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Abstract Temperature-based estimation of time of death (ToD) can be performed

either with the help of simple phenomenological models of corpse cooling or with de-

tailed mechanistic (thermodynamic) heat transfer models. The latter are much more

complex, but allow a higher accuracy of ToD estimation as in principle all relevant

cooling mechanisms can be taken into account.

The potentially higher accuracy depends on the accuracy of tissue and environ-

mental parameters as well as on the geometric resolution. We investigate the impact

of parameter variations and geometry representation on the estimated ToD. For this,

numerical simulation of analytic heat transport models is performed on a highly de-

tailed 3D corpse model, that has been segmented and geometrically reconstructed from

a computed tomography (CT) data set, differentiating various organs and tissue types.

From that and prior information available on thermal parameters and their variability,

we identify the most crucial parameters to measure or estimate, and obtain an a priori

uncertainty quantification for the ToD.
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Fig. 1 Temperature-based estimation of the ToD. The intersection of a temperature curve
ϑ(t) describing body cooling, with the horizontal line of a measured temperature ϑm yields
the ToD estimate t∗. The overall qualitative shape of the cooling curve is characteristic for
rectal measurement and the same for almost all corpses and environmental conditions.

Keywords time of death; forensic medicine; heat equation; sensitivity; geometric

resolution; thermal parameters

1 Introduction

In the context of law enforcement in homicides, the use of temperature-based estima-

tion of time of death (ToD) is of utmost importance. Such estimations are typically

based on a single temperature measurement taken in the rectum. The intersection of

a post-mortem rectal temperature-time curve ϑ(t) with the measured temperature ϑm
provides an estimate t∗ = ϑ−1(ϑm) of the ToD, see Figure 1.

For an accurate estimation of the ToD, the post-mortem temperature curves are

crucial. Two different methods for defining these curves are conceivable: First, a phe-

nomenological approach (PA), describing the temperature by parametrized arithmetic

expressions. Marshall and Hoare [25] proposed a family of double-exponential curves

with four parameters. This model, with empirical parameter definitions by Henßge [14]

in terms of body weight and environmental temperature, has found widespread use

in practical forensic work. The main drawback of the PA is its limited applicability

to non-standard situations like irradiation from external sources, individually varying

anatomy, or partial thermal insulation.

Second, a thermodynamic or mechanistic approach (MA), computing the tempera-

ture curve by a detailed simulation of the physical processes of heat transfer. Aiming at

a faithful representation of the physical situation, the MA in principal allows a higher

accuracy of ToD estimation as it can take all relevant heat transfer mechanisms into

account, also those of non-standard situations. The reliability of the estimation de-

pends on the accuracy of the physical model parameters such as corpse geometry and

posture, tissue heat capacity and conductivity, and environmental conditions. While
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mechanistic models contain many more parameters than phenomenological models,

their parameters have a particular physical meaning and are, at least in principle, ac-

cessible to measurements. The main drawbacks of the MA are first the effort required

to set up a specific computational model and second the lack of accurate parameter

values in concrete situations.

Mall et al. [22,23] introduced a finite element (FE) based method for the simulation

of corpse cooling, with a rather coarse corpse geometry and thermal tissue parameters

taken from literature, and applied it to several cases of forensic practice. Already this

approach provided estimates of ToD as good as or even more accurate than those

obtained from the PA method [22,23].

In between these two different approaches are methods based on a physical heat

transport model, but up to now employing more or less coarse approximations. At-

tempts at validation of such models have been presented by Smart [33] and Ro-

drigo [29,30].

In this paper we investigate the required accuracy of thermal model parameters

and geometry in the MA that is needed for a sufficient accuracy of ToD estimation.

In particular, we derive sensitivities of the estimated ToD with respect to various

parameters. In Section 2, the FE-based method is briefly described. The influence of

tissue and environmental parameters is analysed in Section 3, based on a highly detailed

anatomical model that has been derived from CT data, differentiating several organs

and tissue types.

Notation. For reference, the symbols used throughout the paper and their meaning are

listed in Table 1.

2 Finite Element-based Method

Thermal model. The physical model of corpse cooling describes the temperature dis-

tribution ϑ by Fourier’s law of heat conduction,

cρϑ̇ = div(κ∇ϑ) +Q, (1)

where c is the specific heat capacity, ρ the density, and κ the heat conductivity of the

tissue. The supravital metabolic heat generation Q continues for some hours after time

of death, decreasing with the loss of oxygen supply and the decrease of tissue temper-

ature. Its value Q(t) = Q0 exp(−0.000 24 s−1 t) is assumed to decline exponentially

from the initial value Q0 with a half-value period of about 30 min.

We interpret the heat capacity cρ as a single parameter instead of treating density

and specific heat capacity separately.

Heat transfer from the body to the environment across the boundary (skin) is due

to conduction/advection and radiation:

nTκ∇ϑ = h(ϑenv − ϑ) + εσ(ϑ4
amb − ϑ

4) + εq. (2)

Here, n is the unit outer normal and h the heat transfer coefficient, ϑenv the envi-

ronmental temperature, ε the emissivity, ϑamb the perceived ambient radiative tem-

perature, and σ = 5.6704× 10−8 Wm−2K−4 the Stefan-Boltzmann constant. q is the

external irradiation which we don’t consider in this paper.
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symbol meaning defined in

c specific heat capacity of tissue Tab. 2
ρbcb blood heat capacity Tab. 3
γ effective heat transfer coefficient Tab. 3
δt time deviation eq. (6)
δp parameter deviation eq. (6)
ε surface emissivity Tab. 3
h convective heat transfer coefficient Tab. 3
Ix impact of parameter x on time of death estimate eq. (9)

Îx importance of parameter x eq. (11)
κ tissue heat conductivity Tab. 2
n surface outer unit normal eq. (2)
np number of parameters in the cooling model p. 7
Ω spatial domain occupied by the corpse p. 5
p parameters of the analytic cooling model p. 7
p̄ deviating parameter vector eq. (6)
q external irradiation eq. (2)
Q supravital metabolic heat eq. (1)
Q0 initial value of Q p. 2
ρ tissue density Tab. 2
σ Stefan-Boltzmann constant eq. (2)
σx standard deviation of quantity x Tabs. 2 and 3
S sensitivity vector of time of death estimate w.r.t. parameters eq. (8)
t time
t∗ time of death (estimate) p. 2
t̄ deviating time of death estimate eq. (6)
ϑ body temperature distribution eq. (1)
ϑ(t; p) rectal cooling curve (that may depend on parameters) p. 1
ϑ0 vital temperature distribution eq. (4)
ϑamb ambient radiative temperature eq. (3)
ϑcore vital body core temperature eq. (4)
ϑenv environmental temperature eq. (5)

ϑ̇env environmental temperature rate Tab. 3
ϑm measured rectal temperature p. 2
Vx volume fraction of tissue x p. 15
w tissue perfusion Tab. 2

Table 1 Symbols used throughout the paper.

Several simulations have shown that in the usual range of temperatures (270 K to

310 K) a linearization of the Stefan-Boltzmann radiation term has a negligible impact

on the cooling curve and hence on the estimated ToD. For the current study, we

moreover assume ϑamb = ϑenv, and therefore use the boundary condition

nTκ∇ϑ = γ(ϑenv − ϑ) (3)

with the effective heat transfer coefficient γ = h+ 4εσϑ3
env.

The initial temperature field ϑ0 = ϑ(t) at time t = 0 is given by the vital tempera-

ture distribution and assumed to satisfy the Bio-Heat-Transfer-Equation (BHTE) due

to Pennes [27],

− div(κ∇ϑ0) + ρbcbw(ϑ0 − ϑcore) = 0, (4)

where ρbcb is the heat capacity of blood, w the tissue perfusion, and ϑcore the body

core temperature.
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(a) (b)

Fig. 2 Typical temperature distribution on different corpse models. (a): Fine tetrahedral
mesh of a corpse’s geometry (including organs and other tissues) obtained from CT data by
segmentation and geometry reconstruction. (b): Half of a symmetric but coarse corpse model
as developed by [22] with color coded visualization of computed temperature distribution.

Anatomical model. The heat equation (1) is defined on a geometric domain Ω ⊂ R3

representing the corpse. Of course, the temperature profile and hence the cooling curve

depend on the size and shape of Ω. Moreover, the material parameters cρ, κ, and w are

different for various biological tissues, in particular muscle, adipose tissue, and bone.

Thus, the cooling curve depends also on the size, shape, and position of different organs

and tissue regions. For these reasons, a corpse model that contains those organs and

represents the individual anatomy might be necessary for a sufficient accuracy of ToD

estimation.

The invasive, direct detection of tissue components (mass, volume, and position)

during post-mortem dissection can only be performed with great effort [5]. An alter-

native indirect quantitative capture of various tissue types based on medical imaging

is difficult, takes higher efforts, but can be done with high accuracy in volume identi-

fication. Of course, this method doesn’t provide information on tissue density or other

thermal properties, which have to be found by special measurements. See Deuflhard

et al. [6] for the successful application of CT imaging in a project of cancer ther-

apy. Janssens, Thys, Clarys et al. [17], Romvari, Dobrowolski, Repa et al. [31], Allen,

Branscheid, Dobrowolski [2] have a more skeptical view on such methods.

Individual anatomy can be acquired from a CT (computed tomography) scan of

the corpse. The CT images have to be segmented into the different tissue types. For

actual computation, a finite element mesh has to be created in such a way that a single

tissue type can be assigned to each cell [36]. For a sample corpse, segmentation of CT

data and mesh generation yield the tetrahedral mesh shown in Figure 2. Results of the

simulation can be compared to those achieved on a coarse model developed by Mall et

al. [22,23]. We discuss this in the context of geometrical sensitivity in the next section.

In the CT-based model considered here we differentiate nine tissue types: bone,

fat, muscle, gastrointestinal tract, bladder, kidneys, liver, heart, and lungs as shown in

Figure 3. The corresponding mesh is composed of 1, 439, 552 tetrahedra, and 256, 041

vertices.
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(a) (b)

Fig. 3 (a) Skeleton and inner organs represented in the tetrahedral mesh of the corpse. Mus-
cles, fat, and small intestine are not shown. (b) Illustration of tissues in the corpse including
muscle, intestine, and fat.

Table 2 Averaged thermal properties of human tissues based on data from ITIS Foundation,
[1]. The variation of muscle perfusion of ±0.25 kg/s/m3 given there applies to humans at rest.
To account for physical activity before death, we assume a higher uncertainty of ±0.50 kg/s/m3

instead.

tissue ρ± σρ c± σc κ± σκ w ± σw
kg/m3 J/kg/K W/m/K kg/s/m3

fat 911± 53 2348± 372 0.21± 0.02 0.53± 0.21
bone 1543± 141 1794± 265 0.32± 0.03 0.48± 0.21
muscle 1090± 52 3421± 460 0.49± 0.04 0.71± 0.50
liver 1079± 53 3540± 119 0.52± 0.03 16.24± 3.21
intestine 1045± 50 3801± 300 0.56± 0.05 0.0
kidneys 1066± 56 3763± 120 0.53± 0.02 70.80± 10.15
urinary bladder 1000 3500 0.60 5.00± 0.50
heart 1050± 17 3617± 301 0.52± 0.03 183.8 ± 18.4
lungs 722± 87 3886± 300 0.39± 0.09 5.07± 4.72

Model parameters. The parameters entering into equations (1), (3), and (4) depend on

the individual corpse and the environmental conditions at the supposed crime scene.

Assigning specific values a priori is therefore subject to some uncertainty.

Thermal properties of different tissues have been extracted from the literature [8,

19, 22, 23]. From these, admittedly small, samples, average values and ranges have

been computed, see Table 2. With all due caution, we interpret these values as mean

and standard deviation of approximately log-normally distributed parameters. The

combined parameter of heat capacity is again log-normally distributed with mean ρc

and variance σ2
ρc = σ2

ρσ
2
c + ρ2σ2

c + c2σ2
ρ.

Similarly, the specific heat capacity cb of blood has been obtained from literature.

The well-known temperature dependence of the tissues’ thermal properties [19] is as-

sumed to be relatively small in the temperature range considered here, and is subsumed

into the general variation. Only for the perfusion of muscle it seems to be appropri-

ate to assume a higher standard deviation than mentioned in the ITIS database, in

particular due to potential physical stress right before death [13].

While the uncertainty in tissue properties is due to moderate inter-individual differ-

ences and measurement errors, the effective heat transfer coefficient γ and the environ-

mental temperature ϑenv depend on the situation at the place of discovery, in particular
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Table 3 Global parameters.

parameter symbol value unit

heat capacity of blood cb 3617 ± 301 J/kg/K
body core temperature ϑcore 310.15± 0.50 K
environmental temperature ϑenv 297.15 K

environmental temperature rate ϑ̇env 0.00± 0.36 K/h
skin emissivity ε 0.95± 0.05
heat transfer coefficient h 3.30± 0.30 W/m2/K
effective heat transfer coefficient γ 8.95± 0.60 W/m2/K
supravital heat generation Q0 320 ± 160 W/m3

on clothing and posture of the corpse, weather conditions, and underground. While the

heat transfer coefficient h can, in principle, be measured, obtaining accurate values is

virtually impossible in practice, since it is usually spatially varying and depends not

only on the type of clothing but also on its drapery, its potential humidity penetration,

the contact pressure at the surface supporting the corpse, and the shape of the body.

The emissivity ε, too, depends on clothing. In contrast, variations due to air speed and

posture can be taken easier into account [4]. In the end, the boundary condition pa-

rameter γ appears to be among the least precisely known, and the standard deviation

assumed here is not more than an educated guess.

The environmental temperature is measured at the same time as the rectal tem-

perature is acquired, but may have changed between the time of death and the mea-

surement. This time course of ϑenv is, to some extent, principally unknown, and again,

the range merely a guess. For simplicity, we consider a single, spatially constant heat

transfer coefficient γ ∈ R and a linear environmental temperature change, i.e.

ϑenv(t) = ϑenv(t∗) + (t∗ − t)ϑ̇env. (5)

Note that the temperature value at t∗ can be measured and is therefore assumed to

be exactly known. The restriction to a linear temperature evolution model is not a

severe limitation, as higher frequencies of the temperature will cancel out during the

integration.

The amount of supravital heat generation is not particularly well known. For its

value Q0 at time of death we assume anverage of the values cited in [24, 34, 35], i.e.

320 Wm−3. This corresponds to authors supposing a value of similar magnitude as the

heat generation in a resting healthy person, e.g., [18, 24, 32]. However, vastly different

values have been reported in the literature [9, 11, 15, 16, 21, 22, 24, 26, 34], such that we

assume a relatively large standard deviation of 50%.

With the three parameters ρc, κ, and w for each of the nine tissue types, and the

global parameters ϑcore, ϑ̇env, γ, and Q0, in total np = 31 thermal parameters are

considered here, and are for notational brevity referred to as the parameter vector

p ∈ Rnp .

Finite element simulation. Given a mesh of the corpse’s geometry (including tissue

labels per element) and the vector p of all thermal parameters, the heat transfer model

can be solved numerically for the temperature distribution ϑ(t; p) by the finite element

method, see, e.g., [7,37]. For the current work, we use the research code Kaskade 7 [12].

The simulation provides a complete temperature distribution within the entire grid,

from which cooling curves at particular measurement points can be extracted.
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Fig. 4 Typical cooling of a node in a model region representing the rectum from FE sim-
ulations for five arbitrary parameter sets within the uncertainty ranges. (a) Cooling curves.
(b) Difference between results based on parameter sets 1, 2, 4, and 5 and the cooling curve
computed with the average values for the parameters (set 3). (c) Relative impact on time of
death compared with the set 3 curve.

bone muscle fat
c κ c κ c κ

set 1 +σc −σκ +σc −σκ +σc −σκ
set 2 +σc +σκ +σc +σκ +σc +σκ
set 3 0 0 0 0 0 0
set 4 −σc −σκ −σc −σκ −σc −σκ
set 5 −σc +σκ −σc +σκ −σc +σκ

Table 4 Parameter sets used for the deviations shown in Figure 4. Set 3 uses the mean values
from Table 2, whereas the other tissue properties are changed within the range of assumed
standard deviation. Due to the sign structure, set 1 and set 5 are the extreme cases.

The uncertainty in the thermal and environmental parameters translates into a

corresponding uncertainty in the cooling process and ultimately the ToD estimate. For

illustration, five cooling curves have been computed based on a combination of lower

and upper deviations for heat conductivity κ and specific heat capacity c in fat, muscle,

and bone as given in Table 4. Let us point out that this illustration is optimistic, as

uncertainties in environmental conditions are neglected. The results in Figure 4 (a),

show that there can be a difference of up to five hours in the estimated ToD. Compared

to the center curve of parameter set 3, the uncertainty range is still up to two and a half

hour. Despite these significant deviations in ToD estimates in the range of 30%, the

deviation of the cooling curves themselves is visually small. For that reason, we rather

plot the temperature differences as shown in Figure 4 (b). The differences vary strongly
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dt = 3600s

dt = 1200s

dt =  600s

dt =  300s

(a) (b)

Fig. 5 Temperature prediction error in rectal point due to numerical discretization errors
for a 20 h cooling period. (a) Errors for differently fine spatial discretization with linear finite
elements. (b) Errors for different time step sizes of a linearly implicit Euler scheme.

with the time of death, and moreover one is interested in the estimated time of death

t∗ rather than the temperature curve ϑ(t; p). Thus, in Figure 4 (c), we plot the relative

deviation of the estimated time of death, i.e. |δt|/t∗ with δt = ϑ−1(ϑm; p)− t∗. Except

for very short times, the relative deviation is quite independent of t∗, and should be

suitable as a quantity of interest to measure the parameter impact.

The discretization of the domain introduces both, a numerical discretization error

and a geometric approximation error due to the assignment of tissue types to cells.

The numerical discretization error can exceed the error due to parameter variation.

In Figure 5, errors due to spatial and temporal discretization with different resolution

are shown. Three levels of uniform mesh refinement (each of them dividing each of the

given tetrahedra into eight new ones using the midpoints of the edges on the coarse

grid as new points) have been used in Figure 5 (a) where the finest grid is assumed to

provide accurate values and the deviation of the coarser meshes with respect to that

reference is shown. On the right, results from different time step sizes (3600 s, 1200 s,

600 s and 300 s) are compared against a more accurate integration.

Fortunately, discretization errors can be kept below any prescribed tolerance by

error estimation used for adaptive mesh refinement and time step selection, respectively,

during the solution process [7]. For all simulations presented here we used linear finite

elements and an extrapolated linearly implicit Euler time stepping scheme of order

three, and made sure that the numerical discretization error is well below any of the

considered modeling errors.

In contrast, the geometric approximation error is determined once by geometry

reconstruction, depending on the voxel size of the medical image data as well as a

curvature dependent limit (error quadrics) while coarsening the thereof reconstructed

triangulation [10]. Its impact on the estimated ToD is investigated in the subsequent

Section 4.

3 Impact of Thermal Parameter Uncertainty

In this section, we systematically investigate the impact of parameter uncertainty on

the ToD estimate. The aim is to identify those parameters which need special atten-

tion as their uncertainty from literature values affects the ToD estimate most. These
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Fig. 6 Expected magnitude of ToD estimate deviation due to uncertainty in tissue heat con-
ductivity. (a) Absolute deviation |δt|. (b) Relative deviation |δt|/t̄ for tissue heat conductivity
κ.

parameters can then be measured directly or included in a more complex estimate

procedure in order to improve the accuracy of the MA result.

Sensitivities. Let us assume that a rectal temperature ϑm has been measured, and

that the physical reality is described by the parameter vector p∗. The exact ToD is

then the value t∗ satisfying

ϑ(t∗; p∗) = ϑm.

Of course, p∗ is not accurately known, and the simulation is performed with an ap-

proximation p̄ = p∗ + δp, e.g., the mean values from the previous section. The ToD

estimate t̄ = t∗ + δt satisfies

ϑ(t̄; p̄) = ϑm. (6)

Assuming the parameter deviation δp to be sufficiently small, the implicit function

theorem yields

δt ≈ S(t̄)T δp =

np∑
i=1

Si(t̄)δpi, (7)

with the sensitivity

S(t̄) := −∂pϑ(t̄; p̄)

∂tϑ(t̄; p̄)
∈ Rnp , (8)

where ∂p and ∂t denote the respective partial derivative. The individual sensitivities Si
can be computed by evaluation of the derivatives of ϑ either by numerical differentiation

or, more accurately, by solving the tangent equations. The latter method has been used

to provide the sensitivity values reported here. Of greater interest than the sensitivities

themselves is of course the impact on the ToD estimate. The error δt depends on the

parameter deviation δp, such that we focus on sensitivities scaled by the parameter

uncertainty, i.e. |Si(t̄)σpi |. In contrast, the sensitivity study [33] judges the influence

of parameter changes on the ToD estimate only in terms of relative parameter change.

As illustrated in Figure 6, these quantities vary significantly with t̄ and are therefore

unintuitive to compare for different parameters. We consider the relative error δt/t̄ of

ToD estimation instead and compare the individual impact values

Ipi(t̄) := t̄−1|Si(t̄)σpi |, (9)
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Fig. 7 Parameter uncertainty impact Ipi (t̄) (a) for tissue heat capacity ρc. (b) for the global

parameters environmental temperature rate ϑ̇, initial core temperature ϑcore, the effective heat
transfer coefficient γ, and the supravital heating by metabolism Q.
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Fig. 8 Parameter uncertainty impact Ip(t̄) for tissue perfusion w.

which depend much less on t̄ except for small t̄. In Figures 6 – 7, these values are shown

for tissue parameters κ, ρc, and the global parameters from Table 3, respectively. Only

the few largest values are shown in order not to clutter the plots and because the values

for the other parameters are less than 0.1%.

As a single number quantifying the impact of uncertainty in a parameter pi we

define Ipi as the median of Ipi(t̄) over the interval t̄ ∈ ]0, 20]h. Since most relative

sensitivity curves are almost monotone, this is essentially the value for t̄ = 10 h.

Stochastic interpretation. Let us interpret δp ∈ Rnp as a random variable with com-

ponents δpi. For lack of more precise information, we assume δpi to be uncorrelated,

have mean zero, and a standard deviation σpi as provided by the uncertainty ranges in

Tables 2 and 3. Then, by eq. (7), δt(t̄)/t̄ ∈ R is a random variable with mean E[δt] ≈ 0

and variance

σδt/t̄(t̄)
2 ≈

np∑
i=1

Si(t̄)
2

t̄2
σ2
pi =

np∑
i=1

Ipi(t̄)
2. (10)

The importance of reducing a parameter uncertainty by a certain fraction ri < 1

from σpi to riσpi can be quantified by the improvement of the ToD estimate standard

deviation in terms of its derivative

Îpi(t̄) :=
∂σδt/t̄(t̄)

∂ri

∣∣∣
ri=1

=
Si(t̄)

2σ2
pi

t̄2σδt/t̄(t̄)
=

Ipi(t̄)
2

σδt/t̄(t̄)
. (11)
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Fig. 9 Thermal parameters pi sorted by their importance Îpi according to (11).

In contrast, the impact value Ipi(t̄) itself describes the derivative with respect to a

relative uncertainty reduction by ri if pi is the only uncertain parameter.

Again, we define Îpi as the median over t̄ ∈ [0, 20]h and observe that usually Îpi ≈
I2
pi/σδt/t̄(10 h) holds. Ordering the parameters according to their contribution to ToD

estimate uncertainty is therefore almost independent of whether Ipi or Îpi is considered,

but their relative importance is different, with Îpi putting more weight on the least

certain parameters. The values of Îpi are shown in Figure 9. Note, however, that the

parameter uncertainties σpi enter directly into the values of Îpi , affecting their relative

importance. As these uncertainties are not particularly well-known themselves, but

for some parameters merely educated guesses, the comparison is more of a qualitative

nature.

Discussion. The relative ToD estimate uncertainty due to uncertainties in thermal

parameters amounts to 20% according to (10), based on the very rough estimates of

parameter uncertainty from Tables 2 and 3. This value amounts to two hours of es-

timation error for a ToD of about 10 h and underlines the need for more accurate

estimation. Improving the accuracy requires to reduce the parameter uncertainty by

including additional information, e.g., further temperature measurements or experi-

mental quantification of parameters.

According to Figure 9, the most important parameter to characterize more accu-

rately is the rate ϑ̇ of environmental temperature change since the time of death, even

though the assumed uncertainty range of 0.36 K/h is in no way exaggerated. That

parameter alone can lead to 10–20% estimation error and more. This observation is

in agreement with the findings of [33], where environmental and initial temperature
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have been identified as most influential parameters. On the one hand, the large im-

pact of environmental temperature rate is unfortunate, since the temperatures cannot

be measured retrospectively. On the other hand, additional information from weather

recordings or heating control may be available and reduce the uncertainty. If the course

of the external temperature is known exactly, the remaining parameter uncertainties

induce a relative ToD standard deviation of 9.1%, almost an hour error for a ToD of

about 10 h. Assuming a constant environmental temperature in case of lacking infor-

mation, however, is bound to introduce rather large estimation errors.

The remaining parameters all incur much less uncertainty. Heat capacities ρc of

muscle and fatty tissue have an individual impact on the estimation error of about

4–6%. In general, heat capacity has a slightly larger impact than heat conductivity.

The dominance of muscle and fat properties is simply due to their large volume in the

vicinity of the rectal measurement point. While in principle the heat capacity of tissue

can be measured, unknown spatial variability of the heat capacity, difficulties of ob-

taining samples, and the nontrivial measurement itself make this approach problematic

in forensic practice.

Also of some importance are the heat transfer coefficient γ and the heat conductiv-

ity κ of fatty tissue. Less impact have the initial body core temperature ϑcore, supravi-

tal heat generation amplitude Q0, thermal properties of bones and the gastrointestinal

tract, and muscle and fat perfusion. Initial body core temperature has been found to

be one of the two most influential parameters in [33]. The apparent difference in find-

ings is by reason of the small standard deviation σϑcore
= 0.5 K that we assume, which

amounts to a relative deviation (with respect to 0 ◦C) of only 1.3%. The uncertainty

in ϑcore has a particularly large impact during the first few hours of cooling. This is

due to the fact that in the BHTE (4), it directly affects the initial temperature at the

rectal measurement point. Together with the vanishing time derivative in the initial

plateau phase, this leads to a large ToD estimation uncertainty. A similar effect has

the supravital heat generation during the first few hours. Much smaller is the impact of

fat and tissue perfusion, which also affect the initial temperature at the measurement

location.

The uncertainty of the remaining thermal tissue parameters has a negligible impact

on the ToD estimate. These are in particular the tissue properties of heart, lungs, liver,

kidneys, and urinary bladder. The reason is, that on one hand most of these organs

are far away from the rectal measurement point, and on the other hand their volume

and hence total heat capacity is small compared to muscle and fat tissues. This minor

impact indicates that an explicit representation of these organs might not be necessary

at all, which would simplify geometry acquisition, segmentation, and meshing.

4 Geometry Representation

Besides the thermal material parameters, the corpse geometry and the spatial distri-

bution of different tissues and organs might play a decisive role. In this section we

investigate the impact of geometric representation of the corpse on the estimated ToD.

Of course, geometry representation is neither a scalar nor a continuous parameter, for

which reason the derivative-based approach of the previous section is inapplicable. In-

stead, we use the highly resolved geometry of the corpse as illustrated in Figures 2 and 3

as a reference, which in turn provides a reference ToD estimate. Then, several coarser

representations as shown in Figure 10 are created as follows. The skin surface triangu-
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(a) (b) (c)

Fig. 10 Three levels of resolution of the the corpse: (a) 7066, (b) 65769, and (c) 326914
vertices.

lation is coarsened [10] and remeshed with respect to triangle quality [38]. The resulting

triangulation is then filled with tetrahedra using an advancing front approach [20,28],

since this is particularly suited for domains with complicated boundaries and internal

interfaces. Advancing front techniques belong to the class of heuristic mesh generation

methods. The name refers to the strategy of generating elements successively from

an ever shrinking set of dynamic surfaces that starts at the boundaries and internal

interfaces of the domain and advances into its interior. The generation of tetrahedral

meshes of different resolutions for a grid independence study does not take any internal

tissue boundaries into account. Our mesh generator offers a gradation from small to

large element sizes and vice versa, starting with the given resolution of the boundary

surface that can either be increased or decreased within a certain limit (e.g., by a small

percentage of the actual element size) [3]. Finally, each cell of the resulting meshes

is labeled with a tissue type according to the largest volume fraction of tissue within

that cell. The volume fraction is directly taken from the segmentation respectively the

original image data. While the tissue boundaries and hence their volume fractions are

not retained, the total heat capacity of the body differed only by less than 1% from

the reference anatomy.

Deviations of simulated cooling curves from the reference are interpreted as resolution-

dependent errors. For the cooling simulations we therefore made sure that the numer-

ical discretization error of the temperature distribution is small compared to the error

due to coarse anatomy resolution by applying grid refinement to the coarse models.

Thus, the reported deviation is only due to the geometrical resolution of the tissue

distribution. In the same way, the numerical temperature discretization error has been

assessed for Figure 5 (a): The anatomy and tissue distribution was always the coarse

7k mesh, and different discretization errors are obtained by refining that grid for actual

computation.

The differences of the cooling curves to the reference are shown in Figure 11 (a),

for three different resolutions of the tissues in the corpse. Compared to the cooling

curves for varying thermal parameters in Figure 4, the errors are smaller by a factor of

ten even for the coarsest grid, and by a factor about 100 for the still coarse 65k mesh.

The relative error in ToD estimation is shown in Figure 11 (b) and can be directly

compared to Figures 6 and 7. Again, the effect of low geometric resolution is much

smaller than that of the dominant thermal parameters.

There is no evidence for a significant sensitivity with respect to geometric resolution

of tissue boundaries, even though the tissues may change the total heat capacity in
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Fig. 11 Deviation of different levels of geometrical resolution from a solution on a highly
resolved geometry. (a) Cooling curves. (b) Induced relative ToD estimation error.
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Fig. 12 Deviation of different levels of tissue differentiation from a solution on a detailed
geometry. (a) Cooling curves. (b) Induced relative ToD estimation error.

the different tissue compartments as well as in the whole corpse. In particular, it can

be concluded that there is no need for providing high resolution segmentation and

meshing.

This insensitivity to the exact geometric differentiation of tissue types, together

with the negligible impact of thermal properties of small organs, suggests that a rather

coarse model might be sufficiently accurate. A moderate coarsening would subsume

liver, intestine, kidneys, bladder, heart, and lungs under muscle tissue, and differentiate

only fat, bone, and muscle-like tissues. In the extreme case, just a homogeneous body

with suitably averaged thermal properties might be used. Indeed, a homogeneous model

with cylindrical geometry has been proposed in [33]. Let Vfat, Vbone, and Vmuscle denote

the volume fractions of fat tissue, bones, and all water-dominated tissues, respectively,

such that Vfat + Vbone + Vmuscle = 1. Then the average properties of a homogeneous

substitute are defined as

cρ =
∑

i∈{fat,bone,muscle}

Vicρi, κ−1 =
∑

i∈{fat,bone,muscle}

Viκ
−1
i .

In the high-resolution model we get the average values cρ = 3.103e6 and κ = 0.3275,

and in the coarse 7k model cρ = 3.179e6 and κ = 0.3425. The errors introduced by

these simplifications are shown in Figure 12, and can be directly compared to Figure 11.
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5 Conclusions

The sensitivity results clearly show that a highly accurate and detailed representation

of individual anatomy is not necessary for the mechanistic approach to provide accurate

time of death estimates. As long as the total volumes of tissues with dominant water or

dominant fat composition and their overall geometric location are accurately captured,

the geometric resolution has virtually no impact on the estimated ToD – at least as

long as the temperature measurement is restricted to a single rectal location.

In contrast, some thermal parameters appear to play a crucial role, in particular

the time course of the environmental temperature, but also heat capacity of muscle

and fatty tissues, their heat conductivities, and the effective heat transfer coefficient.

With uncertainty ranges from literature, a total uncertainty of about 20% in the ToD

estimate from the simulation method is to be reckoned with for only one measurement,

which calles for improved estimation methods. In this situation, multiple temperature

measurements may provide the additional information that is necessary to increase the

reliability of the estimation.

While the results are obtained on a single corpse geometry, and are therefore ex-

emplary, we believe that the conclusions drawn from them are valid for a wide range of

anatomies and environmental conditions. This, however, needs to be confirmed through

further studies.
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