Cloud Branching

Timo Berthold

Zuse Institute Berlin

joint work with Domenico Salvagnin (Universita degli Studi di Padova)

DFG Research Center MATHEON

Mathematics for key technologies

21/May/13, CPAIOR 2013, IBM T. J. Watson Research Center

Ly MIP & Branching

min ¢’ x

s.t. Ax<b

X € ZIZO XR;O

Mixed Integer Program: Branching for MIP:

> linear objective & constraints > based on LP relaxation

> integer variables > fractional variables

> continuous variables I> tries to improve dual bound

Timo Berthold: Cloud Branching 2 /17

Iy MIP & Branching

min ¢’ x

s.t. Ax<b

X € ZIZO XR;O

Mixed Integer Program: Branching for MIP:

> linear objective & constraints > based on LP relaxation

> integer variables > fractional variables

> continuous variables I> tries to improve dual bound

xi < |x'| Vx> [xF] fori€land x' ¢ 7

Timo Berthold: Cloud Branching 2 /17

Iy Branching rules in MIP

Most infeasible branching
> often referred to as a simple, standard rule

> computationally as bad as random branching!

Strong branching [ApplegateEtAl1995]
> solve LP relaxations for some candidates, choose best

> effective w.r.t. number of nodes, expensive w.r.t. time

Pseudocost branching [BenichouEtAl1971]
> try to estimate LP values, based on history information
> effective, cheap, but weak in the beginning

> can be combined with strong branching

Timo Berthold: Cloud Branching 3/17

Iy Branching rules in MIP

Most infeasible branching
> often referred to as a simple, standard rule

> computationally as bad as random branching!

Strong branching [ApplegateEtAl1995]
> solve LP relaxations for some candidates, choose best

> effective w.r.t. number of nodes, expensive w.r.t. time

Pseudocost branching [BenichouEtAl1971]
> try to estimate LP values, based on history information
> effective, cheap, but weak in the beginning

> can be combined with strong branching

Timo Berthold: Cloud Branching 3/17

% Degeneracy

naively:
> 1 optimal solution,
o © determined by n constraints
@)
O @)

Timo Berthold: Cloud Branching 4 /17

% Degeneracy

naively:
> 1 optimal solution,
o © determined by n constraints
o at a second thought:

> 1 optimal solution,
k > n tight constraints

Timo Berthold: Cloud Branching 4 /17

% Degeneracy

naively:

> 1 optimal solution,

o © determined by n constraints
o at a second thought:
> 1 optimal solution,
k > n tight constraints
@)

but really:

> an optimal polyhedron

Timo Berthold: Cloud Branching 4 /17

% Degeneracy

naively:

> 1 optimal solution,

o © determined by n constraints
o at a second thought:
> 1 optimal solution,
k > n tight constraints
@)

but really:

> an optimal polyhedron

Timo Berthold: Cloud Branching 4 /17

% Degeneracy

naively:

> 1 optimal solution,

o © determined by n constraints
o at a second thought:
> 1 optimal solution,
k > n tight constraints
@)

but really:

> an optimal polyhedron

Goal of this talk:
branch on a set (a cloud) of solutions

Timo Berthold: Cloud Branching 4 /17

% Two questions

Goal of this talk:
branch on a cloud of solutions

1. How do we get extra optimal solutions?
2. Why should that be a good idea anyway?

Timo Berthold: Cloud Branching 5/ 17

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face

> min/max each variable (OBBT) or

> feasibility pump objective
(pump&reduce [Achterberg2010])

Timo Berthold: Cloud Branching 6 /17

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective © ©
(pump&reduce [Achterberg2010])
Alx, %) =22 x5 = 5|
X1—= 0.4
@)
Xo= 0.55

6/ 17

Timo Berthold: Cloud Branching

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective ® ©
(pump&reduce [Achterberg2010])
Al X) =221 =% = —xi+x
X1—= 0.4
@)
Xo= 0.55

6/ 17

Timo Berthold: Cloud Branching

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective © ©
(pump&reduce [Achterberg2010])
Al x) =221 =% = —xa+x
x.€ [0.4, 0.55]
o

x€ [0.55,0.9]

Timo Berthold: Cloud Branching 6 /17

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective © ®
(pump&reduce [Achterberg2010])
Al %) =221 =% = +x+x
x.€ [0.4, 0.55]
o

x€ [0.55,0.9]

Timo Berthold: Cloud Branching 6 /17

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective © ©
(pump&reduce [Achterberg2010])
Alx, %) =221 =X = +xa+x
X1€ [04, 09]
@)

x€ [0.55,1.0]

Timo Berthold: Cloud Branching 6 /17

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective
(pump&reduce [Achterberg2010])

A(x, %) =[x — X =+x+x

x1€ [04, 09]
€ [0.55, 1.0]
~= intervals instead of values

Timo Berthold: Cloud Branching 6 /17

Ay Generating cloud points

1. How do we get extra optimal solutions?

> restrict LP to optimal face
> min/max each variable (OBBT) or

> feasibility pump objective
(pump&reduce [Achterberg2010])

A(x, %) =[x — X =+x+x

x1€ [04, 09]
€ [0.55, 1.0]
~= intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 /17

Ky Exploiting cloud points (pseudocost)

2. Why should that be a good idea anyway?

AT

AY A

ij*] Xj* ’—Xj*“ LXj*J Xj* [Xj*]
> pseudocost update
+_ _ At - A
> = Ty Y =
> pseudocost-based estimation

> A7 =V([x] = xt) and A7 = V7 (xF — [x7])

J

Timo Berthold: Cloud Branching

7/ 17

2. Why should that be a good idea anyway?

AY

bl G

pseudocost update

Al Al
> § m . better: § m
> pseudocost based estimation
+ _ * _ x*
> A= (|' | —=xf)and A7 =V (x" — [x7])

Timo Berthold: Cloud Branching

Exploiting cloud points (pseudocost)

7/ 17

Ky Exploiting cloud points (pseudocost)

2. Why should that be a good idea anyway?

z=cTx z=cTx
AT
AF
J
at A;
A= AF
i J
1 lj uj [Lx/"] X T

pseudocost update
T T
> § [X*Aﬁ . better: q A

|—X*-| uj

> pseudocost-based estimation
> A =VI([x] —x') ... better: A+ V([T =)

Timo Berthold: Cloud Branching

7/ 17

Lemma

Let x* be an optimal solution of the LP relaxation at a given

branch-and-bound node and | x| < /; < x* < u; < [x]. Then

1. for fixed AT and AY, it holds that g"j+ > §J-+ and &~ >,
respectively;

2. for fixed \UJ?L and W7, it holds that Aj’ < Aj“ and AJ_ < A7,
respectively.

Timo Berthold: Cloud Branching 8 /17

Ky Exploiting cloud points (strong branch)

2. Why should that be a good idea anyway?

Full strong branching:
> solves 2-#frac. var's many LPs
> uses product of improvement values as branching score

> improvement on both sides better than on one

Timo Berthold: Cloud Branching 9 /17

Ky Exploiting cloud points (strong branch)

2. Why should that be a good idea anyway?

Full strong branching:
> solves 2-#frac. var's many LPs
> uses product of improvement values as branching score

> improvement on both sides better than on one

Benefit of cloud intervals:
> frac. var. gets integral in cloud point ~~ one LP spared
> cloud branching acts as a filter

> new frac. var.’s ~» new candidates (one side known)

Timo Berthold: Cloud Branching 9 /17

Cloud strong branching algorithm

Idea: Use 3-partition F,, 1, Fy of branching candidates

> if strict improvements in both directions for F,, disregard F; U Fqy

> if strict improvement in one direction for F, U Fy, disregard Fgy

Timo Berthold: Cloud Branching 10 / 17

Cloud strong branching algorithm

|dea: Use 3-partition F,, Fy, Fy of branching candidates
> if strict improvements in both directions for F,, disregard F; U Fqy

> if strict improvement in one direction for F, U Fy, disregard Fgy

> alternatively: Only use F;,

Timo Berthold: Cloud Branching 10 / 17

Cloud strong branching algorithm

Idea: Use 3-partition F,, 1, Fy of branching candidates

> if strict improvements in both directions for F,, disregard F; U Fqy
> if strict improvement in one direction for F, U Fy, disregard Fgy

> alternatively: Only use F;,

> stop pumpé&reduce procedure when new cloud point does not imply
new integral bound

Timo Berthold: Cloud Branching 10 / 17

Cloud strong branching algorithm

Idea: Use 3-partition F,, 1, Fy of branching candidates

> if strict improvements in both directions for F,, disregard F; U Fqy
> if strict improvement in one direction for F, U Fy, disregard Fgy

> alternatively: Only use F;,

> stop pumpé&reduce procedure when new cloud point does not imply
new integral bound

Note: In our experiments, we do not use cloud points for anything
else (heuristics, cuts)

Timo Berthold: Cloud Branching 10 / 17

Iy Implementation into SCIP

SCIP: Solving Constraint Integer Programs

> standalone solver / branch-cut-and-price-framework
> modular structure via plugins

> free for academic use: http://scip.zib.de

> very fast non-commercial MIP and MINLP solver

W GLPK 4.47
3.94: non-commercial | commercial 5.
3000 |- X [l Ipsolve 5.5.2
< [cBCc2.7.8
8 [sciP 3.0.1 - CLP 1.14.8
& 2000 ||
2 [l sCIP 3.0.1 - SoPlex 1.7.1
> [l SCIP 3.0.1 - Cplex 12.4.0
£ 1000 |1 . Xpress 7.3.1
B M Cplex 12.5.0
0 . Gurobi 5.1.0
solved 3 5 40 57 62 62 76 78 79

f 87 inst,
(e instances) results by H. Mittelmann (10/Jan/2013)

Timo Berthold: Cloud Branching 11 / 17

http://scip.zib.de

SCIP: Solving Constraint Integer Programs
> better support of MINLP

> new presolvers and propagators

> AMPL and MATLAB interface (beta)

> first releases of GCG and UG

5000 W sip 1.2 — SoPlex 1.2.1a
B SCIP 0.7 — SoPlex 1.2.2
3 4000 B SCIP 0.80 — SoPlex 1.2.2
§3000 B SCIP 0.90 — SoPlex 1.3.0
“ @ SCIP 1.00 — SoPlex 1.3.2
2 2000 OSCIP 1.1 - SoPlex 1.4.0
£ BSCIP 1.2 — SoPlex 1.4.2
1000

B SCIP 2.0 — SoPlex 1.5.0
B SCIP 2.1 — SoPlex 1.6.0

solved 16 23 36 290 48 51 58 63 67 65 WSCIP3.0 — SoPlex 1.7.0
(of 87)

Timo Berthold: Cloud Branching 12 /17

MMM
> MIPLIB 3.0, MIPLIB 2003, MIPLIB2010
> industry and academics

> 168 instances from diverse applications

Cor@l

> huge collection of 350 instances

yyyyy

> many combinatorial ones

> mainly collected from NEOS server

Timo Berthold: Cloud Branching 13 / 17

Ay Computational results

cloud statistics
Test set %Succ Pts LPs %Sav

MMM 122 2.19 74.34 21.7
COR@L 40.8 2.71 70.97 51.8

> applicable on some MMM, but many CORQL instances
> only few cloud points on average
> significants amount of LPs saved (if affected)

Timo Berthold: Cloud Branching 14 / 17

Ay Computational results

strong branch cloud branch
Test set Nodes Time (s) Nodes Time (s)
MMM 691 72.0 661 68.2
COR@L 593 1573 569 118.3

> little less nodes
> 5.5% faster on MMM (few affected instances)
> 30 % faster on CORQL

Timo Berthold: Cloud Branching 15 / 17

Conclusion: Cloud branching. ..

> exploits knowledge of alternative relaxation optima
> can help to improve pseudocost predictions

> makes full strong branching up to 30% faster

Outlook
> pseudocost, reliability, hybrid branching
> cloud points from alternative relaxations (MINLP!)

> nonchimerical + cloud + propagation = ?

Timo Berthold: Cloud Branching 16 / 17

Cloud Branching

Timo Berthold

Zuse Institute Berlin

joint work with Domenico Salvagnin (Universita degli Studi di Padova)

DFG Research Center MATHEON

Mathematics for key technologies

21/May/13, CPAIOR 2013, IBM T. J. Watson Research Center

