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CP vs. MIP

Constraint Programming (CP)

. Domains of variables are (arbitrary) sets

. Constraints are (arbitrary) subsets of domain space

. High flexibility in modeling, natural but very general concept

Mixed Integer Programming (MIP)

. Domains are intervals in Q or Z

. Constraints and objective function are linear

. Highly structured, specialized algorithms, restricted modeling
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Integration: CIP

Constraint Integer Programming (CIP)

. Linear objective function

. Arbitrary constraints, but . . .

. fixing all integer variables always leaves LP (as in MIP)

Relation to CP and MIP

. Every MIP is a CIP.

. Every CP over a finite domain space is a CIP.
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Example: TSP for n Cities

CP-formulation: min length(x)

s.t. alldiff(x1, . . . , xn)

x ∈ {1, . . . , n}n

MIP-formulation: min
∑

e∈E de xe

s.t.
∑

e∈δ(v) xe = 2 ∀ v ∈ V∑
e∈δ(S) xe ≥ 2 ∀S ⊂ V , S 6= ∅

xe ∈ {0, 1} ∀ e ∈ E

CIP-formulation: min
∑

e∈E de xe

s.t.
∑

e∈δ(v) xe = 2 ∀ v ∈ V

nosubtour(x)

xe ∈ {0, 1} ∀ e ∈ E

Single nosubtour constraint rules out subtours (e.g. by domain propagation).
may also separate subtour elimination inequalities.
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What is SCIP?

SCIP (Solving Constraint Integer Programs) . . .

. is a branch-and-bound framework,

. is constraint based,

. incorporates
I CP features (domain propagation),
I MIP features (cutting planes, LP relaxation), and
I SAT-solving features (conflict analysis, restarts),

. has a modular structure via plugins,

. provides a full-scale MIP solver,

. is free for academic purposes,

. and is available in source-code under http://scip.zib.de !
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Flowchart of SCIP
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Presolving

Task

. Simplify model, remove redundant parts

. Strenghten formulation

. Extract information, recognize structure

Techniques

. Variables: dual fixing, bound strengthening

. Constraints: coefficient tightening, upgrading

. Restarts: abort search, reapply global presolving
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Cutting Plane Separators

Task

. Strengthen relaxation

. Add valid constraints

. Generate on demand

Techniques

. General (for MIP): Gomory, c-MIR, strong Chvátal-Gomory, implied
bounds, {0, 1

2}-cuts, . . .
. Problem Specific: clique, knapsack, flow cover, MCF, . . .
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Branching Rules

Task

. Divide into subproblems

. Improve local dual bounds

. Early branchings most important!

Techniques

. Branching on Variables: most infeasible, pseudocost, strong,
reliability, inference branching

. Branching on Constraints: SOS1, SOS2 branching
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Primal Heuristics

Task

. Improve primal bound

. Effective on average, but no warranty

. Solutions guide remaining search

Techniques

. Rounding: set fractional variables to feasible integral values

. Diving: simulate DFS in the branch-and-bound tree

. Objective diving: manipulate objective function

. LargeNeighborhoodSearch: solve some sub-CIP
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Some More Ingredients

Further Components for Solving CIPs

. Node selection: which subproblem should be considered next?

. Propagation: simplifies problem, improves dual bound locally

. Pricing: allows dynamic generation of variables

. Conflict analysis: learns from infeasible subproblems

x1

x2

x3

x4

alldiff

⇒

x1

x2

x3

x4
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SCIP as a MIP solver
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not solved 68% 74% 63% 16% 16% 12% 41% 1% 1%

Symphony 5.1.6
lpsolve 5.5
GLPK 4.26
CBC 2.1
SCIP 1.00 – SoPlex 1.3.2
SCIP 1.00 – CLP 1.7
Minto 3.1 – Cplex 9
SCIP 1.00 – Cplex 11.01
Cplex 11.01

Results taken from Hans Mittelmann (04/19/2008)
http://plato.asu.edu/ftp/milpf.html
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Application: Chip Design Verification

Specification
describes input/
output behavior

Design
formal

representation
⇔?

⇒

Property

⇐ Property Checking

Property checking

. Derive certain properties from specification

. Check whether they hold for the design

. Leads to feasibility problems

. Can be modeled as SAT instance or as CIP
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Property Checking via CIP

CIP versus SAT

. CIP has constraints for
standard operations:
I addition
I subtraction
I multiplication
I shift left / right
I . . .

. SAT has only one
constraint type
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