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Abstract

Parabolic reaction-diffusion systems may develop sharp moving reaction
fronts which pose a challenge even for adaptive finite element methods. We
propose a method to transform the equation into an equivalent form that usu-
ally exhibits solutions which are easier to discretize, giving higher accuracy for
a given number of degrees of freedom. The transformation is realized as an
efficiently computable pointwise nonlinear scaling that is optimized for pro-
totypical planar travelling wave solutions of the underlying reaction-diffusion
equation. The gain in either performance or accuracy is demonstrated on dif-
ferent numerical examples.
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1 Introduction

Reaction-diffusion equations are used to model a tremendous amount of effects, in
particular in chemistry, biology, or material sciences. They describe the spatio-
temporal distribution of one or more species subject to diffusion and nonlinear in-
teraction. Due to their importance in practical applications, a considerable amount
of effort has been spent on the numerical solution [9].

One of the outstanding properties of reaction-diffusion equations is the existence
of travelling waves, which are moving reaction fronts. An accurate representation
of reaction fronts is usually necessary in computations to capture the front speed
correctly. If the diffusion is small compared to the computational domain and the
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reaction speed, the reaction fronts can be rather sharp. A quantitatively faithful
resolution of sharp reaction fronts is quite challenging for numerical methods, since
a rather small mesh size is required. Uniform meshes are often inefficient or even
useless due to the exceedingly large number of unknowns they incur. For this reason,
adaptive mesh refinement techniques are widely used, in particular for finite element
discretizations [12].

In Rothe’s method, standard h-, p-, and hp-refinement are used for the stationary
elliptic problems arising in each time step, along with mesh coarsening in regions
of the domain which the front has left behind. More specialized approaches such as
anisotropic refinement [1,11] or different refinement levels for variables with different
smoothness [18] are effective, but difficult to implement, in particular in combina-
tion with maintaining a mesh hierarchy for geometric multigrid solvers. Domain
transformations and vertex relocations, so-called r-refinement, have been proven
to be efficient for one-dimensional problems [10, 16] and have also been studied
for 2D and 3D problems with some success [2, 13]. Drawbacks are the overhead
of additional PDEs describing the mesh movement and the difficult treatment of
geometrically complex boundaries.

Unlike the linear wave equation that advances waves of arbitrary shape with the
same speed, reaction-diffusion equations often allow only a small number of wave
shapes to be propagated at all, with the wave speed depending on the wave shape.
Thus, the local solution structure is to some extent determined by the travelling
wave solutions of the reaction-diffusion equation. In this paper, we try to exploit this
fact and propose an analytical preprocessing based on planar travelling waves. The
preprocessing is a pointwise nonlinear scaling of the range that aims at smoothing
out sharp reaction fronts. The approach requires analytical preprocessing and is
therefore much less general than mesh refinement, but since only a pointwise scaling
is involved, the implementation effort is negligible and the computational overhead
rather small.

The remainder of the paper is organized as follows. In section 2, the concept of
pointwise nonlinear scaling is introduced formally. The main section 3 is devoted
to the development of a framework for computing optimal scalings for spatial finite
element discretizations. This is transferred to time discretizations in the following
section 4. Finally, scaling for spatio-temporally adaptive methods is considered in
section 5.
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2 Pointwise Nonlinear Scaling

Let us consider a simple scalar reaction-diffusion equation of the form

∂tu = ∇ · (κ∇u) + f(u) in Ω (1)
u = uD on ∂ΩD

κ∂nu = γ(uN − u) on ∂ΩN = ∂Ω\∂ΩD.

Here, Ω is a domain in Rd and f : R→ R is a smooth function.

We introduce a smooth, strictly monotone increasing function ζ : R → R and its
inverse ϑ = ζ−1 as pointwise nonlinear scalings of the range of u. Now the scaled
variable uζ = ζ(u) satisfies the reaction-diffusion equation

ϑ′(uζ)∂tuζ = ∇ · (κϑ′(uζ)∇uζ) + f(ϑ(uζ)) in Ω (2)
uζ = ζ(uD) on ∂ΩD

ϑ′(uζ)κ∂nuζ = γ(uN − ϑ(uζ)) on ∂ΩN = ∂Ω\∂ΩD

for all t, such that the following diagram commutes:

solve (1)

solve (2)

In this sense, the exact solution is invariant under pointwise nonlinear scaling.

If in actual computation the solution step is substituted by some discretization, e.g.,
finite elements combined with implicit Runge-Kutta methods, the commutativity
of the diagram is lost. Since it is impossible to devise a discretization that is
invariant under arbitrary smooth nonlinear scalings, we are left with the task of
explicitly choosing a scaling ζ. A natural choice would be the one minimizing the
discretization error for a given discretization, or, essentially equivalent, minimizing
the computational complexity for obtaining a desired accuracy. On that score,
the identity (id) is usually not the scaling of choice, even though it leads to the
particularly simple formulation (1) of the more general problem (2).

Note that finding an optimal scaling for a given problem is at least as difficult as
solving the original problem. In the following we will therefore characterize quasi-
optimal scalings in terms of planar travelling wave solutions, in the hope that the
accuracy gain transfers to more general problems with a richer solution structure.
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3 Scaling for Spatial Discretization

To begin with, we address the spatial discretization, since this is usually the most
costly aspect in discretizing reaction-diffusion equations. First we need to con-
struct a quantitative characterization of optimal scalings. A reasonable choice is
to minimize the product Ex(ζ)Wx(ζ) of the spatial discretization error Ex(ζ) and
the computational complexity Wx(ζ). Additionally we have the conflicting goal of
aiming at smooth scalings that do not introduce discontinuities or very large values
of higher derivatives of the scaled solution uζ . We thus introduce a regularization
parameter α > 0 and define the desired scaling as a minimizer of

min
ζ

Ex(ζ)Wx(ζ) +
α

2
‖ζ(s)‖2L2(R) s.t. ζ ′ > 0, (3)

where s > 1 is chosen appropriately for the underlying discretization of uζ . For
finite elements of order p, a value of s = p+ 1 seems reasonable.

Discretization error model. Using finite elements of order p on a triangulation
T of the domain Ω for discretizing the scaled solution uζ as uhζ , we assume the
following local approximation error estimate holds on each element T ∈ T of the
mesh:

‖uζ − uhζ ‖L2(T ) ≤ ch
p+1
T |uζ |Hp+1(T )

Here, c is some generic constant independent of the diameter hT of the element T .
The estimate holds if uζ ∈ Hp+1(Ω).

Defining the discretized unscaled solution as uh = ϑ(uhζ ), we obtain the following
asymptotic error estimates for the unscaled solution:

‖u− uh‖L2(T ) = ‖ϑ(uζ)− ϑ(uhζ )‖L2(T )

≤ ‖ϑ′(uζ)‖L∞(T )‖uζ − uhζ ‖L2(T ) +O(‖uζ − uhζ ‖2L2(T ))

≤ chp+1
T ‖ϑ′(uζ)‖L∞(T )|uζ |Hp+1(T ) +O(‖uζ − uhζ ‖2L2(T )) (4)

As a continuous model of (4) we introduce the local mesh size h : Ω → R+ and
define the local L2 error density pointwise as

exζ(x) = h(x)p+1ϑ′(uζ(x))|u(p+1)
ζ (x)|, (5)

such that we can estimate the overall error by

‖u− uh‖L2(Ω) / c‖exζ‖L2(Ω).

Consequently, we define our error quantity as

Ex(ζ) = ‖exζ‖2L2(Ω).
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In passing we note that a slightly longer computation yields a related error model

ēxζ(x) = h(x)p+1
(
ϑ′(uζ(x)) + ϑ′′(uζ(x))|∇uζ(x)|

)
|u(p+1)
ζ (x)|

for the H1 error, such that ‖u− uh‖H1(Ω) / c‖ēxζ‖L2(Ω). For notational simplicity,
however, we will concentrate on the L2 estimates.

Complexity model. Using an efficient solver, the computational complexity for
computing uhζ is proportional to the number of elements in the mesh. From the
mesh size distribution h we can approximate the number of elements as

Wx(ζ) =
∫

Ω
h(x)−d dx (6)

for isotropic elements.

Mesh models. Note that both Ex and Wx and hence the minimizer ζ of (3) do
depend on the mesh size distribution h. Here we restrict our attention to meshes
resulting from the two commonly encountered mesh refinement strategies: uniform
meshes and adaptively refined meshes.

For uniformly refined meshes we may assume h to be constant in (5), such that

Ex(ζ)Wx(ζ) = c ‖ϑ′(uζ)u
(p+1)
ζ ‖2L2(Ω). (7)

For adaptively refined meshes we assume equilibration of local errors (4), which in
our continuous model means that exζ is constant. We then have

h(x) = c
∣∣∣ϑ′(uζ(x))u(p+1)

ζ (x)
∣∣∣−1/(p+1)

,

such that
Ex(ζ)Wx(ζ) = c

∫
Ω

∣∣∣ϑ′(uζ)u(p+1)
ζ

∣∣∣d/(p+1)
dx (8)

holds.

Solution model. Unfortunately, the unknown solution u enters into exζ via uζ .
Thus we need to find an easily computable substitute that exhibits the same local
structure and features as the solution u.

We assume that in most of the domain Ω the solution looks locally like a planar
travelling wave. This assumption neglects effects frequently encountered in reaction-
diffusion patterns, such as curvature-dependent wave speed, anisotropic diffusion,
a continuum of wave forms and speeds, and boundary effects. Nevertheless, the
planar travelling wave assumption should capture the bulk of the local solution
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structure mostly correct and is moreover analytically and numerically tractable due
to its inherent one-dimensional nature. Thus, we look for nonlinear scalings that
are optimal for planar travelling waves.

Let us assume that for some velocity direction v ∈ Rd with |v| = 1 and some
wave speed σ ≥ 0, (1) has a sufficiently smooth planar travelling wave solution
u(x, t) = w(−vTx + σt) on Rd, with w : R → [0, 1] being essentially constant
outside some interval [a, b]. Now we can substitute w for u and [a, b] for Ω.

Practical restrictions. For the numerical computation of ζ to be practical, one
more aspect has to be considered. Since the range of w is assumed to be contained
in [0, 1], we may essentially restrict our attention to scalings mapping [0, 1] into
itself. However, actual solutions may well exceed this range, such that ζ needs
to be represented on whole R. Since the travelling wave substitute w does not
provide any information outside [0, 1], we select the most simple representation:
linear extension. We therefore restrict ζ to the admissible set

Z = {ζ : R→ R|ζ(0) = 0, ζ(1) = 1, ζ ′ > 0, supp ζ(k) ⊂ [0, 1] for k = 2, . . . , s}.

Combining all above considerations, we end up with the optimization problems

min
ζ∈Z

∫ b

a

∣∣∣ϑ′(wζ)w(p+1)
ζ

∣∣∣r dx+
α

2
‖ζ(s)‖2L2([0,1]) (9)

to solve for optimal scalings ζ for uniformly (r = 2) and adaptively (r = d/(p+ 1))
refined meshes, respectively.

One particularly nice property of this approach to select optimal scalings is that
the result is essentially independent of the diffusion coefficient κ determining the
width of the reaction front.

Lemma 3.1. Let u(x, t) = w(x+ σt) be a travelling wave solution of (1) for κ = 1
on Ω = R and ζ(α) = arg minξ

(
Ex(ξ)Wx(ξ) + α

2 ‖ξ
(s)‖2L2(Ω)

)
the associated optimal

scaling. Then, for every 0 < κ ∈ R, ζκ(α) = ζ(κ1/2−r(p+1)/2α) is an optimal scaling
associated to the travelling wave solution uκ(x, t) = w(x/

√
κ+σt) of (1) on Ω = R.

Proof. A short calculation shows that uκ(x, t) = w(x/
√
κ+σt) is indeed a travelling

wave solution of (1). Without loss of generality we assume t = 0. By the chain
rule, we have

∂p+1
x ζ(uκ(x)) = ∂p+1

x ζ(w(x/
√
κ)) = κ−(p+1)/2∂p+1

ξ ζ(w(ξ))
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for ξ = x/
√
κ. We introduce the notation Eκx and W κ

x to make the dependence of
Ex and Wx on κ explicit. By the substitution rule, we have

Eκx(ζ)W κ
x (ζ) =

∫
R

∣∣∣ϑ′(uκζ(x))u(p+1)
κζ (x)

∣∣∣r dx
=
∫

R

∣∣ζ ′(w(x/
√
κ))−1∂p+1

x ζ(w(x/
√
κ)
∣∣r dx

=
∫

R

∣∣∣ζ ′(w(ξ))−1κ−(p+1)/2∂p+1
ξ ζ(w(ξ))

∣∣∣r√κ dξ
= κ1/2−r(p+1)/2

∫
R

∣∣∣ζ ′(w(ξ))−1∂p+1
ξ ζ(w(ξ))

∣∣∣r dξ
= κ1/2−r(p+1)/2E1

x(ζ)W 1
x (ζ).

Choosing ακ = κ1/2−r(p+1)/2α results in a simple scaling of the objective in (9) that
does not change the minimizers.

3.1 Numerical Examples

In the previous section, we have characterized optimal scalings as minimizers of the
work per accuracy ratio. The associated objective yields a prediction of the error
reduction for uniform meshes or the savings in computational work for adaptive
meshes. However, this prediction comes from an idealized model situation. The
error and work model are continuous and do not take the necessarily discrete struc-
ture of the mesh into account. Moreover, the error model is just a worst-case model
with limited predictive power for an actual situation.

The most important simplification is that, the characterization of ζ is based on
planar travelling waves. In 2D/3D problems, the solution structure can be much
richer due to source terms, boundary conditions, and complex geometries. It is
not clear a priori, to which amount the error reduction transfers to more complex
settings. The first numerical example given in Section 3.1.1 is therefore a simple
1D interpolation problem suitable for testing the work and error models.

3.1.1 1D Travelling Wave Approximation

As a first illustration of the effect of pointwise nonlinear scaling on the discretization
error we consider the piecewise linear interpolation of a reaction front. As an
arbitrary front shape we select the hyperbolic tangent on the interval Ω1 = [−5, 5]:

w(x) =
1
2

(tanhx+ 1)
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Figure 1: Nonlinear scaling ζ−1 for equidistant interpolation of the hyperbolic tan-
gent.

Equidistant Interpolation. First, we approximate ζ by solving (9) with r = 2
numerically using Ipopt [19] on a simple equidistant finite difference discretization.
Since here we only aim at approximating w, we choose a rather small regularization
parameter α = 10−12. The resulting scaling is shown in Fig. 1. That the shape of
ζ−1 is very close to the hyperbolic tangent itself is to be expected: This way, with
a relatively large linear interpolation segment, the curved shape of the hyperbolic
tangent can be approximated very well.

The obtained values for the estimated interpolation error are ‖ex‖L2(Ω) = 0.5164
for the original and ‖exζ‖L2(Ω) = 0.0090 for the scaled problem, the ratio of which
gives an estimated error reduction factor of 57.2. The same ratio is obtained using
the H1 norm for measuring errors. Then, both w and wζ are piecewisely linearly
interpolated on an equidistant grid of 2n + 1 points, resulting in Inw and Inwζ ,
respectively. The errors εnx = w − Inw and εxζ = w − ϑ(Inwζ) are evaluated on
a further refined grid. The results given in Table 1 coincide very well with the
prediction. The slight deterioration in the error reduction factor, which is visible
for n = 11 in particular for the H1-error, can be attributed to the approximate
representation of ζ.

Adaptive Interpolation. As a second experiment, we solve (9) with r = d/(p+
1), again choosing α = 10−12. The resulting scaling is very close to its counterpart
for equidistant interpolation, in fact, the difference is imperceptible on the scale of
Fig. 1. The quotient of the obtained values for

∫
h(x)−ddx of 2.37 and 0.247 for

the original and scaled problem, respectively, predicts a reduction in the number of
interpolation nodes by a factor of 9.6. Then w and wζ are interpolated adaptively
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n ‖εx‖L2 ‖εxζ‖L2 ratio |εx|H1 |εxζ |H1 ratio

0 6.447e-1 1.542e-1 4.181 4.831e-1 1.775e-1 2.722
1 6.447e-1 1.542e-1 4.181 4.831e-1 1.775e-1 2.722
2 2.887e-1 4.155e-3 69.500 3.723e-1 6.141e-3 60.625
3 7.692e-2 1.425e-3 53.981 1.944e-1 3.744e-3 51.919
4 1.801e-2 3.354e-4 53.697 9.161e-2 1.704e-3 53.777
5 4.576e-3 7.985e-5 57.305 4.637e-2 8.099e-4 57.255
6 1.149e-3 2.009e-5 57.201 2.327e-2 4.068e-4 57.185
7 2.876e-4 5.028e-6 57.204 1.164e-2 2.036e-4 57.196
8 7.192e-5 1.257e-6 57.205 5.822e-3 1.018e-4 57.183
9 1.798e-5 3.144e-7 57.202 2.910e-3 5.095e-5 57.118

10 4.496e-6 7.864e-8 57.166 1.453e-3 2.556e-5 56.837
11 1.124e-6 1.968e-8 57.099 7.222e-4 1.292e-5 55.911

Table 1: Approximation errors for piecewise linear interpolation In of hyperbolic
tangent on the interval [-5,5]. n is the number of uniform refinements.

TOL n nζ ratio mζ

10−2 14 5 2.8 5
10−3 38 8 4.8 8
10−4 115 15 7.7 17
10−5 375 38 9.9 46
10−6 1130 114 9.9 144
10−7 3579 372 9.6 435

Table 2: Number of nodes for adaptive interpolation of tanh.

by bisecting the subinterval with the largest L2 error contribution until a given
tolerance for the overall L2-error estimate is reached. The number of interpolation
nodes is reported in Table 2 as n for interpolating w, nζ for interpolating wζ , and
mζ for interpolating wζ with the scaling ζ obtained for the uniform setting above.

We conclude that the continuous worst-case model for the work per accuracy ratio
performs fairly well, and that, despite the minor difference in the scalings, consid-
ering different model variants for uniform and adaptive refinement is justified by
the small, but clearly visible difference of the results.

3.1.2 Scalar Reaction-Diffusion Equation

The effect of solution structures differing from planar travelling waves on the effec-
tivity of the proposed nonlinear scaling are studied at the simple scalar reaction-
diffusion equation

∂tu = κ∆u+ u(1− u)(u− a). (10)
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Planar travelling wave solutions u(x, t) = w(−vTx + σt) with |v| = 1 moving in
direction v with speed σ =

√
κ1−2a√

2
are known analytically:

w(z) =
(

1 + exp
(
− z√

2κ

))−1

.

We employ the method of lines and first discretize the space using linear finite
elements on uniform red refinements of Ω for different refinement levels n, translat-
ing (10) into an ODE. The implementation is done on top of DUNE [4,5].

A scaling ζ is computed for minimizing the L2-error by approximately solving (9) for
r = 2. Since the following test cases are not perfect planar travelling waves, a more
conservative regularization parameter α = 10−8 is used for linear finite elements
(p = 1), giving a predicted error reduction factor Ex(id)/Ex(ζ) ≈ 22. Quadratic
elements (p = 2) seem to react more sensitively to deviations from the travelling
wave shape, such that we use α = 10−6 with a predicted error reduction factor of
13.

As an example that is not exactly a planar wave we consider the coalescence of
circular reaction fronts. These fronts are curved and therefore deviate from the
planar travelling wave shape. At the tip of the groove that occurs just after fronts
touch, the curvature of the joint front is particularly high, such that pronounced
deviations from the planar travelling wave shape are to be expected. We start at
t = 0 with circular fronts centered at the points of (2Z)2 in Ω = R2 and exploit
periodicity and symmetry to restrict the computation to the triangle Ω̄ = {x ∈
[0, 1]2 : x1 ≥ x2} with homogeneous Neumann boundaries. We choose κ = 0.0009,
a = 0, and u(x, 0) = w(1

3−|x|). Time stepping is performed using a linearly implicit
Euler scheme extrapolated to order 4 (cf. [7]). Focusing on the spatial discretization
effect, the fixed time step size τ = 1/8 is chosen such that the spatial discretization
error dominates. The final time is T = 30, just after the wave fronts have merged
(see Fig. 2 left). Note that at the front vertex where the reaction fronts touch the
solution structure is distinctly different from the travelling wave solution, whereas
before it locally looks rather similar to a planar travelling wave.

On each refinement level n, the spatial errors at t = T/2 and t = T , εnx = un − u
and εnxζ = ϑ(unζ )− u, respectively, have been approximated using ϑ(uNζ ) instead of
u. In fact, uNζ is the most accurate solution obtained. For n = 4, the errors at
t = T are shown in Fig. 2 (right). Note that the error ε4

x of the unscaled solution
is mainly caused by an offset in the front position, that is accumulated during the
propagation. With relatively large elements, the front speed of the FE solution is
too large. The error ε4

xζ of the scaled solution is significantly smaller. Moreover,
the dominating error contribution stems in fact from the region where the solution
shape differs from the travelling wave shape. In contrast to the unscaled result, a
structural error contribution due to a wrong front position is not visible.

Error norms and their ratios are given in Table 3. It is apparent that as long
as the solution structure is indeed similar to the planar travelling wave (t = 15),
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Figure 2: Left: Merging reaction fronts of (10) at final time t = T . Right: errors
of the unscaled (top) and scaled (bottom) linear FE solution. Note that the error
of the scaled solution is scaled back and hence directly comparable to the unscaled
error.

linear FE (N = 9) quadratic FE (N = 8)
t n ‖εx‖L2 ‖εxζ‖L2 ratio ‖εx‖L2 ‖εxζ‖L2 ratio

15 1 1.82e-1 2.26e-2 8.1
2 1.83e-1 9.67e-3 18.9 4.22e-2 8.17e-3 5.2
3 7.71e-2 3.25e-3 23.7 8.55e-3 6.20e-4 13.8
4 2.48e-2 6.51e-4 38.1 8.41e-4 5.01e-5 16.8
5 6.62e-3 1.51e-4 43.8 8.34e-5 5.45e-6 15.3
6 1.68e-3 3.67e-5 45.8 9.24e-6 6.73e-7 13.7
7 4.21e-4 8.78e-6 47.9

30 1 3.25e-1 3.29e-2 9.9
2 3.29e-1 1.82e-2 18.0 1.12e-1 1.48e-2 7.5
3 1.75e-1 5.44e-3 32.2 1.75e-2 2.25e-3 7.8
4 5.48e-2 1.98e-3 27.7 1.58e-3 2.49e-4 6.4
5 1.41e-2 5.03e-4 28.1 1.32e-4 2.85e-5 4.6
6 3.54e-3 1.26e-4 28.1 1.25e-5 3.59e-6 3.5
7 8.85e-4 3.08e-5 28.8

Table 3: Spatial discretization error for the scalar reaction-diffusion equation (10).
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the expectations are well met, with results even better than predicted for linear
elements. As soon as the solution structure changes significantly, the accuracy
improvement is less pronounced and drops below the value predicted for the ideal
situation, in particular for quadratic finite elements. However, the dominant error
of the scaled solution is confined to the small region in space and time where the
reaction fronts merge. Further error reduction by adaptive mesh refinement would
be less costly than in the unscaled case, where the dominant error is distributed
along the whole reaction front.

As a final remark we note that boundary conditions of Dirichlet or Robin type can
be expected to have a similar effect on the accuracy gain as the merging of reaction
fronts in this example. The influence of homogeneous Neumann conditions depends
on the relative angle between the wave front and the boundary.

4 Scaling for Time Discretization

Up to now, only the spatial discretization error has been considered. However, a
nonlinear scaling ζ may also affect the integration error of time stepping schemes.
In particular, the time step is essentially limited by the ratio of width and speed of
the reaction front. While the front speed is invariant under nonlinear scaling, the
front width is not, which should give the opportunity to design scalings that allow
to take large time steps.

4.1 Optimal Scaling

The error of usual implicit single-step time stepping schemes Φτ approximating the
evolution Φ with convergence order q is asymptotically bounded in terms of the
q + 1-th derivative of the solution as

|u(t+ τ)− Φτ (u(t))| ≤ c
∣∣∣∂q+1
t u(t)

∣∣∣ τ q+1 +O(τ q+2) (11)

with some generic constant c independent of the time step size τ . We assume
that (11) holds locally almost everywhere in Ω. Again, scaling back the propagation
error of the scaled solution uζ to the original setting, the error of a single time step
is asymptotically bounded by

|ϑ(uζ(t+ τ))− ϑ(Φτ (uζ(t)))| ≤ cϑ′(uζ(t))
∣∣∣∂q+1
t uζ(t)

∣∣∣ τ q+1 +O(τ q+2).

Note that errors need not be damped out in nonlinear parabolic equations. In
particular, errors in the front position will be propagated forever. Thus we presume
the local integration errors sum up. Again substituting uζ by a travelling wave wζ ,
we define the global propagation error density at time t

etζ = ϑ′(uζ(t))∂
q+1
t uζ(t)τ q = ϑ′(wζ)∂

q+1
t wζ(−vT ·+σt)τ q = ϑ′(wζ)σq+1w

(q+1)
ζ τ q.

(12)
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Since uζ is a travelling wave, we may restrict our attention to t = 0 and constant
step sizes. The amount of work for a fixed time interval is then Wt = τ−1. We
therefore have to minimize the quantity

τ q−1σq+1‖ϑ′(wζ)w
(q+1)
ζ ‖2L2(Ω1).

The time step enters only as a constant multiplicative factor and has no impact on
the minimizer if the regularization parameter α is scaled appropriately, such that
we may discard τ and arrive at the minimization problem

min
ζ∈Z

∫ b

a

∣∣∣ϑ′(wζ)w(q+1)
ζ

∣∣∣2 dx+
α

2
‖ζ(s)‖2L2([0,1])

Unsurprisingly, this is the same minimization problem as (9), derived for spatially
uniform discretizations of corresponding order. The reason is that space x and time
t are interchangeable in a travelling wave solution, up to the constant wave speed
factor.

4.2 Time Stepping

In this section we will briefly discuss the impact of pointwise nonlinear scaling on
single step methods, in particular the extrapolated linearly implicit Euler scheme
and Rosenbrock methods (cf. [6, 8]).

A difficulty introduced by the transition from (1) to (2) is the solution-dependent
factor ϑ′(uζ) in front of the time derivative ∂tuζ . Simplifying notation, in this
section we will consider ODEs of the form

B(u)∂tu = f(u). (13)

One step of the extrapolated linearly implicit Euler method on the time interval
[tk, tk+1] consists of integrating (13) from tk to tk+1 on equidistant subgrids with step
length τj = (tk+1−tk)/nj , resulting in values uk+1(τj), and defining uk+1 = uk+1(0)
by polynomial extrapolation. The linearly implicit Euler method on the subgrid j
is defined as

(B(uk,j,i)− τjAk)(uk,j,i+1 − uk,j,i) = τjf(uk,j,i) for i = 0, . . . , nj − 1 (14)

with uk,j,0 = uk and uk+1(τj) = uk,j,nj
. Here, Ak is an almost arbitrary approxima-

tion of f ′(uk). Note that this method is a W-method, meaning that a deviation of
Ak from f ′(uk) does not affect the order of convergence of the extrapolated Euler,
but only the error constant and the stability properties.

The solution of linear systems (14) with different matrices B(uk,j,i) − τjAk is re-
quired in every sub-timestep (j, i). The computational complexity can be reduced
by iterative solution re-using a preconditioner or factorization of B(uk,j,i) − τjAk
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during the linearly implicit Euler method, see [7]. Still, the matrix B(uk,j,i) needs
to be computed, and the implementation is more complex than for constant B
independent of u.

Rosenbrock methods are linearly and diagonally implicit Runge-Kutta methods.
One step of an n-stage Rosenbrock method on the time interval [tk, tk+1] of length
τk = tk+1 − tk is defined by

(B − τβjjAk)sj = τkAk

j−1∑
i=1

(βji − αji)si + f

(
uk + τk

j−1∑
i=1

αjisj

)
for j = 1, . . . , n. These methods are attractive since they can be designed with βjj =
γ for all j, such that only n linear systems with the same matrix B − τkγAk need
to be solved. An important drawback is that Rosenbrock methods are not directly
applicable to nonlinearly scaled systems (2) where B depends on u. However, one
can rewrite (13) as a differential algebraic system

∂tu = z

0 = f(u)−B(u)z, (15)

to which Rosenbrock methods can be applied directly (cf. [15]). Due to the special
structure of (15), the auxiliary variable z can be eliminated analytically, which gives
rise to a computationally cheap method.

The same is possible for the linearly implicit Euler method, which then reads

(B(uk)− τjAk)(uk,j,i+1 − uk,j,i) = τjf(uk,j,i) + (B(uk)−B(uk,j,i))(uk,j,i − uk,j,i−1)

with uk,j,−1 = uk,j,0. The advantage is that the linear equation systems to be
solved feature the same matrix and only different right hand sides, and that only
the application of the difference B(uk)−B(uk,j,i) to a vector needs to be computed.
While this approach is computationally cheap and easy to implement, it has a
significant drawback: Although the convergence order is retained, an increase in
the error constant by a factor of 3 has been observed in the following examples.
The reported results are therefore based on the direct approach (14) above.

A further important aspect is deliberate sparsing of the Jacobian. While the or-
der of Rosenbrock methods in general relies on the exact value A = f ′(u0), the
extrapolated linearly implicit Euler method is a W-method and as such its order
is independent of the approximation quality of A ≈ f ′(u0). Note that in general
W-methods applied to PDEs are limited to second order [14], but can achieve higher
orders for certain classes of problems. With the freedom of choosing A arbitrarily,
we can modify the Jacobian in order to accelerate the linear solver on one hand, e.g.
by dropping entries, or to reduce the error constant of the W-method on the other
hand. Both aspects depend on the actual problem, and the optimal choice can thus
depend on the chosen nonlinear transformation. Changes in the error constant by
a factor of 10 have been observed in the numerical examples below.
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Euler (q = 1) extrap. Euler (q = 2)
t k ‖ε‖L2 ‖εζ‖L2 ratio ‖ε‖L2 ‖εζ‖L2 ratio

15 1 9.55e-2 3.32e-3 26.6 7.66e-3 1.79e-3 4.3
0 4.54e-2 2.32e-3 18.3 1.39e-3 4.85e-4 2.9

-1 2.10e-2 1.30e-3 15.8 2.88e-4 1.27e-4 2.3
-2 9.77e-3 6.61e-4 14.8 6.67e-5 3.27e-5 2.0
-3 4.47e-3 3.15e-4 15.0 1.62e-5 8.20e-6 2.0
-4 1.89e-3 1.36e-4 17.1 3.84e-6 1.97e-6 2.0

30 1 2.41e-1 9.05e-3 28.8 2.43e-2 4.34e-3 5.6
0 1.42e-1 7.78e-3 19.6 5.15e-3 1.15e-3 4.5

-1 7.08e-2 4.46e-3 16.1 1.13e-3 3.06e-4 3.7
-2 3.38e-2 2.29e-3 14.8 2.60e-4 7.99e-5 3.3
-3 1.64e-2 1.10e-3 14.2 5.89e-5 2.03e-5 2.9
-4 8.15e-3 4.75e-4 13.9 1.06e-5 4.90e-6 2.2

Table 4: Time discretization error for uniform time steps τ = 2k for the scalar
reaction-diffusion equation (10).

The impact of nonlinear scaling on implicit multi-step methods, e.g. DASSL [17],
is subject of future work.

4.3 Numerical Example

We revisit the example from Section 3.1.2, but now choose the discretizations such
that the time integration error dominates. The final time is T = 30, the spatial
discretization consists of quadratic finite elements on a uniform grid obtained by 6
levels of uniform refinement of Ω̄. For the time stepping we use the linearly implicit
Euler scheme (q = 1) and its extrapolation to order q = 2 with step sizes τ = 2k,
k = −6, . . . , 1. Deliberate sparsing has been examined with respect to dropping the
diffusion or reaction terms of the Jacobian ∆ + f ′(u0). The best choices turned out
to be the full Jacobian for the original problem and to drop the reaction derivative
for the scaled problem. The scalings ζ are the same as the one used in Section 3.1.2
for linear and quadratic finite elements, respectively, with predicted error reduction
factors of 22 and 13. As before, the error has been approximated by the difference
to the most accurate solution obtained (k = −6).

The estimated propagation errors at times 15 and 30 (see Fig. 3) are shown in Ta-
ble 4. Clearly visible is a gain in accuracy. For the semi-implicit Euler method, the
factor is below but in the order of magnitude as predicted for the ideal situation of
a planar travelling wave. As before in the spatial discretization errors, the accuracy
gain is somewhat smaller when the reaction fronts merge and the solution shape
differs significantly from a travelling wave.
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The picture is less clear for the second order scheme. Smaller gains are observed,
and the deterioration with smaller time steps is more pronounced.

5 Scaling for Spatio-Temporal Discretization

Focusing on spatial or time discretization alone is bound to be suboptimal when
we are interested in the accuracy of the integration of a reaction-diffusion equation
involving simultaneous discretization in time and space. In the following we will
combine the error and complexity models from sections 3 and 4 above into a joint
optimization problem for designing nonlinear scalings.

We assume, quite pessimistically, that the spatial and temporal error densities add
up, whereas the work is combined multiplicatively:

eζ = exζ + etζ and W = WxWt

We focus on adaptive methods and therefore presume spatial error equilibration
(exζ ≡ c) as well as equilibration of spatial discretization and propagation errors
(‖exζ‖L2(Ω) = ‖etζ‖L2(Ω)). Inserting (5) and (12) and dropping all constant factors
that do not affect the minimizer, we end up with the optimization problem

min
ζ∈Z

(∫ b

a

∣∣∣ϑ′(wζ)w(p+1)
ζ

∣∣∣ d
p+1

dx

)(∫ b

a

(
ϑ′(wζ)w

(p+1)
ζ

)2
dx

)
+
α

2
‖ζ(s)‖2L2([0,1])

to be solved for the optimal scaling ζ.

Figure 3: Time integration error of the unscaled (left) and scaled (right) solution for
τ = 2. Note that the error of the scaled solution is scaled back and hence directly
comparable to the unscaled error.
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Figure 4: Spiral wave solution of (16) at t = 20. Left: u, right: v.

5.1 Numerical Example

Here we study the effect of nonlinear scaling of rotating spiral waves in an excitable
medium. We employ the particularly simple Barkley model [3]

∂tu = κ∆u+ ε−1u(1− u)
(
u− v + b

a

)
∂tv = u− v

(16)

on Ω = [−0.5, 0.5]2 with homogeneous Neumann boundary conditions. With ε =
0.01, κ = 0.002, a = 0.8, b = 0.01, and the initial values u0(x) = tanh(5r)φ(α),
v0(x) = tanh(5r)φ(α+.5) for x = r(cosα, sinα), r > 0 with φ(α) =

∑
i∈Z e

−2(α+2iπ)2 ,
the system develops a rotating spiral wave shown in Fig. 4. The small value of ε
leads to a fast dynamic in u compared to v. The small value of κ subsequently
results in small spatial scales in u. Thus, the dominant discretization error in both,
time and space, originates from the u component. A mesh and time step that is
sufficiently fine for u will be unnecessarily fine for discretizing v. Efficiency may be
gained by using different meshes or time steps for u and v at the cost of a signifi-
cantly more complex implementation (cf. [18]). Here we aim at a nonlinear scaling
of u only that alleviates the discrepancy in required resolution, and thus permits
an efficient discretization without the need for complex data structures.

The system (16) has a stable homoclinic left-travelling wave solution connecting the
only stable fixed point (0, 0) with itself (see Fig. 5 left). Since the leading upward
and following downward fronts are fairly symmetric, we use the leading upward front
for designing a suitable nonlinear scaling (Fig. 5 right), again with regularization
parameter α = 10−8.

The problem has been solved for t ∈ [0, 7] by Rothe’s method, where first the time
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is discretized according to a given time tolerance and the arising stationary elliptic
problems are solved up to a given spatial tolerance using linear finite elements with
adaptive mesh refinement. Both estimated errors are measured in the L2-norm.
In this example, the spatial tolerance is set to half of the time tolerance. The
resulting time steps of the original and the scaled computation shown in Fig. 6 are
comparable. For the stricter tolerance, the scaled problem leads to slightly smaller
time steps, which can be attributed to the more complex nonlinearity arising in the
scaled reaction-diffusion system. The number of grid points required to satisfy the
spatial tolerance, however, are reduced by appropriate scaling by a factor of 3 to 5
as shown in Fig. 7.

6 Conclusion

Pointwise nonlinear scaling with optimized scalings adapted to planar travelling
wave solutions can provide a significant error reduction for both, spatial and time
discretization of reaction-diffusion equations. Factors of 4 to 20 are observed in
numerical examples. Alternatively, the number of unknowns in spatial discretization
and the number of time steps necessary for obtaining a given accuracy can be
significantly reduced, factors of 3 to 10 are observed. Moreover, the nonlinear
scaling technique barely interferes with the implementation of PDE solvers and
hence can be easily combined with other techniques for improving efficiency, such
as mesh adaptivity, multigrid solvers, higher order finite elements, or parallelization.

Drawbacks of the approach are the necessary preparatory work of computing trav-
elling wave solutions, the limitation to reaction-diffusion solutions that are locally
of similar shape to planar travelling waves in a large part of the domain, and the
more complex structure of the equation to be solved, in particular with respect to
time integration. But in cases where the technique is applicable and when comput-
ing time or memory requirement are the limiting factor, nonlinear scaling is very
effective in improving computational efficiency.
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Figure 5: Travelling wave solution (left) and nonlinear scaling ζ−1 (right).
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Figure 6: Time step sizes versus simulated time for the original and scaled equations
for time tolerances 5e-3 (left) and 3e-4 (right).
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scaled equations for time tolerances 5e-3 (left) and 3e-4 (right).



20

Acknowledgement. The author would like to thank R. Roitzsch for compu-
tational assistance and J. Lang for helpful discussions and careful reading of the
manuscript. This work has been supported by the DFG Research Center Matheon
”Mathematics for key technologies” in Berlin.

References

[1] T. Apel, S. Grosman, P. K. Jimack, and A. Meyer. A new methodology for
anisotropic mesh refinement based upon error gradients. Appl. Numer. Math.,
50:329–341, 2004.

[2] M.J. Baines. Moving Finite Elements. Oxford University Press, Oxford, 1994.

[3] D. Barkley, M. Kness, and L.S. Tuckerman. Spiral-wave dynamics in a simple
model of excitable media: The transition from simple to compound rotation.
Phys. Rev. A, 42:2489–2492, 1990.

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
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