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Abstract. The paper presents a new affine invariant theory on asymptotic mesh independence
of Newton’s method for discretized nonlinear operator equations. Compared to earlier attempts, the
new approach is both much simpler and more intuitive from the algorithmic point of view. The
theory is exemplified at finite element methods for elliptic PDE problems.
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Introduction. The term “mesh independence” characterizes the observation
that finite dimensional Newton methods, when applied to a nonlinear PDE on suc-
cessively finer discretizations with comparable initial guesses, show roughly the same
convergence behavior on all sufficiently fine discretizations. The “mesh independence
principle” has been stated and even exploited for mesh design in papers by Allgower
and Böhmer [1] and McCormick [19]. Further theoretical investigations of the phe-
nomenon have been given in [2] by Allgower, Böhmer, Potra, and Rheinboldt. Those
papers, however, lacked certain important features in the theoretical characterization
that made their application to discretized PDEs difficult. This drawback has been
avoided in the affine invariant theoretical study by Deuflhard and Potra in [8]; from
that analysis, the modified term “asymptotic mesh independence” naturally emerged.
The present paper suggests a different approach, which is also affine invariant but
much simpler and more natural from the algorithmic point of view.

In a number of papers subsequent to [2], mesh independence principles for different
problem settings or different algorithms were established; we mention generalized
equations [11, 3], SQP methods [20, 21], shape design [18], constrained Gauss–Newton
methods [15], Newton-like methods [16], and gradient projection [17].

The paper is organized as follows. In section 1 we first revisit the theoretical
approaches given up to now to treat mesh independence for operator equations. In
section 2 we compare discrete versus continuous Newton methods, again in affine
invariant terms; in contrast to the earlier treatment in [8], we use only terminology
that naturally arises from the algorithmic point of view, such as Newton sequences and
approximation errors. The new theory is then exemplified at finite element methods
(FEM) for elliptic PDEs (section 3).

1. Preliminary considerations. Let a nonlinear operator equation be denoted
by

F (x) = 0,
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where F : D → Y is defined on a convex domain D ⊂ X of a Banach space X with
values in a Banach space Y . Throughout the paper we assume the existence of a
unique solution x∗ of this operator equation. The corresponding ordinary Newton
method in Banach space may be written as

F ′(xk)∆xk = −F (xk), xk+1 = xk + ∆xk, k = 0, 1, . . . ,(1.1)

assuming, of course, that the derivatives are invertible. In each Newton step, the
linearized operator equation must be solved, which is why this approach is often also
called quasilinearization. For F , we assume that Theorem 1 from [7] holds, an affine
invariant version of the classical Newton–Mysovskikh theorem, whose essence we recall
here for the purpose of later reference.

Theorem 1.1. Let F : D → Y be a continuously differentiable mapping with
D ⊂ X convex. Let ‖ · ‖ denote the norm in the domain space X. Suppose that F ′(x)
is invertible for each x ∈ D. Assume that, for collinear x, y, z ∈ D, the following
affine invariant Lipschitz condition holds:∥∥F ′(z)−1

(
F ′(y) − F ′(x)

)
v
∥∥ ≤ ω‖y − x‖ ‖v‖.(1.2)

For the initial guess x0 ∈ D assume that

h0 = ω‖∆x0‖ < 2

and that S̄(x0, ρ) ⊂ D for ρ = ‖∆x0‖
1−h0/2

.

Then the sequence {xk} of ordinary Newton iterates remains in S(x0, ρ) and con-
verges to a unique solution x∗ ∈ S̄(x0, ρ). Its convergence speed can be estimated
as

‖xk+1 − xk‖ ≤ 1
2ω‖x

k − xk−1‖2.

In actual computation, we can solve only discretized nonlinear equations of finite
dimension, at best on a sequence of successively finer mesh levels, say,

Fj(xj) = 0, j = 0, 1, . . . ,(1.3)

where Fj : Dj → Yj denotes a nonlinear mapping defined on a convex domain Dj ⊂
Xj of a finite dimensional subspace Xj ⊂ X with values in a finite dimensional
space Yj . We assume Fj results from a Petrov–Galerkin discretization, such that
Fj(xj) = rjF (xj) with some linear restriction rj : Y → Yj . The corresponding finite
dimensional ordinary Newton method reads

F ′
j(x

k
j )∆xk

j = −Fj(x
k
j ), xk+1

j = xk
j + ∆xk

j , k = 0, 1, . . . .

In each Newton step, a system of linear equations must be solved. Since (Fj)
′ = rjF

′,
this system can equally well be interpreted either as a discretization of the linearized
operator equation (1.1) or as a linearization of the discrete nonlinear system (1.3).
Again we assume that Theorem 1.1 holds, this time for the finite dimensional mapping
Fj . Let ωj denote the corresponding affine invariant Lipschitz constant. Then the
quadratic convergence of this Newton method is governed by the relation

‖xk+1
j − xk

j ‖ ≤ 1
2ωj‖xk

j − xk−1
j ‖2.
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Under the assumptions of Theorem 1.1 there exist unique discrete solutions x∗
j on

each level j. Of course, we want to choose appropriate discretization schemes such
that

lim
j→∞

x∗
j = x∗.(1.4)

From the synopsis of the discrete and the continuous Newton method, we immediately
see that any comparison of the convergence behavior on different discretization levels
j will direct us toward a comparison of the affine covariant Lipschitz constants ωj . Of
particular interest is the connection with the Lipschitz constant ω of the underlying
operator equation.

In the earlier papers [1, 2] on mesh independence two assumptions of the kind

‖F ′
j(xj)

−1‖ ≤ βj , ‖F ′
j(xj + vj) − F ′

j(xj)‖ ≤ γj‖vj‖

have been made in combination with the uniformity requirements

βj ≤ β, γj ≤ γ.(1.5)

Obviously, these assumptions lack affine invariance. More important, however, and as
a consequence of the noninvariance, these conditions are phrased in terms of operator
norms, which, in turn, depend on the relation of norms in the domain and the image
space of the mappings Fj and F , respectively. For typical PDEs and typical choices
of norms we would obtain

lim
j→∞

βj → ∞,

which clearly contradicts the uniformity assumption (1.5). Consequently, an analysis
in terms of βj and γj would not be applicable to this important case.

The situation is different with the affine invariant Lipschitz constants ωj : They
depend only on the choice of norms in the domain space. It is easy to verify that

ωj ≤ βjγj .

In section 2 below we will show that the ωj remain bounded in the limit j → ∞,
as long as ω is bounded—even if either βj or γj blow up. Moreover, even when the
product βjγj remains bounded, the Lipschitz constant ωj may be considerably lower,
i.e.,

ωj � βjγj .

A prerequisite for the asymptotic property (1.4) to hold is that the elements
of the infinite dimensional space X can be well approximated by elements of the
finite dimensional subspaces Xj . In general, however, the solution x∗ has “better
smoothness properties” than the generic elements of the space X. For this reason,
the earlier papers [2, 8] had restricted their analysis to some smoother subset W ∗ ⊂ X
and explicitly assumed that

x∗, xk,∆xk, xk − x∗ ∈ W ∗, k = 0, 1, . . . .
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However, such an assumption is hard to confirm in the concrete case. That is why we
will drop it for our analysis to be presented.

Next, we revisit the paper [8] in some necessary detail. In that paper a family of
linear projections

πj : X → Xj , j = 0, 1, . . . ,

was introduced, assumed to satisfy the stability condition

qj = sup
x∈W∗,x �=0

‖πjx‖
‖x‖ ≤ q < ∞, j = 0, 1, . . . .(1.6)

The projection property π2
j = πj immediately gives rise to the lower bound

qj ≥ 1.(1.7)

As a measure of the approximation quality that paper defined

δj = sup
x∈W∗,x �=0

‖x− πjx‖
‖x‖ , j = 0, 1, . . . .(1.8)

The rather natural idea that a refinement of the discretization improves the approxi-
mation quality was expressed by the asymptotic assumption

lim
j→∞

δj = 0.(1.9)

The triangle inequality and (1.6) supplied the upper bound

qj ≤ 1 + δj .(1.10)

By combination of (1.7), (1.9), and (1.10), asymptotic stability arose as

lim
j→∞

qj = 1.(1.11)

However, as has been pointed out by Braess [6], the above theory has some weak
points. In fact, from (1.6) we conclude that x = 0 implies πjx = 0. The reverse, how-
ever, will not be true in general. Hence, one must be aware of pathological elements
x 	= 0 with corresponding approximations πjx = 0. On a uniform one-dimensional
grid, such a pathological element might look just like x(t) represented graphically in
Figure 1.1. Insertion of such elements into (1.8) would yield

δj ≥ 1

on each level j, on which such pathological elements exist. If one were to accept such
an occurrence on all levels, then this would be in clear contradiction to the desired
asymptotic property (1.9) and its consequence (1.11).

In order to close this gap of that theory, one would have to relate the subset
W ∗ and the projections πj such that the occurrence of pathological elements would
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Fig. 1.1. Pathological element x �= 0 with πjx = 0 (•: mesh nodes).

be asymptotically excluded. As an example, assume we have nested subspaces Xj ,
e.g., constructed by uniform mesh refinement. Suppose we begin with a “sufficiently
good” initial projection π0 on a “sufficiently” fine mesh, which already captures the
main qualitative behavior of the solution x∗ correctly. Then “pathological” elements
would no longer be expected to occur on finer meshes in actual computation. Thus,
upon carefully choosing appropriate subsets of W ∗, the theory from [8] could, in
principle, be repaired. However, the technicalities of such a theory tend to obscure
the underlying simple idea.

For this reason, here we abandon that approach and turn to a different one, which
seems to us both simpler and more intuitive from the algorithmic point of view: We
will avoid the (anyway computationally unavailable) projections πj and define the
approximation quality δj differently, just exploiting usual approximation results for
discretization schemes.

2. Discrete versus continuous Newton sequences. In this section, we study
the comparative behavior of discrete versus continuous Newton sequences. If not
explicitly stated otherwise, the notation is taken from the previous section.

We will consider the phenomenon of mesh independence of Newton’s method in
two steps. First, we will show that the discrete Newton sequence tracks the continuous
Newton sequence closely, with a maximal distance bounded in terms of the mesh size;
both of the Newton sequences behave nearly identically until, eventually, a small
neighborhood of the solution is reached. Second, we prove the existence of affine
invariant Lipschitz constants ωj for the discretized problems, which approach the
Lipschitz constant ω of the continuous problem in the limit j → ∞; again, the distance
can be bounded in terms of the mesh size. Upon combining these two lines, we finally
establish the existence of locally unique discrete solutions x∗

j in a vicinity of the
continuous solution x∗.

To begin with, we prove the following nonlinear perturbation lemma.
Lemma 2.1. Consider two Newton sequences {xk}, {yk} starting at initial guesses

x0, y0 and continuing as

xk+1 = xk + ∆xk, yk+1 = yk + ∆yk,

where ∆xk,∆yk are the corresponding ordinary Newton corrections. Assume the
affine invariant Lipschitz condition (1.2) is satisfied. Then the following contraction
result holds:

‖xk+1 − yk+1‖ ≤ ω
(

1
2‖xk − yk‖ + ‖∆xk‖

)
‖xk − yk‖.(2.1)
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Proof. Dropping the iteration index k, we start with

x + ∆x− y − ∆y

= x− F ′(x)−1F (x) − y + F ′(y)−1F (y)

= x− F ′(x)−1F (x) + F ′(x)−1F (y) − F ′(x)−1F (y) − y + F ′(y)−1F (y)

= x− y − F ′(x)−1
(
F (x) − F (y)

)
+ F ′(x)−1

(
F ′(y) − F ′(x)

)
F ′(y)−1F (y)

= F ′(x)−1

(
F ′(x)(x− y) −

∫ 1

t=0

F ′(y + t(x− y))(x− y) dt

)
+ F ′(x)−1(F ′(y) − F ′(x))∆y.

Upon using assumption (1.2), we conclude that

‖xk+1 − yk+1‖ ≤
∫ 1

t=0

‖F ′(xk)−1
(
F ′(xk) − F ′(yk + t(xk − yk))

)
(xk − yk)‖ dt

+ ‖F ′(xk)−1(F ′(yk) − F ′(xk))∆yk‖

≤ ω

2
‖xk − yk‖2 + ω‖xk − yk‖ ‖∆yk‖,

which confirms (2.1).
With the above auxiliary result, we are now ready to study the relative behavior

of discrete versus continuous Newton sequences.
Theorem 2.2. In addition to the notation as already introduced, let x0 = x0

j ∈ Xj

denote a given starting value such that the assumptions of Theorem 1.1 hold for the
continuous Newton iteration, including

h0 = ω‖∆x0‖ < 2.

For the discrete mapping Fj and all arguments xj ∈ Dj = D ∩Xj define

F ′
j(xj)∆xj = −Fj(xj), F ′(xj)∆x = −F (xj).(2.2)

Assume that the discretization is fine enough such that

‖∆xj − ∆x‖ ≤ δj ≤
min{1, 2 − h0}

2ω
(2.3)

uniformly for xj ∈ Dj. Assume furthermore S̄
(
x0, ρj

)
∩Xj ⊂ Dj for

ρj :=
‖∆x0‖

1 − h0/2
+

2δj
min{1, 2 − h0}

.

Then the sequence of the discrete Newton iterates xk
j remains in B(x0, ρj) ∩Xj and

the following error estimates hold:

‖xk
j − xk‖ ≤ 2δj

min{1, 2 − h0}
≤ 1

ω
for all k ∈ N,(2.4)

lim sup
k→∞

‖xk
j − xk‖ ≤ 2δj .(2.5)

Proof. In [14, pp. 99, 160], Hairer, Nørsett, and Wanner introduced “Lady
Windermere’s fan” as a tool to prove discretization error results for evolution problems
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x2,0

x1,0

x3,0

δj δj δj

x0
j = x0,0 x1

j = x1,1 x2
j = x2,2 x3

j = x3,3

x∗

x2,1 x3,2

Fig. 2.1. “Lady Windermere’s fan” for the discrete and the continuous Newton method.

based on some linear perturbation lemma. We may copy this idea and exploit our
nonlinear perturbation Lemma 2.1 in the present case. The situation is represented
graphically in Figure 2.1.

The discrete Newton sequence starting at the given initial point x0
j = x0,0 is

written as {xk,k}. The continuous Newton sequence, written as {xk,0}, starts at the
same initial point x0 = x0,0 and runs toward the solution point x∗. In between we
define further continuous Newton sequences, written as {xi,k}, k = i, i+ 1, . . . , which
start at the discrete Newton iterates xi

j = xi,i and also run toward x∗. Note that
the existence or even uniqueness of a discrete solution point x∗

j is not implied by the
assumptions of the theorem.

For the purpose of repeated induction, we assume that

‖xk−1
j − x0‖ < ρj ,

which certainly holds for k = 1. In order to characterize the deviation between discrete
and continuous Newton sequences, we introduce the two majorants

ω‖∆xk‖ ≤ hk, ‖xk
j − xk‖ ≤ εk.

Recall from Theorem 1.1 that

hk+1 =
1

2
h2
k.(2.6)

For the derivation of a second majorant recursion, we apply the triangle inequality in
the form

‖xk+1,k+1 − xk+1,0‖ ≤ ‖xk+1,k+1 − xk+1,k‖ + ‖xk+1,k − xk+1,0‖.

The first term can be treated using assumption (2.3) so that

‖xk+1,k+1 − xk+1,k‖ = ‖xk
j + ∆xk

j −
(
xk,k + ∆xk,k

)
‖ = ‖∆xk

j − ∆xk,k‖(2.7)

≤ δj .

For the second term, we may apply our nonlinear perturbation Lemma 2.1 (see the
shaded regions in Figure 2.1) to obtain

‖xk+1,k − xk+1,0‖ ≤ ω

(
1

2
‖xk,k − xk,0‖ + ‖∆xk,0‖

)
‖xk,k − xk,0‖.
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a− a+

Fig. 2.2. Fixed point recursion ak.

Combining these results then leads to

‖xk+1,k+1 − xk+1,0‖ ≤ δj +
ω

2
ε2k + hkεk.

The above right-hand side may be defined to be εk+1. Hence, together with (2.6), we
arrive at the following set of majorant equations:

hk+1 =
1

2
h2
k, h0 = ω‖∆x0‖,

εk+1 = δj +
1

2
ωε2k + hkεk, ε0 = 0.

Now for β ≥ 1 we multiply the second recursion by βω and add both recursions. This
yields the following recursion for βωεk + hk:

βωεk+1 + hk+1 = βωδj +
1

2
(βωεk + hk)

2 −
[
1
2 (β − 1)βω2ε2k

]
.

Since the term in squared brackets is positive, the sequence ak defined by

ak+1 = βωδj +
1

2
a2
k, a0 = h0,(2.8)

is a majorant to βωεk + hk. Solving (2.8) yields the equilibrium points

a± = 1 ±
√

1 − 2βωδj(2.9)

if 2βωδj ≤ 1, which is always possible to guarantee by choosing 1 ≤ β ≤ (2ωδj)
−1

due to (2.3). The sequence converges monotonically toward the stable fixed point a−
in case h0 < a+ (see Figure 2.2). We consider the two cases h0 ≤ 1 and h0 > 1
separately. If h0 ≤ 1, we choose

β =
1

2ωδj
,
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such that h0 ≤ a− = 1. Due to monotonicity the sequence ak is bounded from above
by a− = 1. We then derive the upper bound

εk ≤ a−
βω

≤ 2δj .

Both (2.4) and (2.5) are covered by this result. For 1 < h0 < 2, we choose σ > 0
sufficiently small and

β =
h0(2 − h0)

(2 + σ)ωδj
,

such that both β ≥ 1 and h0 < a+ are satisfied. Due to monotonicity, the sequence
ak is bounded from above by a0 = h0, and we obtain

εk ≤ h0

βω
=

(2 + σ)δj
2 − h0

.(2.10)

Since (2.10) holds for all sufficiently small σ > 0, we obtain

εk ≤ 2δj
2 − h0

,

which proves (2.4). The asymptotic result (2.5) is now an immediate consequence of
ak → a−.

Finally, with application of the triangle inequality

‖xk+1
j − x0‖ ≤ ‖xk+1 − x0‖ + εk+1 <

‖∆x0‖
1 − h0/2

+
2δj

min{1, 2 − h0}
= ρj ,

the induction and therefore the whole proof are completed.
We are interested in the question of whether a discrete solution point x∗

j exists.
The above tracking theorem, however, states only that the discrete Newton sequence
stays close to the continuous Newton sequence and therefore has an accumulation
point close to the continuous solution.

Corollary 2.3. Under the assumptions of Theorem 2.2, there exists at least
one accumulation point

x̂j ∈ S̄ (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1

ω

)
∩Xj ,

which need not be a solution point of the discrete equations Fj(xj) = 0.
In order to prove more, Theorem 1.1 directs us to study whether a Lipschitz

condition of the kind (1.2) additionally holds.
Lemma 2.4. Assume Theorem 1.1 holds for the mapping F : X → Y . For

collinear xj , yj , zj ∈ Xj, define uj ∈ Xj and u ∈ X according to

F ′(xj)u = (F ′(zj) − F ′(yj)) vj ,(2.11)

F ′
j(xj)uj =

(
F ′
j(zj) − F ′

j(yj)
)
vj(2.12)

for arbitrary vj ∈ Xj. Assume that the discretization method satisfies

‖u− uj‖ ≤ σj‖zj − yj‖ ‖vj‖.(2.13)
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Then there exist constants

ωj ≤ ω + σj ,(2.14)

such that the affine invariant Lipschitz condition

‖uj‖ ≤ ωj‖zj − yj‖ ‖vj‖
holds.

Proof. The proof is a simple application of the triangle inequality:

‖uj‖ ≤ ‖u‖ + ‖uj − u‖ ≤ ω‖zj − yj‖ ‖vj‖ + σj‖zj − yj‖ ‖vj‖
= (ω + σj) ‖zj − yj‖ ‖vj‖.

Finally, the existence of a unique discrete solution x∗
j close to the continuous

solution x∗ is a direct consequence.
Corollary 2.5. Under the assumptions of Theorem 2.2 and Lemma 2.4 the

discrete Newton sequence {xk
j }, k = 0, 1, . . . , converges q-quadratically to a unique

discrete solution point

x∗
j ∈ S̄ (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1

ω

)
∩Xj .

Proof. We just need to apply Theorem 1.1 to the finite dimensional mapping
Fj with the starting value x0

j = x0, and the affine invariant Lipschitz constant ωj

from (2.14).
Summarizing, we come to the following conclusion, at least in terms of the ana-

lyzed upper bounds: If the asymptotic properties

lim
j→∞

δj = 0, lim
j→∞

σj = 0,

can be shown to hold, then the convergence speed of the discrete ordinary Newton
method is asymptotically just the same as that of the continuous ordinary Newton
method. Moreover, if related initial guesses x0 and x0

j and a common termination
criterion are chosen, then even the number of iterations will be nearly the same.

3. Application to discretization schemes. In order to apply the abstract
mesh independence principles of section 2 to discretization schemes for differential
equations, we have to show two features. First,

‖∆x− ∆xj‖ ≤ δj , lim
j→∞

δj = 0,(3.1)

where ∆x is the exact and ∆xj is the approximate solution of the Newton equa-
tions (2.2), respectively.

Second,

‖u− uj‖ ≤ σj‖zj − yj‖ ‖vj‖, lim
j→∞

σj = 0,(3.2)

where u and uj are the solutions of the Lipschitz equations (2.11) and (2.12), respec-
tively.

The structure of the argumentation will be straightforward. The first step is to
apply classical error estimates for the numerical method under consideration. These
estimates usually depend on the regularity of the exact solution y of the linear cor-
rection problems. The second step is then to show appropriate regularity results for
y.

We concentrate on FEM for elliptic PDEs. Collocation methods for ODEs are
discussed in [22].
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FEM for semilinear elliptic PDEs. Assume f : R → R is monotonically increasing
and locally Lipschitz continuously differentiable with

|f ′(x) − f ′(y)| ≤ L(1 + max(|x|, |y|))|x− y|.(3.3)

This implies the growth condition f = O(|x|3), which in turn implies that the nonlin-
ear superposition (or Nemyckii) operator f generated by f maps H1

0 (Ω) continuously
into L2(Ω) on some convex polygonal domain Ω ⊂ R

d, d ≤ 3, via the embedding
H1

0 (Ω) ↪→ L6(Ω) (cf. [4, 12]). We define the continuous problem F (x) = 0 as the
boundary value problem

F (x) = −div(κ∇x) + f(x) = 0, x ∈ H1
0 (Ω),(3.4)

with 0 < κ ≤ κ ≤ κ. The discretizations Fj are provided by finite element approxi-
mations on shape-regular triangulations Tj with mesh size τj = maxT∈Tj diamT . We
consider piecewise linear finite element spaces Xj ⊂ H1

0 (Ω) on the triangulations Tj .
Theorem 3.1. Let a bounded set D ⊂ H1

0 (Ω) be given. Then there exist constants
M1,M2 < ∞ depending only on D and the problem setting P = (Ω, κ, f), such that
the Newton-FEM discretizations Fj satisfy the Newton approximation condition (3.1)
with δj = M1τj,

‖∆x− ∆xj‖H1 ≤ M1τj uniformly for xj ∈ D ∩Xj ,(3.5)

and the Lipschitz approximation condition (3.2) with σj = M2τj,

‖u− uj‖H1 ≤ M2τj‖zj − yj‖H1‖vj‖H1(3.6)

uniformly for all yj , zj ∈ D ∩Xj and vj ∈ Xj.
Proof. First we prove (3.5). Let ∆x satisfy F ′(xj)∆x = −F (xj) and let ∆xj

be its FEM approximation. Returning to (2.7) we notice that xk+1,k is more regular
than ∆xk,k. Thus we introduce w = xj + ∆x, which satisfies

−div(κ∇w) + f ′(xj)w = −f(xj) + f ′(xj)xj .(3.7)

The growth condition (3.3) implies f(xj) ∈ L2 and f ′(xj) ∈ L3, such that the right-
hand side of (3.7) is contained in L2. We may estimate

‖f(xj) − f ′(xj)xj‖L2 =

∥∥∥∥
∫ 1

t=0

(f ′(txj) − f ′(xj))xj dt + f(0)

∥∥∥∥
L2

≤
∫ 1

t=0

L(1 − t)‖(1 + |xj |)x2
j‖L2 dt + c

≤ L

2
(‖x2

j‖L2
+ ‖x3

j‖L2
) + c

= c(‖xj‖2
L4

+ ‖xj‖3
L6

+ 1)

≤ c(‖xj‖2
H1 + ‖xj‖3

H1 + 1)

≤ c,

where c denotes a generic constant independent of the discretization and xj . Since
the Helmholtz term in (3.7) is positive semidefinite due to the monotonicity of f , the
inverse of the differential operator can be bounded in terms of the ellipticity constant
of its main part only, which is independent of xj . Thus we obtain

‖w‖H1 ≤ c‖f(xj) − f ′(xj)xj‖L2 ≤ c.
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Using Hölder’s inequality and the embedding H1
0 (Ω) ↪→ L6(Ω), we estimate

‖f ′(xj)w‖L2
≤ ‖w‖L6

‖f ′(xj)‖L3
≤ ‖w‖H1 c(1 + ‖xj‖2

L6
) ≤ c.

We now rewrite (3.7) as

−div(κ∇w) = −f(xj) + f ′(xj)xj − f ′(xj)w.

Since the right-hand side is contained in L2, the solution w is H2-regular (cf. [13])
with

‖w‖H2 ≤ c‖f(xj) − f ′(xj)xj + f ′(xj)w‖L2 ≤ c.

We thus obtain an approximation error

‖wj − w‖H1 ≤ cτj‖w‖H2 ≤ cτj

for its FEM approximation wj = xj + ∆xj (cf. [5, p. 79]), uniformly for all xj . For
the approximation error ∆xj − ∆x we now obtain

‖∆xj − ∆x‖H1 = ‖wj − w‖H1 ≤ cτj .

Second, we prove (3.6). u is defined by

F ′(xj)u = (F ′(zj) − F ′(yj))vj = (f ′(zj) − f ′(yj))vj .

As before, the right-hand side is contained in L2 and the solution u is H2-regular,
such that we obtain

‖uj − u‖H1 ≤ cτj‖(f ′(zj) − f ′(yj))vj‖L2 .

Upon using Hölder’s inequality twice we conclude that

‖(f ′(zj) − f ′(yj))vj‖L2
≤ ‖L2(1 + max(|yj |, |zj |))2(zj − yj)

2v2
j ‖

1/2
L1

≤
(
‖L2(1 + max(|yj |, |zj |))2‖L3

‖(zj − yj)
2‖L3

‖v2
j ‖L3

)1/2
= L‖1 + max(|yj |, |zj |)‖L6‖zj − yj‖L6‖vj‖L6 ≤ c,

which completes the proof.
Combining Theorem 2.2 and Lemma 2.4 with Theorem 3.1 we obtain asymptotic

mesh independence for FEM approximations of semilinear elliptic equations.
Corollary 3.2. Assume that there exists a convex and bounded set D ⊂ H1,

such that on D the assumptions of Theorem 1.1 (in particular ω < ∞) and Theo-
rem 3.1 are satisfied for the nonlinear equation (3.4).

Then there exists a constant M1 and a mesh size τ0 > 0, such that for all dis-
cretizations Xj with corresponding mesh size τj < τ0 and starting values x0 = x0

j ∈ Xj

with

h0 = ω‖∆x0‖H1 < 2(3.8)

and

S̄

(
x0,

‖∆x0‖ + 2M1τj
1 − h0/2

)
⊂ D,(3.9)
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the discrete Newton sequence remains in D, and its distance to the continuous Newton
sequence is bounded by

‖xk
j − xk‖H1 ≤ 2M1τj

1 − h0/2
.(3.10)

Moreover, both sequences converge q-quadratically to solutions x∗
j and x∗, respectively,

with

‖x∗
j − x∗‖H1 ≤ 2M1τj .(3.11)

Proof. Application of Theorem 3.1 on D yields constants M1,M2 < ∞ such that
‖∆x−∆xj‖H1 ≤ M1τj and ‖u−uj‖H1 ≤ M2τj‖zj −yj‖H1‖vj‖H1 hold for all xj ∈ D
in terms of (3.1) and (3.2). We will verify Corollary 3.2 for

τj < τ0 := min

⎧⎨
⎩1 − h0/2

2ωM1
,

1

2M2

⎛
⎝
√
ω2 +

M2(1 − h0/2)

M1
− ω

⎞
⎠
⎫⎬
⎭ .

Note that the continuous Newton sequence satisfying (3.8) and (3.9) remains in

S(x0,
‖∆x0‖H1

1−h0/2
) ⊂ D due to Theorem 1.1. Because of

τj < τ0 ≤ 1 − h0/2

2ωM1
≤ min{1, 2 − h0}

2ωM1
,

condition (2.3) is clearly satisfied, such that we can apply Theorem 2.2 and ob-
tain (3.10), (3.11), and xk

j ∈ D.
Now we turn to q-quadratic convergence of the discrete Newton sequence. A

direct consequence of (3.10) is the estimate

‖∆xk
j ‖H1 ≤ ‖xk+1

j − xk+1‖H1 + ‖∆xk‖H1 + ‖xk − xk
j ‖H1

≤ 4M1τj
1 − h0/2

+ ‖∆xk‖H1 .

As limk→∞ ‖∆xk‖H1 = 0 by Theorem 1.1 we can find an index k0 such that

‖∆xk
j ‖H1 ≤ 8M1τj

1 − h0/2
for all k ≥ k0.

Application of Lemma 2.4 yields ωj ≤ ω + τjM2 and therefore

hk
j := ωj‖∆xk

j ‖H1 ≤ (ω + τjM2)
8M1τj

1 − h0/2
for all k ≥ k0.

Now

τj < τ0 ≤ 1

2M2

⎛
⎝
√
ω2 +

M2(1 − h0/2)

M1
− ω

⎞
⎠

implies hk0
j < 2, such that Theorem 1.1 yields q-quadratic convergence of the discrete

Newton iteration starting at xk0
j .
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FEM for strongly nonlinear elliptic PDEs. For strongly nonlinear PDEs with a
second order differential operator depending on the solution, the analytic treatment of
the approximation conditions (3.1) and (3.2) is considerably more difficult. The global
regularity of the right-hand side is, in general, only H−1, which results in sharp edges
in the Newton correction. These bucklings, however, coincide geometrically with the
edges of the triangulation, such that the finite element approximation quality does
not deteriorate. This effect is indeed observed in actual computation.

The regularity theory necessary for addressing such problems is beyond the scope
of the present paper. As a substitute, we give a numerical example from [10], where
the phenomenon of asymptotic mesh independence may be studied.

Example: Parametric minimal surface. Consider the variational problem

min

∫
Ω

√
1 + |∇u|2 dx

subject to the boundary conditions

u = cos(x) cos(y) on ΓD = ∂Ω\ΓN ,

∂u

∂n
= 0 on ΓN

on Ω = [−π/2, 0]2. The functional gives rise to the first and second order expressions

〈F (u), v〉 =

∫
Ω

(
1 + |∇u|2

)−1/2∇uT∇v dx,

〈F ′(u)v, w〉 =

∫
Ω

(
−
(
1 + |∇u|2

)−3/2∇wT (∇u∇uT )∇v

+
(
1 + |∇u|2

)−1/2∇wT∇v
)
dx.

We define two different problem settings by choosing
(a) ΓN = [−π/2, 0] × {0},
(b) ΓN = [−π/2, 0] × {0} ∪ {0} × [−π/4, 0].

Note that by symmetry, problem (a) represents a Dirichlet problem on a convex do-
main, whereas the deliberate choice of boundary conditions (b) leads to a Dirichlet
problem on a highly nonconvex slit domain, on which no physically meaningful solu-
tion exists.

The adaptive Newton-multilevel code Newton-KASKADE [9, 10] has been run on
both problems, providing affine invariant computational estimates [ωj ] ≤ ωj on each
mesh refinement level j. On each level, a few Newton steps have been computed using
the approximation from the level before, and the maximum estimate encountered in
these steps has been selected as [ωj ]. As can be seen from Table 3.1, the Lipschitz
constants for the well-defined problem (a) remain bounded and rather independent
of the refinement level, apart from some fluctuation due to the finite sampling of
ωj . In contrast to that, the estimates for the Lipschitz constant of problem (b) are
dramatically increasing by five orders of magnitude. This indicates that the problem
has finite dimensional solutions on each of the successive meshes, each unique within
the corresponding finite dimensional Kantorovich ball with radius ρj ∼ 1/ωj ; however,
these balls shrink from radius ρ0 ≈ 1 to ρ12 ≈ 10−5. Frank extrapolation of this
effect insinuates the conjecture that there exists no continuous unique solution of the
underlying minimization problem.
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Table 3.1

Estimated Lipschitz constants [ωj ] on different refinement levels j.

Problem (a) Problem (b)
j �nodes [ωj ] �nodes [ωj ]
0 4 1.32 5 7.5
1 7 1.17 10 4.2
2 18 4.55 17 7.3
3 50 6.11 26 9.6
4 123 5.25 51 22.5
5 158 20.19 87 50.3
6 278 19.97 105 1486.2
7 356 9.69 139 2715.6
8 487 8.47 196 5178.6
9 632 11.73 241 6837.2

10 787 44.21 421 12040.2
11 981 49.24 523 167636.0
12 1239 20.10 635 1405910.0
13 1610 32.93
14 2054 37.22
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