it can be seen from Fig. 2,
the adaptive implicit integrator converges towards the exact solution with reduction of tolerance and reproducing
correctly the weak Stueckelberg oscillation. In the crossing region the number of GPPs is growing due to the strong
non–adiabatic coupling between the two adiabatic levels and geometric complexity of the densities and coherences in
this region. After the passage through the crossing region GPPs are dynamically eliminated because of decreasing
coherences (and so far vanishing correlations between populations at different energy levels).

b) Double Crossing As it was shown in [60], the potential involving two consequent avoided crossings is the more
demanding test for a numerical method. This is due to the importance of the correct description of interference
effects. As we have already seen, appropriate transport of coherence plays a decisive role in propagation. Moreover,
oscillatory behavior of the solution makes it difficult to represent a complex spatio–temporal structure of densities in
terms of conventional particle sets. During the passage through the crossing region the maximal numerically feasible
number of GPPs (1000) had been reached and the correlation between populations at different energy levels is not
vanishing after the second crossing up to the end of integration. In general, as it was already demonstrated for the
case of the classical Liouville equation [55], computational cost of the method is increasing whenever the geometric
complexity of the solutions is growing with propagation time. Nevertheless, as it follows from Fig. 3, even for the closed
dynamical system presented here there is a convergence of the implicit adaptive scheme towards the exact solution
for the considered integration times. Due to the adaptivity, the method is able to reliably represent sophisticated
spatio-temporal details of the dynamics under consideration.

B. Multidimensional examples.

a) Pure Quantum Dynamics In order to test the performance of the method in multidimensional cases we will
first apply TRAIL to a coupled two–level system, with diabatic potential of the form

V (R) =

(

V11(R) c
c V22(R)

)

, (33)

where V11(R) = R2
1 + R2

2 + R2
3, V22(R) = V11 + E0 are three–dimensional harmonic oscillators and c is a constant

coupling. Because the diabatic PESs are parallel, the exact population dynamics of such a system is given by a
well-known Rabi formula [71].

Fig. 4 shows the population dynamics of the system as predicted from the diabatic variant of the TRAIL–scheme
for two different global tolerances compared with analytically known result from the Rabi formula. The initial ground
state density is represented by a single GPP and a set of Dirac–functions (being stochastically sampled according
to the ground state distribution function). While the classical component of the QCLE–dynamics in this case is
described simply by the Heller’s formulas and can thus be exactly integrated by the predictor part of the TRAIL,
the non–adiabatic exchange can only be reproduced in the corrector part of the scheme with the help of the adaptive
creation/annihilation of the GPPs. Numerical solutions are converging towards the analytically known one with the
reduction of the global tolerance.
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The phase–space density in the analytical case is represented by four Gaussian densities: one for each of the diagonal
elements of a density matrix, one for real and one for imaginary part of the off-diagonal element. Fig. 5 (top) shows
the adaptive time steps generated by TRAIL. As it can be seen, time steps get minimal values at the points where the
population transfer curve achieves its extremal values. Adaptive phase–space discretization of the TRAIL-algorithm
represents these perfectly well by choosing one GPP per density independently of the tolerance (see Fig. 5 (bottom)).
The minima of the curves (by 3 GPPs) are located where the population is concentrated almost only in the lower
diabatic state, so the GPP in the upper state can be adaptively cancelled.

Fig. 6 shows the values of the population of the upper harmonic oscillator at a fixed time t = 1 for different values
of the smallness parameter ε =

√

m
M

. For decreasing ε the frequency of Rabi–oscillations increases which leads to a
reduction of the adaptively chosen timesteps. In this case the error is dominated by the non–adiabatic term of the
QCLE, whereas for increasing values of ε the classical transport part will play a major role in accumulation of the
error. As we can see, TRAIL can reliably simulate both scenarios.

b) Quantum–Classical Dynamics: conical intersection example As a more demanding test for a QCLE–based
implementation of the adaptive strategy we choose the two–state example of three–dimensional harmonic oscillators
coupled linearly with the diabatic potential energy matrix of the form:

V (R) =

(

V11(R) c(R)
c(R) V22(R)

)

, (34)

where V11(R) = a(R2
1 +R2

2 +R2
3)+aR1, V22(R) = a(R2

1 +R2
2 +R2

3)−aR1 and c(R) = bR2. This is a typical Hamil-
tonian for vibronic dynamics and spectroscopy [1, 2]. This model can, for example, describe the photo–excitation
process in Floquet representation [75] with continuous light and a dipole moment in linear approximation. In adiabatic
representation two potential energy surfaces exhibit a conical intersection at R = (0; 0; 0) which leads to numerical
problems with conventional particle methods. The diabatic representation, in contrast, is more favorable in this re-
spect. However, the practical stochastic implementation in the form of conventional surface–hopping particle methods
seems to be more demanding in the diabatic case where the coupling (off–diagonal element of V ) is typically not
localized in space and time (in adiabatic case non–adiabatic effects occur only in the vicinity of the crossing of two
potentials).

Fig. 7 demonstrates the application of a diabatic variant of the TRAIL–method with fixed maximal number of
allowed GPPs. This means that the space–discretization error is used to minimize the global tolerance with the
number of GPPs kept constant. We start with Glauber state density of the right diabatic state with momentum
P0 = (−0.5; 0; 0), i. e., in the direction of the conical intersection. The curves show the population transfer during two
passages of the density through the crossing region for two different numbers of maximally allowed GPPs. The curves
produced by the TRAIL-approach are converging towards the grid–based solution (on a 646464 grid, derived with the
help of the split–operator method) with increasing numbers of GPPs through the overall reduction of resulting global
tolerance.

IV. CONCLUSION

We presented a fully adaptive strategy for numerical simulation of non–adiabatic effects in molecular dynamics.
This concept provides a possibility of controlling both space and time discretization errors and allows for a formulation
of the particle method based on global tolerance criteria. A local error indicator is employed for creating new particles
where needed, and the subcondition number of the influence matrix is exploited for removing particles which are no
longer necessary for representing the distribution with a given global tolerance. In particular, this method is capable
to treat non–adiabatic effects around conical intersections of PESs. Its performance is demonstrated for a spin–boson
model in different dimensionality.

As it was shown for the one–dimensional numerical examples, the performance of the TRAIL–scheme with a fixed
global tolerance depends on the geometric complexity of solutions. In the case of the double crossing the actual
phase–space densities and coherences acquire complex oscillatory structures which are expensive to resolve with small
tolerances. Hence, a reliable representation of complex structures requires a large number of Gaussian particles.
This problem can become crucial in multidimensional applications. As was shown for a conical intersection case in
3 dimensions, a computationally feasible alternative is the TRAIL–scheme with a fixed maximally allowed number
of GPPs, which are optimally situated in phase–space according to the minimization of the global tolerance. In
cases where phase–space structures are not too complex and can be represented with a moderate number of GPPs,
the TRAIL–scheme allows for highly accurate integration of quantum–classical dynamics even for multidimensional
systems.
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Figure captions

Figure 1: Position uncertainties as functions of time for GPPs in anharmonic potential V (R) = R2 + 0.1R3.
Narrow GPPs expand their position width much faster than GPPs of invariant position width αinv from (29)

Figure 2: Top:Population of upper adiabatic state as function of time for single crossing potential. Solid line repre-
sents almost exact solution produced with the help of grid–based split–operator approach to corresponding Schrdinger
equation. Two other lines show adaptive GPP solutions for two different tolerances (ε =

√

m
M

= 0.01; TOL =
TOLx + TOLt = 1). Bottom: Number of GPPs in representation of different matrix elements as function of time.

Figure 3: Top: Population of upper adiabatic state as function of time for the dual crossing potential. As in the
case of the single crossing, the solid line represents the almost exact solution produced with the help of a grid–based
split–operator approach to the corresponding Schrdinger equation. Three other lines show adaptive GPP solutions
for three different tolerances (ε =

√

m
M

= 0.01; TOL = 1). Bottom: Number of GPPs in representation of different
matrix elements as function of time.

Figure 4: Population of the lower diabatic state as a function of time for ε = 0.05, E0 = 0.1, c = 0.1. The solid line
represents the analytically known solution. Two other lines show adaptive GPP solutions for two different tolerances:
TOL = 0.02 (dashed) and TOL = 0.01 (circles).

Figure 5: Top: Timesteps generated with TRAIL as functions of time for ε = 0.05, E0 = 0.1, c = 0.1 for two
different tolerances: TOL = 0.02 (dashed) and TOL = 0.01 (dashed–dotted). Bottom: Number of GPPs needed to
afford the tolerances TOL = 0.02 (dashed) and TOL = 0.01 (dotted).

Figure 6: Population of the upper harmonic oscillator at the time t = 1.0 as the function of ε.
Figure 7: Top:Population of the left diabatic state as a function of time for P0 = (−0.5; 0; 0), a = 1, b = 0.3, ε = 0.1.

The solid line represents the grid–based solution. Two other lines show adaptive GPP solutions for two different
maximally allowed numbers of GPPs: N = 300 (dotted) and N = 500 (dashed). Bottom: Phase-space tolerance as
function of time for different numbers of maximally allowed GPPs.
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Horenko et al., J. Chem. Phys., Fig. 1
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Horenko et al., J. Chem. Phys., Fig. 2
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Horenko et al., J. Chem. Phys., Fig. 3
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Horenko et al., J. Chem. Phys., Fig. 4
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Horenko et al., J. Chem. Phys., Fig. 5
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Horenko et al., J. Chem. Phys., Fig. 6
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Horenko et al., J. Chem. Phys., Fig. 7
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