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Abstract We investigate spectral deferred correction (SDC) methods for time step-
ping and their interplay with spatio-temporal adaptivity, applied to the solution of
the cardiac electro-mechanical coupling model. This model consists of the Mono-
domain equations, a reaction-diffusion system modeling the cardiac bioelectrical
activity, coupled with a quasi-static mechanical model describing the contraction
and relaxation of the cardiac muscle. The numerical approximation of the cardiac
electro-mechanical coupling is a challenging multiphysics problem, because it ex-
hibits very different spatial and temporal scales. Therefore, spatio-temporal adaptiv-
ity is a promising approach to reduce the computational complexity. SDC methods
are simple iterative methods for solving collocation systems. We exploit their flexi-
bility for combining them in various ways with spatio-temporal adaptivity. The ac-
curacy and computational complexity of the resulting methods are studied on some
numerical examples.

1 Introduction

The spread of the electrical impulse in the cardiac muscle and the subsequent
contraction-relaxation process is quantitatively described by a mathematical model
called electro-mechanical coupling. The electrical model consists of the Mono-
domain system (a reduction of the Bidomain model), which is a reaction-diffusion
equation describing the evolution of the transmembrane voltage. The PDE is cou-
pled through the reaction term with a stiff system of ordinary differential equations

Martin Weiser
Zuse Institute Berlin, Bereich Numerische Mathematik, Taku strasse 7, D-14195 Berlin-Dahlem,
Germany, e-mail: weiser@zib.de

Simone Scacchi
Department of Mathematics, University of Milan, via Saldini 50, 20133 Milano, Italy, e-mail:
simone.scaccchi@unimi.it

1



2 Martin Weiser and Simone Scacchi

(ODEs), the so-called membrane model, describing the flow of the ionic currents
through the cellular membrane. The mechanical model consists of quasi-static finite
elasticity, coupled with a system of ODEs modeling the development of biochemi-
cally generated active stress.

The numerical approximation of the cardiac electro-mechanical coupling is a
challenging multiphysics problem, because the space and time scales associated
with the electrical and mechanical models are very different. Therefore, spatial and
temporal adaptivity is a promising approach to reduce the computational complex-
ity [2, 3]. However, spatial adaptivity by local mesh refinement incurs a substantial
overhead for error estimation, grid manipulation, repeated integration until spatial
accuracy is achieved, and reassembly of mass and stiffness matrices, which reduces
the performance gain.

In this work, we investigate the use of spectral deferred correction (SDC) meth-
ods for time stepping and their interplay with spatial and temporal adaptivity. SDC
methods are simple iterative methods for solving collocation systems. Their flexi-
bility allows to combine them in various ways with spatio-temporal adaptivity. We
explore interleaving mesh refinement with SDC iterations for improved convergence
and local time stepping. In particular, we develop SDC methods for strong electro-
mechanical coupling including mechano-electrical feedback and their potential for
multi-rate integration. The properties of the resulting methods in terms of accuracy
and computational complexity are discussed at a simple numerical example.

2 Mathematical models

Mechanical deformation

Let us denote the region occupied by the undeformed myocardium by Ω . Fow now
we consider a simple two-dimensional square domain. The myocard undergoes a
time-dependent deformation with displacement u : Ω×(0,T )→R2, such that point
x ∈ Ω is moved to x+ u(x, t) at time t ∈ (0,T ). As usual, F = I+ ux denotes the
deformation derivative, C = FT F the Cauchy-Green deformation tensor, and E =
1
2 (C− I) the Green-Lagrange strain tensor, with identity matrix I.

The cardiac tissue is modeled as a transversely isotropic nonlinear hyperelastic
material with exponential strain energy function

Wpas(E) = c1 exp(b1E2
11 +4b2E2

22 +4b3E2
12).

introduced in [11], where the muscle fiber direction is just x1. The near-incompressibility
is modeled by an additive volume change penalization term

Wcom(detF) = c2((detF)2 +(detF)−2−2),

which ensures orientation preservation. The contraction of the ventricles results
from the active tension Ta generated by the myofilements, which are activated by
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calcium release. We assume that the generated active stress acts only in the direc-
tion of the fibers [6, 10, 12]. This leads to a third term in the variational functional:

Wact(E,Ta) = TaE11.

The biochemically generated active stress Ta is modeled as stretch and stretch-rate
independent. Thus, we assume as in [5, 9] that the dynamics of Ta depends only on
the transmembrane voltage v according to a simple twitch-like rule,

∂Ta

∂ t
= ε(v)(kTa(v− vr)−Ta), (1)

where kTa > 0 controls the saturated value of Ta for a given voltage v and a given
resting voltage vr, see [5, 9] for details.

We assume that the time-dependent inertial term in the governing elastic wave
equation may be neglected, see, e.g., [7, 12]. At any point in time, the myocard
then assumes the stationary minimizer of the internal energy, subject to essential
boundary conditions on the Dirichlet part of ∂Ω :

min
u(t)∈H1(Ω)2

∫
Ω

Wpas(E)+Wcom(detF)+Wact(E,Ta(t))dx s.t. u(t)|∂ΩD = 0. (2)

Electrical excitation

The electrical excitation is described by the monodomain model using the Aliev-
Panfilov membrane model [1] on the reference cardiac domain Ω [9, 10, 12]. Given
an applied current per unit volume Iapp : Ω × (0,T ) → R, and initial conditions
v0 : Ω → R, w0 : Ω → R, find the transmembrane potential v : Ω × (0,T )→ R and
the gating variable w : Ω × (0,T )→ R such that

cm
∂v
∂ t
−div(F−1DmF−T

∇v)+ Iion(v,w) = Iapp in Ω × (0,T ), (3)

∂w
∂ t

= R(v,w) in Ω × (0,T ), (4)

holds. Note that the length changes due to tissue deformation change the diffusion
tensor from Dm to F−1DmF−T , neglecting the impact of volume changes. The func-
tions

Iion(v,w) =−gav(v−a)(v−1)− vw

R(v,w) =−1
4

(
ε1 +

µ1w
v+µ2

)
(w+gsv(v−a−1))

are given by the Aliev-Panfilov membrane model [1]. Insulating boundary condi-
tions on v are prescribed.
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3 Numerical methods

Spatial discretization: finite elements

A pure displacement discretization with P1-elements is used for computing the tis-
sue deformation in reaction to active stress Ta. A Newton-like method is employed
for minimizing (2). As hyperelastic energies can be nonconvex, the elemental matri-
ces are modified during assembly to be positive definite. This ensures that the com-
puted Newton step is a descent direction. Line search is applied to ensure monotone
decrease of the elastic energy.

The transmembrane voltage is less smooth than the displacement, but easier to
solve for. Thus, a finer spatial discretization is used. For implementation simplicity,
we use P3-elements on the same mesh for transmembrane voltage, gating variables,
and active stress generation. The transfer between different spatial discretizations
is done by interpolation at quadrature nodes. Mesh refinement is based on an em-
bedded energy error estimator for the transmembrane voltage, as this is the variable
with dominating local dynamics.

Time discretization: spectral deferred correction methods

Spectral deferred correction methods [4] are simple iterative methods for solving
ODE collocation systems, where each iteration consists of a sequence of time steps
with a low order scheme, most often an Euler scheme. For simplicity of notation,
we consider an initial value problem u̇ = f (u) with initial value u(0) = u0 and exact
solution u∗. On a time step [0,τ] we define a collocation time subgrid 0 = τ0 < · · ·<
τn = τ and a polynomial approximate solution u0 ∈ Pn with values uk

i = uk(τi) at
the collocation points τi. The defect u∗−uk satisfies the Picard equation

d
dt
(u∗−uk)(t) =

∫ t

s=0
( f (u∗)− u̇k)ds. (5)

Linearizing f around uk, integrating the implicit term in (5) approximately with
the right-looking rectangular rule and the explicit terms by a quadrature rule on the
collocation time grid gives approximate defect values

δuk
i+1 = δuk

i +(τi+1− τi)

(
n

∑
j=0

S j f (uk
j)+ f ′(uk

i+1)δuk
i+1

)
− (uk

i+1−uk
i ) (6)

at the collocation nodes, which in turn define a polynomial defect approximation
δuk by interpolation. Note that (6) is a linearly implicit Euler scheme on the collo-
cation time grid. Updating the approximation by uk+1 = uk +δuk yields an iteration
the fixed point of which satisfies the collocation condition f (ui) = u̇i. In lack of
better initialization, the starting iterate is the constant initial value: u0

i = u0.
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Interleaved SDC and mesh refinement

Popular diagonally linearly implicit Runge-Kutta schemes, such as Rosenbrock
methods, can be combined with spatial adaptivity in two different ways. Error es-
timation and refinement can be performed either for the final result, or for the very
first stage (essentially a linearly implicit Euler step) only. The first option is more
conservative, but requires the recomputation of all stages from scratch, since order
and accuracy of Rosenbrock schemes deteriorate when the stages are computed on
different spatial grids. The second option is more efficient, as only the first stage
is recomputed on mesh refinement, but assumes a sufficient similarity of Euler step
and final Rosenbrock step to produce suitable meshes for the latter. As demonstrated
in Section 4, this assumption can be quite wrong.

In contrast to Rosenbrock methods, SDC methods compute an independent cor-
rection in every sweep, wherever the approximation error originates, may it be the
SDC iteration error or a spatial discretization error. Hence, spatial mesh refinement
can be performed in between any SDC sweeps, creating meshes adapted to the final
SDC step, and nevertheless the previously computed values can be reused.

Applied to the electromechanical model described in Section 2 above, the SDC
iterations are performed for the transmembrane voltage (3), the gating variables (4),
and the active stress generation in turn. After each sweep, the elastic displacement is
updated at all collocation points by a simplified Newton method, followed by error
estimation both for the spatial discretization error and the SDC iteration error. If the
spatial error exceeds the iteration error, adaptive mesh refinement is performed.

Multi-rate integration

As the dynamics in the active stress generation and hence the mechanical displace-
ment is slower than in the transmembrane voltage, a coarser time discretization of
the displacement can be used. We exploit the continuous in time representation of
approximate solutions by polynomial interpolation, using a finer collocation grid for
the transmembrane voltage than for the displacement. Additionally, as after an SDC
sweep the electrical state is still only an approximation, an exact solution of the non-
linear mechanic model is not required. The number of Newton steps can therefore
be reduced. Finally, less than one Newton step per sweep effort can be achieved by
solving for the elasticity part just every other SDC sweep. The induced inaccuracy
in the displacement will have an impact on the convergence of the transmembrane
voltage due to the mechano-electrical feedback.

4 Numerical results

We study the effect of the algorithmic variants in detail at a particularly simple
example, the spread of an excitation wave in the 2D domain Ω̂ = ]0,2[2 with an ex-
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Fig. 1 Left: Wall clock time vs. achieved error for different tolerances. Right: Grid maladaptation
by mesh refinement based on the first sweep. Front position is marked.

citation current in [0.5,0.55]2 for 1 ms. For simplicity, the time step size is fixed to
1.5 ms on a Radau(4) collocation time grid, using cubic finite elements for the trans-
membrane voltage and linear FE for the displacement. Errors in uh are quantified by
the norm difference ‖uh‖L2(Ω̂)−‖u‖L2(Ω̂) to the space-continuous collocation solu-
tion u, which is closely related to the error in the average conduction velocity.

First we study the performance impact of interleaving mesh refinement and SDC
iterations. To this extent, we simulate the non-interleaving mode of operation by
initializing the solution at all collocation points to the initial value after mesh refine-
ment, in effect starting the SDC method only after a suitably refined grid has been
constructed for the Euler solution. This mimics the approach used in some Rosen-
brock schemes [8], where mesh adaptation is performed for the first stage only.

As shown in Fig. 1 left, the interleaved scheme is more efficient, roughly by a
factor of two for large tolerances. The non-interleaved mode does not achieve high
accuracy at all, independent of the tolerance. Fig. 1 right gives an explanation for
this bad performance. It turns out that at the chosen time step size the first sweep
results in a rather poor approximation of the front, in particular a too slow front
speed and a significant overshoot. This leads to mesh refinement behind, and an
insufficient refinement at the actual front position.

Next we turn to multi-rate integration for electromechanical coupling. With a
fixed tolerance for spatial discretization error and SDC iteration error, we reduce
the accuracy of displacement computation in each time step by reducing the collo-
cation nodes from 4 to 1 (lines a), the number of simplified Newton steps from 10
to 1 (lines b), additionally skipping the displacement computation for up to 7 SDC
sweeps (lines c), and report the deviation from the non-reduced reference solution in
Fig. 2. The error of this reference solution is roughly 2 ·10−3. Apparently, reduction
of Newton iteration count and collocation points for the displacement computation
introduce a coupling error well below the overall error tolerance. Additionally omit-
ting the displacement computation during the first SDC sweeps exceeds this limit,
without substantial run time reduction. Neglecting the mechano-electrical feedback
completely yields an unacceptably large error (point d).
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Fig. 2 Total error vs. run time for inexact solution of displacement.
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