
Constraint Integer Programming
A New Approach To Integrate CP and MIP

Timo Berthold
Zuse Institute Berlin

joint work with T. Achterberg, S. Heinz, T. Koch, K. Wolter

DFG Research Center MATHEON
Mathematics for key technologies

Paris, 05/21/2008



CP vs. MIP

Constraint Programming (CP)

. Domains of variables are (arbitrary) sets

. Constraints are (arbitrary) subsets of domain space

. High flexibility in modeling, natural but very general concept

Mixed Integer Programming (MIP)

. Domains are intervals in Q or Z

. Constraints and objective function are linear

. Highly structured, specialized algorithms, restricted modeling

T. Berthold: Constraint Integer Programming 2 / 14



Integration: CIP

Constraint Integer Programming (CIP)

. Linear objective function

. Arbitrary constraints, but . . .

. fixing all integer variables always leaves LP (as in MIP)

Relation to CP and MIP

. Every MIP is a CIP.

. Every CP over a finite domain space is a CIP.

T. Berthold: Constraint Integer Programming 3 / 14



Example: TSP for n Cities

CP-formulation: min length(x)

s.t. alldiff(x1, . . . , xn)

x ∈ {1, . . . , n}n

MIP-formulation: min
∑

e∈E de xe

s.t.
∑

e∈δ(v) xe = 2 ∀ v ∈ V∑
e∈δ(S) xe ≥ 2 ∀S ⊂ V , S 6= ∅

xe ∈ {0, 1} ∀ e ∈ E

CIP-formulation: min
∑

e∈E de xe

s.t.
∑

e∈δ(v) xe = 2 ∀ v ∈ V

nosubtour(x)

xe ∈ {0, 1} ∀ e ∈ E

Single nosubtour constraint rules out subtours (e.g. by domain propagation).
may also separate subtour elimination inequalities.

T. Berthold: Constraint Integer Programming 4 / 14



What is SCIP?

SCIP (Solving Constraint Integer Programs) . . .

. is a branch-and-bound framework,

. is constraint based,

. incorporates
I CP features (domain propagation),
I MIP features (cutting planes, LP relaxation), and
I SAT-solving features (conflict analysis, restarts),

. has a modular structure via plugins,

. provides a full-scale MIP solver,

. is free for academic purposes,

. and is available in source-code under http://scip.zib.de !

T. Berthold: Constraint Integer Programming 5 / 14

http://scip.zib.de


Flowchart of SCIP

Start Init Presolving

Stop

Node selection

Processing

Branching

Conflict analysis

Primal heuristics

Relax. inf.

Relax. feas.CIP inf.

CIP feas.

Domain propagation

Solve Relaxation

Pricing

Cuts

Enforce constraints

T. Berthold: Constraint Integer Programming 6 / 14



Presolving

Task

. Simplify model, remove redundant parts

. Strenghten formulation

. Extract information, recognize structure

Techniques

. Variables: dual fixing, bound strengthening

. Constraints: coefficient tightening, upgrading

. Restarts: abort search, reapply global presolving

T. Berthold: Constraint Integer Programming 7 / 14



Cutting Plane Separators

Task

. Strengthen relaxation

. Add valid constraints

. Generate on demand

Techniques

. General (for MIP): Gomory, c-MIR, strong Chvátal-Gomory, implied
bounds, {0, 1

2}-cuts, . . .
. Problem Specific: clique, knapsack, flow cover, MCF, . . .

T. Berthold: Constraint Integer Programming 8 / 14



Branching Rules

Task

. Divide into subproblems

. Improve local dual bounds

. Early branchings most important!

Techniques

. Branching on Variables: most infeasible, pseudocost, strong,
reliability, inference branching

. Branching on Constraints: SOS1, SOS2 branching

T. Berthold: Constraint Integer Programming 9 / 14



Primal Heuristics

Task

. Improve primal bound

. Effective on average, but no warranty

. Solutions guide remaining search

Techniques

. Rounding: set fractional variables to feasible integral values

. Diving: simulate DFS in the branch-and-bound tree

. Objective diving: manipulate objective function

. LargeNeighborhoodSearch: solve some sub-CIP

T. Berthold: Constraint Integer Programming 10 / 14



Some More Ingredients

Further Components for Solving CIPs

. Node selection: which subproblem should be considered next?

. Propagation: simplifies problem, improves dual bound locally

. Pricing: allows dynamic generation of variables

. Conflict analysis: learns from infeasible subproblems

x1

x2

x3

x4

alldiff

⇒

x1

x2

x3

x4

T. Berthold: Constraint Integer Programming 11 / 14



Some More Ingredients

Further Components for Solving CIPs

. Node selection: which subproblem should be considered next?

. Propagation: simplifies problem, improves dual bound locally

. Pricing: allows dynamic generation of variables

. Conflict analysis: learns from infeasible subproblems

x1

x2

x3

x4

alldiff

⇒

x1

x2

x3

x4

T. Berthold: Constraint Integer Programming 11 / 14



Some More Ingredients

Further Components for Solving CIPs

. Node selection: which subproblem should be considered next?

. Propagation: simplifies problem, improves dual bound locally

. Pricing: allows dynamic generation of variables

. Conflict analysis: learns from infeasible subproblems

x1

x2

x3

x4

alldiff

⇒

x1

x2

x3

x4

T. Berthold: Constraint Integer Programming 11 / 14



SCIP as a MIP solver

0

1000

2000

3000

4000

T
im

e
in

se
co
nd

s

no
nc
om

m
er
ci
al

co
m
m
er
ci
al

11.7x
10.7x

8.0x

11.7x
10.7x

8.0x

1.41x 1.21x 1.00x
1.70x

0.32x 0.09x

not solved 68% 74% 63% 16% 16% 12% 41% 1% 1%

Symphony 5.1.6
lpsolve 5.5
GLPK 4.26
CBC 2.1
SCIP 1.00 – SoPlex 1.3.2
SCIP 1.00 – CLP 1.7
Minto 3.1 – Cplex 9
SCIP 1.00 – Cplex 11.01
Cplex 11.01

Results taken from Hans Mittelmann (04/19/2008)
http://plato.asu.edu/ftp/milpf.html

T. Berthold: Constraint Integer Programming 12 / 14

http://plato.asu.edu/ftp/milpf.html


Application: Chip Design Verification

Specification
describes input/
output behavior

Design
formal

representation
⇔?

⇒

Property

⇐ Property Checking

Property checking

. Derive certain properties from specification

. Check whether they hold for the design

. Leads to feasibility problems

. Can be modeled as SAT instance or as CIP

T. Berthold: Constraint Integer Programming 13 / 14



Application: Chip Design Verification

Specification
describes input/
output behavior

Design
formal

representation
⇔?

⇒

Property

⇐ Property Checking

Property checking

. Derive certain properties from specification

. Check whether they hold for the design

. Leads to feasibility problems

. Can be modeled as SAT instance or as CIP

T. Berthold: Constraint Integer Programming 13 / 14



Property Checking via CIP

CIP versus SAT

. CIP has constraints for
standard operations:
I addition
I subtraction
I multiplication
I shift left / right
I . . .

. SAT has only one
constraint type

5 10 15 20 25 35 4030

1
2 h

1 h

3
2 h

2 h

Register width

R
un

ni
ng

ti
m
e SAT

CIP

Constraints 422 152026
Variables 3714 50756

T. Berthold: Constraint Integer Programming 14 / 14



Constraint Integer Programming
A New Approach To Integrate CP and MIP

Timo Berthold
Zuse Institute Berlin

joint work with T. Achterberg, S. Heinz, T. Koch, K. Wolter

DFG Research Center MATHEON
Mathematics for key technologies

Paris, 05/21/2008


