
Primal Heuristics in SCIP

Timo Berthold
Zuse Institute Berlin

DFG Research Center MATHEON

Mathematics for key technologies

Berlin, 10/11/2007

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

2 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

3 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

4 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

⊲ Often find good solutions

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

⊲ Often find good solutions

⊲ in a reasonable time

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

⊲ Often find good solutions

⊲ in a reasonable time

⊲ without any warranty!

5 / 34

How Do We Solve MIPs?

Exact methods

⊲ Branch-And-Bound

⊲ Cutting planes

⊲ Branch-And-Cut

Heuristics

⊲ Often find good solutions

⊲ in a reasonable time

⊲ without any warranty!

⊲ Integrate into exact solver

5 / 34

Primal Heuristics

Why use heuristics inside an exact solver?

⊲ Able to prove feasibility of the model

⊲ Often nearly optimal solution suffices in practice

⊲ Feasible solutions guide remaining search process

Characteristics

6 / 34

Primal Heuristics

Why use heuristics inside an exact solver?

⊲ Able to prove feasibility of the model

⊲ Often nearly optimal solution suffices in practice

⊲ Feasible solutions guide remaining search process

Characteristics

⊲ Highest priority to feasibility

⊲ Keep control of effort!

⊲ Use as much information as you can get

6 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

7 / 34

Adding A Primal Heuristic

SCIPincludeHeur(

scip , // scip

"Christofides", // HEUR_NAME

"Start␣heuristic␣for␣TSP", // HEUR_DESC

’X’, // HEUR_DISPCHAR

-15000, // HEUR_PRIORITY

0, // HEUR_FREQ

0, // HEUR_FREQOFS

0, // HEUR_MAXDEPTH

SCIP_HEURTIMING_BEFORENODE // HEUR_TIMING

);

9 / 34

Heuristic Timings

Domain Propagation Solve LP

Pricing

Separation

Domain Propagation

LP Solving

Constraint Enforcement

Primal Heuristics

10 / 34

Heuristic Timings

Domain Propagation Solve LP

Pricing

Separation

Domain Propagation

LP Solving

Constraint Enforcement

Primal Heuristics #define HEUR_TIMING SCIP_HEURTIMING_AFTERNODE

10 / 34

Heuristic Timings

Primal Heuristics

Domain Propagation Solve LP

Pricing

Separation

Domain Propagation

LP Solving

Constraint Enforcement

Primal Heuristics #define HEUR_TIMING SCIP_HEURTIMING_BEFORENODE

10 / 34

Heuristic Timings

Primal Heuristics

Domain Propagation Solve LP

Pricing

Separation

Domain Propagation

LP Solving

Constraint Enforcement

Primal Heuristics

Heurs

#define HEUR_TIMING SCIP_HEURTIMING_DURINGLPLOOP

10 / 34

Categories

Two main categories

⊲ Start heuristics
◮ Often already at root node
◮ Mostly start from LP optimum

⊲ Improvement heuristics
◮ Require feasible solution
◮ Normally at most once for each incumbent

11 / 34

Categories

Two main categories

⊲ Start heuristics
◮ Often already at root node
◮ Mostly start from LP optimum

⊲ Improvement heuristics
◮ Require feasible solution
◮ Normally at most once for each incumbent

#define HEUR_FREQOFS 0

11 / 34

Categories

Two main categories

⊲ Start heuristics
◮ Often already at root node
◮ Mostly start from LP optimum

⊲ Improvement heuristics
◮ Require feasible solution
◮ Normally at most once for each incumbent

if(SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL)

return SCIP_OKAY;

11 / 34

Categories

Two main categories

⊲ Start heuristics
◮ Often already at root node
◮ Mostly start from LP optimum

⊲ Improvement heuristics
◮ Require feasible solution
◮ Normally at most once for each incumbent

if(SCIPgetNSols(scip) <= 0)

return SCIP_OKAY;

11 / 34

Categories

Two main categories

⊲ Start heuristics
◮ Often already at root node
◮ Mostly start from LP optimum

⊲ Improvement heuristics
◮ Require feasible solution
◮ Normally at most once for each incumbent

struct SCIP_HeurData

{

SCIP_SOL* lastsol;

}

11 / 34

Approaches

Five main approaches

⊲ Rounding assign integer values to fractional variables

⊲ Diving: DFS in the Branch-And-Bound-tree

⊲ Objective diving: manipulate objective function

⊲ LargeNeighborhoodSearch: solve some subMIP

⊲ Pivoting: manipulate simplex algorithm

12 / 34

Approaches

Five main approaches

⊲ Rounding assign integer values to fractional variables

⊲ Diving: DFS in the Branch-And-Bound-tree

⊲ Objective diving: manipulate objective function

⊲ LargeNeighborhoodSearch: solve some subMIP

⊲ Pivoting: manipulate simplex algorithm

12 / 34

Overview

Implemented into SCIP

⊲ 5 Rounding heuristics

⊲ 8 Diving heuristics

⊲ 3 Objective divers

⊲ 4 LNS improvement heuristics

⊲ 3 Others

13 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

int nlocks = SCIPvarGetNLocksUp(var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

int nlocks = SCIPvarGetNLocksDown(var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

int nlocks = SCIPvarGetNLocksDown(var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

int nlocks = SCIPvarGetNLocksUp(var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Real pscost = SCIPgetVarPseudocost(scip, var, delta);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Real pscost = SCIPgetVarPseudocost(scip, var, delta);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Real pscost = SCIPgetVarPseudocost(scip, var, delta);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Real pscost = SCIPgetVarPseudocost(scip, var, delta);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Real rootsolval = SCIPvarGetRootSol(var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Real solval = SCIPgetSolVal(scip, NULL, var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Sol* bestsol = SCIPgetBestSol(scip);

SCIP_Real solval = SCIPgetSolVal(scip, bestsol, var);

14 / 34

Useful Information

Statistics & points

⊲ Variables’ locking numbers:
Potentially violated rows

⊲ Variables’ pseudocosts:
Average objective change

⊲ Special points:
◮ LP optimum at root node
◮ Current LP solution
◮ Current best solution
◮ Other known solutions

SCIP_Sol** sols = SCIPgetSols(scip);

SCIP_Real solval = SCIPgetSolVal(scip, sols[i], var);

14 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

15 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

16 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rounding Heuristics

Guideline: Stay feasible!

Features

⊲ Simple Rounding always stays
feasible,

⊲ Rounding may violate constraints,

⊲ Shifting may unfix integers,

⊲ Integer Shifting finally solves an LP.

17 / 34

Rens: An LNS Rounding Heuristic

Algorithm

1. x̄ ← LP optimum;

2. Fix all integral variables:
xi := x̄i ∀i : x̄i ∈ Z;

3. Reduce domain of fractional
variables: xi ∈ {⌊x̄i⌋; ⌈x̄i⌉};

4. Solve the resulting subMIP

18 / 34

Rens: An LNS Rounding Heuristic

Algorithm

1. x̄ ← LP optimum;

2. Fix all integral variables:
xi := x̄i ∀i : x̄i ∈ Z;

3. Reduce domain of fractional
variables: xi ∈ {⌊x̄i⌋; ⌈x̄i⌉};

4. Solve the resulting subMIP

18 / 34

Rens: An LNS Rounding Heuristic

Algorithm

1. x̄ ← LP optimum;

2. Fix all integral variables:
xi := x̄i ∀i : x̄i ∈ Z;

3. Reduce domain of fractional
variables: xi ∈ {⌊x̄i⌋; ⌈x̄i⌉};

4. Solve the resulting subMIP

18 / 34

Rens: An LNS Rounding Heuristic

Algorithm

1. x̄ ← LP optimum;

2. Fix all integral variables:
xi := x̄i ∀i : x̄i ∈ Z;

3. Reduce domain of fractional
variables: xi ∈ {⌊x̄i⌋; ⌈x̄i⌉};

4. Solve the resulting subMIP

18 / 34

Rens: An LNS Rounding Heuristic

Algorithm

1. x̄ ← LP optimum;

2. Fix all integral variables:
xi := x̄i ∀i : x̄i ∈ Z;

3. Reduce domain of fractional
variables: xi ∈ {⌊x̄i⌋; ⌈x̄i⌉};

4. Solve the resulting subMIP

18 / 34

Rens: An LNS Rounding Heuristic

Observations

⊲ Solutions found by Rens are roundings of x̄

⊲ Yields best possible rounding

⊲ Yields certificate, if no rounding exists

Results

19 / 34

Rens: An LNS Rounding Heuristic

Observations

⊲ Solutions found by Rens are roundings of x̄

⊲ Yields best possible rounding

⊲ Yields certificate, if no rounding exists

Results

⊲ 82 of 129 test instances are roundable

⊲ Rens finds a global optimum for 23 instances!

⊲ Dominates all other rounding heuristics

19 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

20 / 34

Diving Heuristics I

Idea

⊲ Alternately solve the LP and round a variable

⊲ Simulates DFS in Branch-And-Bound-tree

⊲ Complementary target for branching

⊲ Backtracking possible

21 / 34

Diving Heuristics II

Applied branching rules

⊲ Fractional Diving: lowest fractionality

⊲ Coefficient Diving: lowest locking number

⊲ Linesearch Diving: highest increase since root

⊲ Guided Diving: lowest difference to best known solution

⊲ Pseudocost Diving: highest ratio of pseudocosts

⊲ Vectorlength Diving: lowest ratio of objective change and number
of rows containing the variable

22 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

∆(x ,x̃) =
∑
|xj − x̃j |

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

∆(x ,x̃) =
∑
|xj − x̃j |

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

∆(x ,x̃) =
∑
|xj − x̃j |

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;

2. Round LP optimum;

3. If feasible:

4. Stop!

5. Else:

6. Change objective;

7. Go to 1;

23 / 34

Objective Feasibility Pump (Achterberg & B.)

Improvements

⊲ Objective c
T
x regarded at each step:

∆̃ := (1− α)∆(x) + αc
T
x , with α ∈ [0, 1]

⊲ Algorithm able to resolve from cycling

⊲ Quality of solutions much better

Results

24 / 34

Objective Feasibility Pump (Achterberg & B.)

Improvements

⊲ Objective c
T
x regarded at each step:

∆̃ := (1− α)∆(x) + αc
T
x , with α ∈ [0, 1]

⊲ Algorithm able to resolve from cycling

⊲ Quality of solutions much better

Results

⊲ Finds a solution for 74% of the test instances

⊲ On average 5.5 seconds running time

⊲ Optimality gap decreased from 107% to 38%

24 / 34

Other Objective Divers

Other objective divers

⊲ Objective Pseudocost Diving
◮ analogon to Pseudocost Diving
◮ Punishment by high objective coefficients

⊲ Rootsolution Diving
◮ analogon to Linesearch Diving
◮ Objective function faded out

25 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

26 / 34

LNS heuristics

Idea: Create subMIP by fixing variables or adding constraints

Approaches

⊲ Rins: fix variables equal in LP optimum and incumbent

⊲ Crossover: fix variables equal in different feasible solutions

⊲ Mutation: fix variables randomly

⊲ Local Branching: add distance constraint wrt. incumbent

27 / 34

Other Heuristics

Combinatorial heuristics

⊲ 1-Opt
◮ Shifts value of integer variable
◮ Solves LP afterwards

28 / 34

Other Heuristics

Combinatorial heuristics

⊲ 1-Opt
◮ Shifts value of integer variable
◮ Solves LP afterwards

⊲ Octane
◮ Duality of cube and

octahedron
◮ Ray shooting algorithm

28 / 34

Other Heuristics

Combinatorial heuristics

⊲ 1-Opt
◮ Shifts value of integer variable
◮ Solves LP afterwards

⊲ Octane
◮ Duality of cube and

octahedron
◮ Ray shooting algorithm

28 / 34

Other Heuristics

Combinatorial heuristics

⊲ 1-Opt
◮ Shifts value of integer variable
◮ Solves LP afterwards

⊲ Octane
◮ Duality of cube and

octahedron
◮ Ray shooting algorithm

28 / 34

Other Heuristics

Combinatorial heuristics

⊲ 1-Opt
◮ Shifts value of integer variable
◮ Solves LP afterwards

⊲ Octane
◮ Duality of cube and

octahedron
◮ Ray shooting algorithm

28 / 34

Other Heuristics

Combinatorial heuristics

⊲ 1-Opt
◮ Shifts value of integer variable
◮ Solves LP afterwards

⊲ Octane
◮ Duality of cube and

octahedron
◮ Ray shooting algorithm

28 / 34

Outline

1 Introduction
Basics
Integration Into SCIP

2 Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

3 Remarks & Results

29 / 34

Implementation Details

Some tips and tricks

⊲ Use limits which respect the problem size

⊲ LNS: stalling node limit

⊲ Diving: try simple rounding on the fly

⊲ Favor binaries over general integers

⊲ Avoid cycling without randomness

30 / 34

Implementation Details

Some tips and tricks

⊲ Use limits which respect the problem size

⊲ LNS: stalling node limit

⊲ Diving: try simple rounding on the fly

⊲ Favor binaries over general integers

⊲ Avoid cycling without randomness

int nlpiterations = SCIPgetNNodeLPIterations(scip);

int maxlpiterations = heurdata→maxlpiterquot * nlpiterations;

30 / 34

Implementation Details

Some tips and tricks

⊲ Use limits which respect the problem size

⊲ LNS: stalling node limit

⊲ Diving: try simple rounding on the fly

⊲ Favor binaries over general integers

⊲ Avoid cycling without randomness

SCIP_CALL(

SCIPsetLongintParam(subscip,"limits/stallnodes",nstallnodes)

);

30 / 34

An Example

 1000

 1100

 1200

 1300

 1400

 1500

 0 20 40 60 80 100

bo
un

d

time (seconds)

Optimal Objective
Primal Bound With Heuristics

Dual Bound With Heuristics
Primal Bound Without Heuristics

Dual Bound Without Heuristics
Solution Found By: Relaxation

Feaspump
Crossover

Rens

31 / 34

Remarks & Conclusions

Single heuristics

⊲ Deactivating a single heuristic yields 1%-6% degradation

⊲ No heuristic dominates the others

⊲ Coordination important

Overall effect (SCIP 0.82b)

32 / 34

Remarks & Conclusions

Single heuristics

⊲ Deactivating a single heuristic yields 1%-6% degradation

⊲ No heuristic dominates the others

⊲ Coordination important

Overall effect (SCIP 0.82b)

⊲ Better pruning, earlier fixing

⊲ 7% less instances without any solution

⊲ 5% more instances solved within one hour

⊲ only half of the branch-and-bound-nodes

⊲ only half of the solving time

32 / 34

Remarks & Conclusions

Single heuristics

⊲ Deactivating a single heuristic yields 1%-6% degradation

⊲ No heuristic dominates the others

⊲ Coordination important

Overall effect (SCIP 0.82b)

⊲ Better pruning, earlier fixing

⊲ 7% less instances without any solution

⊲ 5% more instances solved within one hour

⊲ only half of the branch-and-bound-nodes Not this much

⊲ only half of the solving time in SCIP 1.00

32 / 34

Perspective & Further Research

To be implemented

⊲ DINS heuristic

⊲ k-opt for k > 1

⊲ probing heuristics

Known problems

⊲ Coordination could be strengthened

⊲ Often poor for pure combinatorial problems

33 / 34

Primal Heuristics in SCIP

Timo Berthold
Zuse Institute Berlin

DFG Research Center MATHEON

Mathematics for key technologies

Berlin, 10/11/2007

	Introduction
	Basics
	Integration Into SCIP

	Available Heuristics
	Rounding Heuristics
	(Objective) Diving
	LNS & Others

	Remarks & Results

