DFG Research Center MATHEON

Mathematics for key technologies

Undercover

A primal heuristic for MINLP based on
sub-MIPs generated by set covering

Timo Berthold

Zuse Institute Berlin « MATHEON o BMS

joint work with Ambros M. Gleixner

MDS Monday Colloquium, 13/Dec/2010

4":!‘ Outline

e

0 Introduction: MINLP & primal heuristics

© A generic algorithm for Undercover

© Finding minimum covers

@ Computational environment and experiments
© Extensions: fix-and-propagate etc.

@ Conclusion

Timo Berthold: Undercover, a primal heuristic for MINLP 2/ 42

4":‘ Outline

e

0 Introduction: MINLP & primal heuristics

Timo Berthold: Undercover, a primal heuristic for MINLP 3/42

4";:‘ What is Mixed-Integer Programming?

Mixed Integer Linear Program

Objective function:

> linear function o

Feasible set:

> described by linear constraints

Variable domains:

min ¢ x ceR”

s.t. Ax< b AeR™" peR™
x;€Z ie€TC{l,...,n}

> real or integer values

Timo Berthold: Undercover, a primal heuristic for MINLP 4 /42

4"::‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

o o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP 5/ 42

4":}‘ What is Mixed-Integer Programming?

e

Important terms
> LP relaxation > feasible solutions

> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP 5/ 42

4":}‘ What is Mixed-Integer Programming?

e

Important terms
> LP relaxation > feasible solutions

> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4"::‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

(@] o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP 5/ 42

4":}‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

o o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP 5/ 42

4":}‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

o o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP 5/ 42

4":}‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

o o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4":}‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

o o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4":}‘ What is Mixed-Integer Programming?

e

(@] (@]

(@] (@]

o o

(o] (o]
Important terms
> LP relaxation > feasible solutions
> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4":}‘ What is Mixed-Integer Programming?

e

o o o o o
o o o o
o [J [J [J [J o
o o o o o o

Important terms
> LP relaxation > feasible solutions

> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4":}‘ What is Mixed-Integer Programming?

e

o o o o o
o o o o
o [J [J [J [J o
o o o o o o

Important terms
> LP relaxation > feasible solutions

> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4":}‘ What is Mixed-Integer Programming?

e

o o o o O, o
o o o o
o [J [J [J [J o
o o o o o o

Important terms
> LP relaxation > feasible solutions

> LP-based branch-and-bound > optimal solutions

Timo Berthold: Undercover, a primal heuristic for MINLP

4";}‘ What is Mixed-Integer Programming?

min ¢’ x ceR”
such that g(x) <0, g € CY(R",R™)
Xj € 7L, iel. ZCA{1,...,n}

MINLP is difficult due to combination of

> nonlinearity x2 +3x2 <3

Timo Berthold: Undercover, a primal heuristic for MINLP

4";}‘ What is Mixed-Integer Programming?

min ¢’ x ceR”
such that g(x) <0, g € CY(R",R™)
Xj € 7L, iel. ZCA{1,...,n}

MINLP is difficult due to combination of
> nonlinearity X1 + 3x2 <3 /
> nonconvexity sin(10x3x2) < 0

Timo Berthold: Undercover, a primal heuristic for MINLP

4";}‘ What is Mixed-Integer Programming?

min ¢’ x ceR”
such that g(x) <0, g € CY(R",R™)
Xj € 7L, iel. ZCA{1,...,n}

MINLP is difficult due to combination of

> nonlinearity X1 + 3x2 <3 I H
> nonconvexity sin(10x3x2) < 0 E [H | ”
> integrality x1 €Z I ﬂ u I

Timo Berthold: Undercover, a primal heuristic for MINLP 6 /42

4";:‘ What is Mixed-Integer Programming?

min ¢’ x ceR”
such that g(x) <0, g € CY(R",R™)
Xj € 7L, iel. ZCA{1,...,n}

MINLP is difficult due to combination of

> nonlinearity X1 + 3x2 <3 I H
> nonconvexity sin(10x3x2) < 0 E [H | ”
> integrality x1 €Z I ﬂ u I

Important subclass: convex MINLP
MINLP is convex <> each function g;: R” — R is convex

Timo Berthold: Undercover, a primal heuristic for MINLP 6 /42

4";}‘ Applications

Applications in many areas, e.g.,

>
>
>
>

>
>
>

engineering design: e.g., mining with stockpiling constraints
manufacturing: e.g., sheet metal design

chemical industry: e.g., design of synthesis processes

networks: operation and design of water and gas networks

energy production and distribution: e.g., plant design, power scheduling

logistics: e.g., public transport

Timo Berthold: Undercover, a primal heuristic for MINLP

B Convex MINLP

e

min ¢’x
such that g(x) <0
x€Z, i€l

Assumption: g : R" — R™ is convex, each g; continuously differentiable

NLP based branch—and—bound

> bounding: solve convex nonlinear relaxation (NLP)

min ¢’x

such that g(x) <0

> branching: on integer variables with fractional LP value

Timo Berthold: Undercover, a primal heuristic for MINLP 8 /42

Iy Convex MINLP

LP based branch—and—cut

> bounding: solve polyhedral outer-approximation (LP)

X% = argmin c¢'x
such that gj(%X) + Vgi(X)(x — %) <0, j=1,....m, X€S§

If g(x) > 0, add supporting hyperplane to LP, i.e., add X to S.

> branching: on integer variables with fractional LP value

Timo Berthold: Undercover, a primal heuristic for MINLP 9 /42

B Nonconvex MINLP

e

min ¢'x
such that g(x) <0
xi €L, i€l

Now: some components of g : R” — R™ may be nonconvex

= inequalities g;(X) + Vg;(X)(x — %) < 0 may not be valid!
= use convex underestimator: convex and below g(x) for all x €[L, U]
= introduces convexification gap

#@L/A 5{ /
, . ; . - 4/

6 “2 —2 2 a— —4 -2

Timo Berthold: Undercover, a primal heuristic for MINLP 10 / 42

Iy Nonconvex MINLP

Spatial branch—and—bound

> bounding: solve polyhedral outer-approximation

min ¢’x
such that g7 (%) + Vgi (X)(x — %) <0, j=1,....,m, R€S,
x € [L, U]

> branching: close gap between relaxation and problem
> on integer variables with fractional value in LP relax
> on continuous variables in nonconvex terms
= tighter bounds = better underestimators

10

A N P,

sl

Timo Berthold: Undercover, a primal heuristic for MINLP 11 / 42

4";:‘ Primal heuristics for generic MINLP

Finding feasible solutions. . .

> wait for the LP relaxation to become feasible
> MIP heuristics applied to LP
» rounding, diving, feasibility pump,...

> extend MIP heuristics to MINLP
> MINLP specific heuristics — this talk

Why use primal heuristics inside an exact solver?
> Able to prove feasibility of the model
> Often nearly optimal solutions suffice in practice

> Feasible solutions guide remaining search process

Timo Berthold: Undercover, a primal heuristic for MINLP 12 / 42

4";:‘ Primal heuristics for generic MINLP

Source convex nonconvex
MIP heuristics for linear outer approximations v v
NLP local search with fixed integralities v v
Simple NLP Rounding v v
Fractional Diving & Vectorlength Diving
BonamiGongalves08 v (v)
Iterative Rounding NanniciniBelotti v v
FeasPump BonamiCornuéjolsLodiMargot08 v o
D’AmbrosioFrangionilibertiLodi09 v v
LinderothAbhishekLeyfferSartenaer08 v
Local Branching NanniciniBelottilLiberti08 v v
RECIPE LibertiNanniciniMladenovi¢08 v v
v v

RENS BertholdHeinzVigerske09 (for MIQCPs)

Timo Berthold: Undercover, a primal heuristic for MINLP 13 / 42

4":‘ Outline

e

© A generic algorithm for Undercover

Timo Berthold: Undercover, a primal heuristic for MINLP 14 / 42

L",» MOtlvathn I_argeNeighborhoodSearch

> LNS: common paradigm in MIP heuristics
fix a subset of variables ~» easy subproblem ~» solve

MIP: “"easy” = few integralities MINLP: “easy” = few nonlinearities

> Observation: Any MINLP can be reduced to a MIP by fixing (sufficiently
many) variables.

Experience: Often, few fixings are sufficient!

> ldea: Fix a small subset of variables to obtain a linear subproblem (MIP).

> Use solution of a LP or NLP relaxation to determine fixing values

Timo Berthold: Undercover, a primal heuristic for MINLP 15 / 42

4";:‘ Definitions

Definition (cover of a function)

Let
> a function g : D — R, x — g(x) on a domain D C R”,
> a point x* € D, and

> aset C C{1,...,n} of variable indices be given.
We call C an x*-cover of g if and only if the set

{(x,8(x)) | x € D,xx = x for all k € C} (1)
is affine.

We call C a (global) cover of g if and only if C is an x*-cover of g for
all x* € D.

Timo Berthold: Undercover, a primal heuristic for MINLP 16 / 42

4";:‘ Definitions

Definition (cover of an MINLP)

Let

> P be an MINLP

> x* € [L, U], and

> C C{1,...,n} be a set of variable indices of P.

We call C an x*-cover of P if and only if C is an x*-cover for g1, ..., gm-

We call C a (global) cover of P if and only if C is an x*-cover of P for
all x* € [L, U].

Timo Berthold: Undercover, a primal heuristic for MINLP 17 / 42

4";? A generic algorithm

1 Input: MINLP P

2 begin

3 compute a solution x*

of an approximation of P

4 round x; for all k € Z

5 determine an
x*-cover C of P

6 solve the sub-MIP of P
given by fixing xx = xj
forall ke C

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4";? A generic algorithm

1 lnput: MINLP P

2 begin

3 compute a solution x*

of an approximation of P

4 round x; for all k € Z

5 determine an
x*-cover C of P

6 solve the sub-MIP of P
given by fixing xx = xj
forall ke C

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4";? A generic algorithm

1 lnput: MINLP P

2 begin

3 compute a solution x*

of an approximation of P

4 round x; for all k € T

5 determine an
x*-cover C of P

6 solve the sub-MIP of P
given by fixing xx = xj
forall ke C

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4";? A generic algorithm

1 lnput: MINLP P

2 begin

3 compute a solution x*

of an approximation of P

4 round x; for all k € Z

5 determine an
x*-cover C of P

6 solve the sub-MIP of P
given by fixing xx = xj
forall ke C

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4";? A generic algorithm

1 lnput: MINLP P

2 begin

3 compute a solution x*

of an approximation of P

4 round x; for all k € Z

5 determine an
x*-cover C of P

6 solve the sub-MIP of P
given by fixing x, = x;
forall ke C

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4";:‘ A generic algorithm

1 lnput: MINLP P

2 begin

3 compute a solution x*

of an approximation of P

Remark:
4 round x; for all k € Z
> MIP heuristics: trade-off fixing many

5 determine an .
vs. few variables

x*-cover C of P o S
Here: Eliminate nonlinearities by

6 solve the sub-MIP of P fixing as few as possible variables
given by fixing xx = xj — minimum x*-cover!
forall k € C

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4";:‘ A generic algorithm

1 lnput: MINLP P

2 begin

3 compute a solution x*
of an approximation of P

Remark:
4 round x; for all k € Z
> MIP heuristics: trade-off fixing many

5 determine an :
vs. few variables

x*-cover C of P o o
Here: Eliminate nonlinearities by

6 solve the sub-MIP of P fixing as few as possible variables
given by fixing xx = xj — minimum x*-cover!
forall k € C > How to find minimum cover?

7 end

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42

4":‘ Outline

e

© Finding minimum covers

Timo Berthold: Undercover, a primal heuristic for MINLP 19 / 42

4";? Covering quadratic functions

Let g : R" > R, x — x"Qx + gx + ¢, Q € R™" symmetric, x* € R".
Fixing variables with indices in C C {1, ..., n} transforms

=xVkeC ~
xT Qx P ASSS y'Qy+qg'y+¢e

with y = (x)kge € R"I and @ = (Quv)uvge € RIIEDX(=ICD

Timo Berthold: Undercover, a primal heuristic for MINLP

4";:‘ Covering quadratic functions

Let g : R" > R, x — x"Qx + gx + ¢, Q € R™" symmetric, x* € R".
Fixing variables with indices in C C {1, ..., n} transforms

=x;VkeC ~

with y = (x)kge € R"I and @ = (Quy)uvge € ROIEDX(=ICD

Thus: C is a cover of g iff
gu =0 forall u,v &C

independent of fix. values.

Timo Berthold: Undercover, a primal heuristic for MINLP 20 / 42

4";:‘ Covering quadratic functions

Let g : R" > R, x — x"Qx + gx + ¢, Q € R™" symmetric, x* € R".
Fixing variables with indices in C C {1, ..., n} transforms

=x;VkeC ~

with y = (x)kge € R"I and @ = (Quv)uvge € RIIEDX(=ICD

Thus: C is a cover of g iff set covering: *
k% ok
qu =0 forall u,v &C e~s COVEr NONZEros x ok ox
in @ by incident *
independent of fix. values. rows/columns *

Timo Berthold: Undercover, a primal heuristic for MINLP 20 / 42

4";:‘ Covering quadratic functions

Let g : R" > R, x — x"Qx + gx + ¢, Q € R™" symmetric, x* € R".
Fixing variables with indices in C C {1, ..., n} transforms

=x;VkeC ~

with y = (x)kge € R"I and @ = (Quv)uvge € RIIEDX(=ICD

Thus: C is a cover of g iff set covering: (+)
(=[] =)]
guw =0 forall u,v &C VNN cover nonzeros * o
in @ by incident *
independent of fix. values. rows/columns U *

Timo Berthold: Undercover, a primal heuristic for MINLP 20 / 42

4";:‘ Covering quadratic functions

Let g : R" > R, x — x"Qx + gx + ¢, Q € R™" symmetric, x* € R".
Fixing variables with indices in C C {1, ..., n} transforms

=x;VkeC ~

with y = (x)kge € R"I and @ = (Quv)uvge € RIIEDX(=ICD

Thus: C is a cover of g iff set covering:) ()
(=[] = D
guw =0 forall u,v &C VNN cover nonzeros * * || %
in @ by incident C *
independent of fix. values. rows/columns (*

Timo Berthold: Undercover, a primal heuristic for MINLP 20 / 42

4";:‘ Covering quadratic functions

Let g : R" > R, x — x"Qx + gx + ¢, Q € R™" symmetric, x* € R".
Fixing variables with indices in C C {1, ..., n} transforms

=x;VkeC ~

with y = (x)kge € R"I and @ = (Quv)uvge € RIIEDX(=ICD

Thus: C is a cover of g iff set covering: ()
(=[])]
guw =0 forall u,v &C VNN cover nonzeros CTx * %)
in @ by incident *
independent of fix. values. rows/columns)

Timo Berthold: Undercover, a primal heuristic for MINLP 20 / 42

Iy Covering MIQCPs

Auxiliary binary variables:

ax =1:& xg is fixed in P

Set Covering constraints:

C(a) :={k | ax =1} is a cover of P if and only if
ag =1 for all square nonzeros: Qj, # 0, (2)

ar+o;>1 for all bilinear nonzeros: Q};j # 0,k #j. (3)

To find a minimum cover, we solve the covering problem

mm{Zak 3),a € {0,1}" } (4)

Timo Berthold: Undercover, a primal heuristic for MINLP 21/ 42

Iy Covering MIQCPs

Auxiliary binary variables:

ax =1:& xg is fixed in P

Set Covering constraints:

C(a) :={k | ax =1} is a cover of P if and only if
ag =1 for all square nonzeros: @, # 0, (2)

ak+aj>1 for all bilinear nonzeros: Q,’;j # 0,k # j. (3)

To find a minimum cover, we solve the covering problem

mm{Zak 3),a € {0,1}" } (4)

Timo Berthold: Undercover, a primal heuristic for MINLP 21/ 42

Iy Covering MIQCPs

Auxiliary binary variables:

ax =1:& xg is fixed in P

Set Covering constraints:

C(a) :={k | ax =1} is a cover of P if and only if
ag =1 for all square nonzeros: Qj, # 0, (2)

ar+o;>1 for all bilinear nonzeros: Q};j # 0,k #j. (3)

To find a minimum cover, we solve the covering problem

mm{Zak 3),a € {0,1}" } (4)

Timo Berthold: Undercover, a primal heuristic for MINLP 21/ 42

4";:‘ General covering problems

> (4) is an N'P-hard problem, but
standard branch-and-cut is (empirically) very fast.

> For general MINLPs, the covering problem becomes more difficult,

e.g. for a global cover of a monomial xfl oo xB" p1, ..., pn € Nog:
ar =1 for all px > 2
> (l-o) <L
k:px=1

> For general MINLPs, global covers become larger and larger.
However: x*-covers are a weaker notion, may be significantly smaller

Timo Berthold: Undercover, a primal heuristic for MINLP 22 /42

4":‘ Outline

e

@ Computational environment and experiments

Timo Berthold: Undercover, a primal heuristic for MINLP 23 /42

4";}‘ SCIP: olving onstraint nteger rograms

> a branch-cut-and-price framework

> incorporates CP, MIP, and SAT-solving features

> provides full-scale MIP solver

> modular structure via plugins

> free for academic purposes, http://scip.zib.de

S — 2, SCIP ———3

Timo Berthold: Undercover, a primal heuristic for MINLP

http://scip.zib.de

SCIP: An MIQCP solve

TS
|
SCIP has recently been extended to handle nonconvex MIQCPs
= all nonlinear constraints are of quadratic form gi(x) = xTAjx + b/ x + ¢;

Gl A { : /

C

*
*
N

Convexification

Undercover

Y

NLP local search

Second Order Cone

Geometric branching

Timo Berthold: Undercover, a primal heuristic for MINLP

Ly SCIP: MIQCP Plugins

e

a2, SCIP ———

Timo Berthold: Undercover, a primal heuristic for MINLP

Ly SCIP: MIQCP Plugins

e

.........

Presolver

.....

SCIP

Branch

Timo Berthold: Undercover, a primal heuristic for MINLP 26 / 42

Ly SCIP: MIQCP Plugins

e

Presolver

.....

SCIP

......

Timo Berthold: Undercover, a primal heuristic for MINLP 26 / 42

I

e

SCIP: Computational Results

non-commercial commercial
in B Couenne 0.3

(V)
(=1
(=1
=]

H SCIP 2.0.0

—_
ot
[=3
o

B CPLEX 12.2

=
(=}
(=}
(=}

Bl BARON 9.0.2

S
o
o

time in seconds

0 M LindoGlobal 6.1.1
not solved 71% 37% 28% 68% T75%

non-commercial commercial
I 1 Il Couenne 0.3

= =
[\ [*2)
(=) (==}
o (=}

l SCIP 2.0.0

600 [l BARON 9.0.2

time in seconds

0
not solved 72% 45% 64% 68%

M LindoGlobal 6.1.1

> 94 publicly available instances from 7 sources
> SCIP uses Cplex as LP solver and Ipopt as NLP solver

> 1 hour time limit

Timo Berthold: Undercover, a primal heuristic for MINLP

Jg,»

SCIP: Computational Results

non-commercial commercial

W Couenne 0.3

(V)
(=1
(=1
=]
=

H SCIP 2.0.0

—_
ot
[=3
o

B CPLEX 12.2

=
(=}
(=}
(=}

=

)
o
o

Bl BARON 9.0.2

time in seconds

0
not solved 71% 37% 28% 68% T75%
non-commercial commercial
L

= =
[\ [*2)
(=) (==}
o (=}

600
0 .

time in seconds

Timo Berthold: Undercover, a primal heuristic for MINLP

Jg,»

SCIP: Computational Results

non-commercial commercial

W Couenne 0.3

(V)
(=1
(=1
=]
=

H SCIP 2.0.0

—_
ot
[=3
o

B CPLEX 12.2

=
(=}
(=}
(=}

=

)
o
o

Bl BARON 9.0.2

time in seconds

0
not solved 71% 37% 28% 68% T75%
non-commercial commercial
L

1l Couenne 0

= =
[\ [*2)
(=) (==}
o (=}

600
0 .

time in seconds

Undercover: experiments with MIQCPs

> Goal
» evaluate potential as start heuristic at the root node

> Test set
» 33 MIQCP instances from MINLPLib

> Undercover parameters

> running as only root node heuristic in SCIP
» for sub-MIP: emphasis feasibility and fast presolving settings

> Reference solvers > Reported
» SCIP1.2.1.1 » nonlinear nonzeros/variable
» BARON9.02 » 9% variables fixed by Undercover
» Couenne0.2 » solution values of each solver
» default, node limit 1 » best known solution

Timo Berthold: Undercover, a primal heuristic for MINLP 28 / 42

4";:‘ Computational results for MIQCPs

12 instances with < 5% variables fixed

instance nnz/var % cov ucC SCIP BARON Couenne known
netmod_doll 0.00 0.30 0 -0.26321 0 - -0.56
netmod_dol2 0.00 0.38 -0.07802 -0.50562 0 - -0.56
netmod_kar1l 0.01 0.88 0 0 0 - -0.4198
netmod_kar2 0.01 0.88 0 0 0 - -0.4198
space25 0.12 1.04 - - - - 484.33
ex1266 0.40 3.03 16.3 - - - 16.3
util 0.07 3.13 999.58 1000.5 1006.5 - 999.58
feedtray?2 10.70 3.26 - - 0 - 0
ex1265 0.38 3.52 15.1 - - 15.1 10.3
ex1263 0.34 3.88 30.1 - - - 19.6
tlni2 1.70 3.99 - - - - 90.5
ex1264 0.36 4.26 11.1 - - - 8.6

> O instances feasible, 7 times best solution value

> ex1266 and util optimal

Timo Berthold: Undercover, a primal heuristic for MINLP 29 / 42

4";:‘ Computational results for MIQCPs

10 instances with 5—15% variables fixed

instance nnz/var % cov ucC SCIP BARON Couenne known
waste 1.10 5.65 608.76 - 712.301 - 598.92
space2ba 0.29 5.84 - - - - 484.33
nuclearida 4.98 6.43 - - - - -1.1280
nucleari4b 2.42 6.43 - - - -1.1105 -1.1135
t1n7 1.53 6.67 30.3 - - - 15
t1n6 1.47 7.69 20.3 - - - 15.3
tloss 1.47 7.89 16.3 - - - 16.3
t1lnb 1.39 9.09 15.1 - - 14.5 10.3
sepl 0.40 10.53 -510.08 - -510.08 -510.08 -510.08
tltr 1.10 12.50 74.2 - - - 48.067

> 7 instances feasible, 6 times best solution value

> tloss and sepl optimal

Timo Berthold: Undercover, a primal heuristic for MINLP 30/ 42

4";:‘ Computational results for MIQCPs

11 instances with 15-96% variables fixed

instance nnz/var % cov ucC SCIP BARON Couenne known
nous1 239 19.44 - - - 1.5671 1.5671
nous2 239 19.44 - 1.3843 0.62597 1.3843 0.626
meanvarx 0.19 23.33 15.925 14.369 14.369 18.702 14.369
product2 0.37 26.15 - - - - -2102.4
product 0.17 30.87 - - - - -2142.9
spectra2 3.43 35.71 31.981 13.978 119.87 - 13.978
fac3 0.81 78.26 13065 7213 38329 - 3198
nvs19 8.00 88.89 - 0 -1098 - -1098.4
nvs23 9.00 90.00 - 0 -1124.8 - -1125.2
du-optb 0.95 94.74 3407.1 14.168 - 1226.0 8.0737
du-opt 0.95 95.24 4233.9 4233.9 108.33 41.304 3.5563

> b instances feasible, no best solution value

Timo Berthold: Undercover, a primal heuristic for MINLP 31/ 42

4";:‘ Computational results for MIQCPs

> Feasible solutions > Solution quality
» Undercover: 21 instances if both found a solution
» SCIP: 13 instances > Undercover:SCIP = 1:6 (2 equal)
» BARON: 15 instances » Undercover: BARON = 5:2 (3 equal)
» Couenne: 9 instances » Undercover: Couenne = 1:3 (2 equal)
> All: 27 instances

> Undercover time always < 0.2 seconds (except for waste with 1.1 sec)
» covering problem always solved to optimality at root

most time spent in sub-MIP

20 of 21 feasible sub-MIPs solved to optimality

infeasibility of sub-MIP usually detected in advance (10 of 12)

vV vVvYyy

Timo Berthold: Undercover, a primal heuristic for MINLP 32 /42

4":!‘ Outline

e

© Extensions: fix-and-propagate etc.

Timo Berthold: Undercover, a primal heuristic for MINLP

4";:‘ Fix-and-propagate & Backtracking

Fix-and-propagate

> Do not fix variables in C simultaneously,
but sequentially and propagate after each fixing.

> If x; falls out of bounds then
» fix to the closest bound (similar to FischettiSalvagnin09)
» recompute the approximation

Backtracking

> If fix-and-propagate deduces infeasibility, apply a one-level backtracking:
undo last fixing and try another value

Timo Berthold: Undercover, a primal heuristic for MINLP 34 /42

4";}‘ Fix-and-propagate & Backtracking

Fix-and-propagate

> Do not fix variables in C simultaneously,
but sequentially and pro ing.

> If x; falls out of bounds
» fix to the closest bound lvagnin09)

» recompute the approxim
Backtracking

> If fix-and-propagate deduces infeasibility, apply a one-level backtracking:
undo last fixing and try another value

Timo Berthold: Undercover, a primal heuristic for MINLP 34 /42

4";:‘ Using different covers

Covers minimising different impact measures
> minimum cardinality covers: minimise impact on MINLP

> Alternative impact measures as objective function of covering problem:
appearance in nonlinear terms

appearance in violated nonlinear constraints

domain size

variable type

rounding locks on integer variables

hybrid measures

vV vy vy VvV VY

> In particular: if a minimum cardinality cover yields infeasible sub-MIP

Timo Berthold: Undercover, a primal heuristic for MINLP 35 /42

4";:‘ Using different covers

Covers minimising different impact measures
> minimum cardinality cov P :on MINLP

> Alternative impact meas ction of covering problem:
appearance in nonlinear

appearance in violated r

domain size

variable type

rounding locks on intege

hybrid measures

vV vy vy VvV VY

> In particular: if a minimum cardinality cover yields infeasible sub-MIP

Timo Berthold: Undercover, a primal heuristic for MINLP 35 /42

4";}‘ Recovering

Recovering

> fix-and-propagate may fix variables outside the cover C
> ~ variables in C might not need to be fixed

~> “re-cover”: solve the covering problem again with propagated bounds

Timo Berthold: Undercover, a primal heuristic for MINLP 36 / 42

4";}‘ Recovering

Recovering
> fix-and-propagate may fix ve le the cover C
> ~ variables in C might not ced
~> “re-cover”: solve the cov . 1 again with propagated bounds

Timo Berthold: Undercover, a primal heuristic for MINLP

4";:‘ NLP postprocessing

NLP postprocessing
> All sub-MIP solutions are fully feasible for the original MINLP.

> Still, sub-MIP solution X could be improved by NLP local search:

» fix all integer variables of the original MINLP to their values in X
> solve the resulting NLP to local optimality

Timo Berthold: Undercover, a primal heuristic for MINLP

4";}‘ NLP postprocessing

NLP postprocessing

> All sub-MIP solutions ar e original MINLP.
> Still, sub-MIP solution X 5y NLP local search:
» fix all integer variables ¢ 0 their values in X

» solve the resulting NLP

Timo Berthold: Undercover, a primal heuristic for MINLP

Avoiding/exploiting infeasibility

If the sub-MIP is infeasible, this is typically detected
> during fix-and-propagate, or

> via infeasible root LP.

~» Generate conflict clauses for the original MINLP .
> Add them to the original MINLP.
> Use them to revise fixing values and/or fixing order.

> Start another fix-and-propagate run.

If the sub-MIP remains infeasible, at least this gives us valid conflicts to
prune the search tree in the original problem.

Timo Berthold: Undercover, a primal heuristic for MINLP 38 /42

Avoiding/exploiting infeasibility

If the sub-MIP is infeasible, this is typically detected

> during fix-and-propagate, or

> via infeasible root

~» Generate conflict

> Add them to the o

> Use them to revise r.
> Start another fix-a .

If the sub-MIP remains infeasible, at least this gives us valid conflicts to
prune the search tree in the original problem.

Timo Berthold: Undercover, a primal heuristic for MINLP 38 /42

Variations: convexification & domain reduction

> ldea of Undercover: fix few variables to obtain an “easy” subproblem.

» switch to easier problem class
» switch to easier problem of the same class

> Switch to easier problem class:
MIQCP ~ MIP

MINLP ~ MIQCP

nonconvex MINLP ~+ convex MINLP

v

v vy

> Switch to easier problem of the same class: restrict variable domains

» significantly better outer approximations
> leaves more freedom to the problem

Timo Berthold: Undercover, a primal heuristic for MINLP 39 /42

Variations: convexification & domain reduction

> ldea of Undercover: fix few variables to obtain an “easy” subproblem.

» switch to easier problem class
> switch to easier p

> Switch to easier pr

MIQCP ~ MIP
MINLP ~ MIQCI
nonconvex MINLF

v

v vy

> Switch to easier problem of the same class: restrict variable domains

» significantly better outer approximations
> leaves more freedom to the problem

Timo Berthold: Undercover, a primal heuristic for MINLP 39 /42

4":‘ Outline

e

@ Conclusion

Timo Berthold: Undercover, a primal heuristic for MINLP 40 / 42

4";:‘ Conclusion

> Scheme of a general-purpose start heuristic for MINLP
> solve a set covering problem
> to identify few variable fixings
» yielding a mixed-integer linear subproblem

> Preliminary experiments
» MIQCPs from MINLPLib — often few fixings sufficient:
< 5% on 1/3 of the test set, < 15% on 2/3 of the test set
» successfully applied as root node heuristic

> Future research
» extensions and variations
» experiments on general MINLPs
> tuning for efficient use within branch-and-bound tree
» use NLP relaxation instead of LP outer approximation

Timo Berthold: Undercover, a primal heuristic for MINLP 41 / 42

DFG Research Center MATHEON

Mathematics for key technologies

Undercover

A primal heuristic for MINLP based on
sub-MIPs generated by set covering

Timo Berthold

Zuse Institute Berlin « MATHEON o BMS

joint work with Ambros M. Gleixner

MDS Monday Colloquium, 13/Dec/2010

	Introduction: MINLP & primal heuristics
	A generic algorithm for Undercover
	Finding minimum covers
	Computational environment and experiments
	Extensions: fix-and-propagate etc.
	Conclusion

