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Chapter 4

Line Planning

4.1 Introduction

In this chapter we will treat mixed integer programming models developed
for the line planning problem in public transport. The goal is to design line
routes and their frequencies in a street/track network such that a trans-
portation demand, given by an origin-destination matrix (OD-matrix), can
be routed. The frequency of a line is supposed to indicate a basic timetable
period and controls the lines’ transportation capacity. There are two compet-
ing objectives: on the one hand to minimize the operating costs of lines and
on the other hand to minimize user discomfort. User discomfort is usually
measured by the total passenger traveling time or the number of transfers
during the ride, or both. The planner has to balance these two objectives.
Indeed, on the one extreme one would install a line for every passenger,
which would be unaffordably expensive, on the other extreme a reduced core
system would inflict extremely long traveling times for the passengers.

There are many approaches for line planning. A more detailed overview
can be found in [1]. Here we only treat integer programming models for line
planning. A very rough historically overview over line planning is as follows.

In the 1960ies experiments were started for line planning by constructing
long line routes by adjoining small pieces, see [11]. In the 1980ies such routes
were improved through local search, see [12]. Integer programming came
into play in 1997, when Bussieck, Kreuzer, and Zimmermann [3] introduced
their model for maximizing the number of direct travelers and Claessens,
van Dijk, and Zwaneveld [4] presented their cost minimizing approach. The
later model was improved by Goossens, van Hoesel, and Kroon [9, 8]. These
models assume a so-called system split (see below), in which one assumes
that the number of passengers that want to travel on each edge is known
in advance. This assumption was dropped by Borndörfer, Grötschel, and
Pfetsch [1] and Schöbel and Scholl [13]. In their models passengers are
allowed to be freely routed in the network by using a path bases formulation
for the passenger flow. This makes it necessary to use column generation to
solve these models. We will present all four (mixed integer programming)
models in this chapter.

Apart from this body of work, there are articles on line planning under
the name of transit network design, which usually present meta heuristic
approaches and often try to embed additional features like stop positioning.
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In contrast to the some other problems discussed in this course, there
are to the best of our knowledge no optimization methods in practical use
for line planning. One reason is that strategic planning problems like line
planning are usually multi-criteria optimization problems. This makes it
much harder to see the value of an optimization approach. The vision of
the methods presented in this chapter is to provide a decision support tool
for the planner. With such tools many variants can be evaluated, which
ultimately should result in better line plans, both for the customer and for
the transportation companies.

4.1.1 Origin-Destination Matrices and System Split

All models of this chapter assume that an OD-matrix is given. Each entry
in an OD-matrix gives the number of passengers that want to travel from
one point in the network to another point within a fixed time horizon. Usu-
ally, OD-data are aggregated over one day, but it is similarly appropriate to
consider, for instance, peak traffic in rush hours.

It is well known that such origin-destination data have certain deficien-
cies. For instance, OD-matrices depend on the geometric discretization used,
they are highly aggregated, they give only a snapshot type of view, it is of-
ten questionable how well the entries represent the real situation, and they
should only be used when the transportation demand can be assumed to be
fixed. However, OD-matrices are at present the industry standard for esti-
mating transportation demand. It is already quite an art and rather costly
to assemble this data and there is currently no alternative in sight. All of the
discussed models assume that the OD-matrices are fixed, i.e., do not depend
on the planning steps that we are performing.

Many of the models in the literature are based on the so-called system
split. Its starting point is a classification of the links of a transportation
system into levels of different speed, as common in railway systems. Assum-
ing that travelers are likely to change to fast levels as early and leave them
as late as possible, the passengers are distributed onto several paths in the
system, using Kirchhoff-like rules at the transit points, before any lines are
known. This fixes the passenger flow on each individual link in the network,
i.e., we know that there are ρe passengers traveling on edge e; this is also
called the passenger load.

4.1.2 A Bit of Notation

For line planning problems (LPP) we are given a number M of transporta-
tion modes (bus, tram, subway, etc.), an undirected multigraph G = (V,E) =
(V,E1∪̇ . . . ∪̇EM ) representing a multi-modal transportation network, termi-
nal sets T1, . . . ,TM ⊆ V of nodes for each mode where lines can start and



Figure 4.1: Multi-modal transportation network in Potsdam. Black: tram, lightgray:
bus, darkgray: ferry, large nodes: terminals, small nodes: stations, grey: rivers and lakes.

end. Denote by Gi = (V,Ei) the subgraph of G corresponding to mode i.
See Figure 4.1 for an example network.

The problem formulation further involves a (not necessarily symmetric)
origin-destination matrix (OD-matrix) (dst) ∈ QV ×V

+ of travel demands, i.e.,
dst is the number of passengers that want to travel from node s to node t.
Let D := {(s, t) ∈ V × V : dst > 0} be the set of all OD-pairs.

A line of mode i is a path in Gi connecting two (different) terminals
of Ti. Note that paths are always simple, i.e., the repetition of nodes is not
allowed; it is possible to consider additional constraints on the formation of
lines such as a maximum length etc. Let L be a set of lines (the meaning
depends on the models). Finally, we let Le :=

⋃{ℓ ∈ L : e ∈ ℓ} be the set
of lines that use edge e ∈ E.

4.2 Models Based on System Split

In this section we discuss models that are based on a system split. Because in
this case the number of passengers that want to travel on each edge is known
or fixed in advance, these models have a different flavor than the models
that allow free routing of passenger paths, see Section 4.3. The system-split
models without loss of generality assume that there is only one mode, i.e.,
G = (V,E) is the transportation graph. They furthermore assume that L is
a pool of some predefined lines from which good lines have to be chosen.



Table 4.1: Notation and terminology for models based on system split.

G transport network ρe number of passengers on edge e
L line pool Le lines using edge e
D set of OD-pairs dst travel demand between s and t

Λe lower frequency bound Λe upper frequency bound
κ train capacity K vehicle capacity
Tℓ turn around time dℓ geometric length of line ℓ
Ct train fixed costs Cc carriage fixed costs
ct train operating costs cc carriage operating costs

4.2.1 The Direct Travelers Approach

The direct travelers approach for line planning was developed by Bussieck,
Kreuzer, and Zimmermann [3] (see also Bussieck [2]). The goal is to choose
lines from L such that the number of direct travelers, i.e., passengers that
can travel on a line without transfering, is maximized.

Because of the system split there is only one mode and hence the capaci-
ties of all lines are equal and are denoted by κ. This determines a minimum
frequency Λe that is necessary to transport the passengers that travel on
edge e ∈ E, by

Λe :=
⌈ρe

κ

⌉

.

The direct travelers model is the following:

max
∑

(s,t)∈D

∑

ℓ∈L

yℓst

s.t. Λe ≤
∑

ℓ∈Le

fℓ ≤ Λe ∀ e ∈ E (4.1)

∑

ℓ∈L, s,t∈ℓ

yℓst ≤ dst ∀(s, t) ∈ D (4.2)

∑

(s,t)∈D
s,t∈ℓ

yℓst ≤ κ fℓ ∀ ℓ ∈ L (4.3)

fℓ ∈ Z+ ∀ ℓ ∈ L
yℓst ∈ Z+ ∀ (s, t) ∈ D, ℓ ∈ L.

Variables fℓ determine the frequency of line ℓ, while yℓst measures the number
of passengers that directly travel from s to t via line ℓ; clearly, a variable yℓst

is only necessary if s, t ∈ ℓ. The objective function gives the total number
of direct travelers. Constraints (4.1) ensure that all passengers that travel
on each edge can be transported and force upper bounds on the frequency
on each edge, e.g., due to safety issues. Constraints (4.2) say that there



cannot be more direct travelers on line ℓ from s to t than there is demand.
Constraints (4.3) ensure that the frequency of each line is large enough in
order to ensure enough capacity to transport all direct travelers that use this
line directly.

This model simply ignores all passengers other than direct travelers.
They are not accounted for in the capacity constraints and hence the fre-
quencies will in general be too small. One can extend this model to also
determine the number of transfers. This can be done by an appropriate con-
struction of the graph – see the “change and go” model of Schöbel and Scholl
in Section 4.3.1.

4.2.2 Finding Feasible Line Plans

An interesting subproblem of the above model is the feasible line plan prob-
lem: Decide whether there exists a subset L′ ⊆ L and integer frequencies
fℓ ∈ {1, . . . ,min{Λe, e ∈ ℓ}}, ℓ ∈ L′, such that

Λe ≤
∑

ℓ∈Le

fℓ ≤ Λe for all e ∈ E. (4.4)

Proposition 4.1 (Bussieck (1997)). The feasible line plan problem is NP-
complete.

Proof. For given L′ and frequencies fℓ, condition (4.4) can be easily checked
in polynomial time. Hence, the problem is in NP.

Consider the NP-complete problem exact cover by 3-sets (X3C) (see
Garey and Johnson [7]): Given is a set X with 3q elements and a set C of
3-element subsets of X. The question is whether there is a subset C′ of C
such that each element of X is contained in exactly one set of C′.

Let (X, C) be an instance of X3C. We want construct an instance of the
feasible line plan problem such that the answer for it is “yes” if and only if
the answer to the X3C for (X, C) is “yes”. For this we construct the following
graph G = (V,E). For each element x ∈ X we add a node x and a node x′

to G. For ease of notation, we fix an arbitrary order of X. Then for each set
{x1, x2, x3} ∈ C with x1 < x2 < x3, we add the two edges {x′

1, x2}, {x′
2, x3},

and for each element x ∈ X we add an edge {x, x′}. The set of lines is the
following:

L := {(x1, x
′
1, x2, x

′
2, x3, x

′
3) : {x1, x2, x3} ∈ C, x1 < x2 < x3}.

Note that the sequence of nodes in the previous definition form paths in G,
see Figure 4.2. To make the specification of our instance for the feasible line
plan problem complete, we define

Λe =

{

1 if e = {x, x′}, x ∈ X

0 otherwise,
and Λe = 1 for all e ∈ E.
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Figure 4.2: Example for the reduction in Proposition 4.1 with X = {1, 2, 3, 4, 5, 6} and
C = ({1, 3, 6}, {1, 4, 6}, {2, 3, 5}, {4, 5, 6}).

Note that, by construction, the frequencies fℓ for each line ℓ are either 0 or 1,
and will be 1 if a line is in a feasible line plan.

Now assume that C′ ⊆ C is an exact 3-cover for X. Then

L′ := {(x1, x
′
1, x2, x

′
2, x3, x

′
3) : {x1, x2, x3} ∈ C′, x1 < x2 < x3} ⊆ L

yields a feasible line plan by setting fℓ = 1 for ℓ ∈ L′. This is true since each
edge {x, x′} is used exactly once and the other edges are used at most once.

Conversely, let L′ ⊆ L be a feasible line plan with frequencies fℓ, ℓ ∈ L′.
We can assume that fℓ = 1, since otherwise we can remove ℓ from L′. Then

C′ := {{x1, x2, x3} : (x1, x
′
1, x2, x

′
2, x3, x

′
3) ∈ L′} ⊆ C

is an exact 3-cover because of the lower and upper bounds on the frequencies.
This shows that C′ is a solution to X3C if and only if (L′, {fℓ : ℓ ∈ L′}),

is a solution for the feasible line plan problem.

If Λe = ∞ (or large enough), the feasible line plan problem is easy: We
only need to check whether there exists a line covering each edge. If this is
the case, we obtain a feasible line plan, otherwise there is none.

Corollary 4.2. The direct travelers approach is NP-hard.

Proof. Assume that L′ ⊆ L with frequencies fℓ, ℓ ∈ L′, is a feasible line
plan. Then we can define fℓ = 0 for ℓ ∈ L\L′. Furthermore, we set yℓst = 0
for all ℓ ∈ L and s, t ∈ V . This constitutes a feasible solution for the direct
travelers approach. Conversely, if the direct travelers approach has a feasible
solution (f ,y), taking L′ := {ℓ ∈ L : fℓ > 0} gives us a feasible line plan.

Hence, the direct travelers approach has a feasible solution if and only if
there exists a feasible line plan. This shows that if we could solve the direct
travelers approach in polynomial time, we could solve the feasible line plan
problem in polynomial time.



To solve the direct travelers model, Bussieck [2] performs preprocessing
and adds valid inequalities. He uses data from the intercity networks of
Germany and the Netherlands. We will no go into detail here.

4.2.3 Cost Minimal Models

While the direct travelers approach takes care of the passengers interest,
namely to travel without transfers, it ignores the cost of the resulting line
plan. Claessens, van Dijk, and Zwaneveld [4] introduced a model that takes
care of the cost side, but ignores the travelers interests, e.g., the number of
transfers. It, however, makes sure that all passengers are transported. The
model was later refined by Goossens, van Hoesel, and Kroon [9]. As before
we assume that a system split is performed and we are given a line pool L.

A Nonlinear Integer Programming Formulation

We will first present a nonlinear integer programming formulation due to
Claessens et al. We will then linearize this model to obtain a linear mixed
integer programming formulation.

min
∑

ℓ∈L

⌈
fℓ Tℓ

T

⌉

(Ct + Cc zℓ) + dℓ fℓ (ct + cc zℓ)

s.t. Λe ≤
∑

ℓ∈Le

fℓ ≤ Λe ∀ e ∈ E

∑

ℓ∈Le

K fℓ zℓ ≥ ρe ∀ e ∈ E

z ≤ zℓ ≤ z ∀ ℓ ∈ L
fℓ, zℓ ∈ Z+ ∀ ℓ ∈ L.

Here, variables fℓ determine the frequency of line ℓ and zℓ gives the number
of carriages for each train of line ℓ. The capacity of one carriage of the train
is denoted by K, and ρe is the load of passengers on edge e as above. The
parameters z, z give lower and upper bounds on the number of carriages,
respectively. The objective function is the sum of the following terms:

⌈
fℓ Tℓ

T

⌉

︸ ︷︷ ︸

# trains

(Ct + Cc zℓ)
︸ ︷︷ ︸

fixed costs

+ dℓ fℓ (ct + cc zℓ)
︸ ︷︷ ︸

operating costs

Here, T is the total time horizon, and Tℓ is the turn-around time for line ℓ,
i.e., the total time needed for ℓ in back and forth direction. Then the first
term computes the number of trains needed. (Example: for T = 60 min,
fℓ = 2, Tℓ = 31 min, we need two trains, while for Tℓ = 30 min, we would
need only one.) The other parts are as follows: Ct are fixed costs for one



train, Cc are fixed costs for one carriage, dℓ is the geographic length of line ℓ,
ct are operating costs for one train per distance, cc are operating costs for
one carriage per distance.

The above model is nonlinear in two aspects. It contains a rounding
operator and the product between variables zℓ and fℓ in the objective and
in the capacity constraint.

Corollary 4.3 (Claessens et al. [4]). The cost minimizing line planning
approach is NP-hard.

Proof. By setting z = z = 1 and K large enough, the cost minimizing line
planning approach contains the feasible line plan problem as a subproblem,
i.e., if we could solve the cost minimizing line planning problem in polynomial
time for these settings, we could solve the feasible line problem in polynomial
time.

A Linearized Cost Minimizing Model

The above model can be linearized as follows. Let F be the set of feasible
frequencies; an example is F = {1, . . . , F}, where F is an upper bound on
the frequency of a line. Furthermore, let C be the set of feasible numbers of
carriages, e.g., C = {3, 4, 5}. Then define the set of all combinations of lines
with frequencies and numbers of carriages per train:

R = L × F × C.

For r ∈ R, we usually write r = (rℓ, rf , rz) to mark the components. Then
we introduce variables yr, r ∈ R, that determine which combination is used.
The above nonlinear model becomes:

min
∑

r∈R

kr yr

s.t. Λe ≤
∑

r∈R: e∈rℓ

rf yr ≤ Λe ∀ e ∈ E

∑

r∈R: e∈rℓ

K rf rz yr ≥ ρe ∀ e ∈ E

∑

r∈R: rℓ=ℓ

yr ≤ 1 ∀ ℓ ∈ L

yr ∈ {0, 1} ∀ r ∈ R.

Here, we define

kr =
⌈

fr
ℓ

Tr
ℓ

T

⌉

(Ct + Cc rz) + drℓ
rf (ct + cc rz),

which is a constant for r ∈ R.



Table 4.2: Computational results for the linearized cost minimizing model, due to
Goossens et al. [9].

Name n m |L| F C var. cons. gap

SP98IR 44 44 420 {1, 2} {3, . . . , 12} 3 651 65 0.00%
SP98IC 41 46 627 {1, 2} {3, . . . , 15} 10 894 63 0.56%
SP98AR 118 134 913 {1, 2, 3, 4} {2, . . . , 10} 15 065 191 0.84%
SP97IC 40 52 831 {1, 2} {3, . . . , 15} 12 497 60 1.37%
SP97AR 141 177 1 212 {1, 2, 3, 4} {1, . . . , 5} 14 101 181 2.70%

This linearization comes at the cost of introducing many variables. In the
nonlinear model we used two variables for each line, while here we have to
consider each possible combination of frequencies and number of carriages.
Using preprocessing, however, this number can be reduced (see below).

Clearly, Corollary 4.3 also holds for the linearized model, which is hence
NP-hard as well.

Goossens et al. [9] consider line planning problems for the Dutch intercity
network. Table 4.2 shows the relevant parameters; here, n is the number
of nodes and m the number of edges in the network. Columns “var.” and
“cons.” are the variables and constraints after preprocessing, respectively. For
example: The largest instance (SP97AR) has 1 212 · 4 · 6 = 29 088 variables.
This is reduced to 14 101 variables by preprocessing. Goossens et al. further
add valid inequalities and perform a branch-and-cut approach. Table 4.2
shows computational results. They could solve all instances of the Dutch
networks within a small gap, i.e., the relative difference between the best
lower and the best upper bound they could obtain.

4.3 Multi-Commodity Flow Models

In this section, we will discuss two models that allow passengers routes to
be freely chosen, by using a multi-commodity flow formulation.

We use a directed passenger route graph (V,A) that arises from G =
(V,E) by replacing each edge e ∈ E with two antiparallel arcs a(e) and a(e).
Let e(a) ∈ E be the undirected edge corresponding to a ∈ A. For simplic-
ity of notation, we denote this digraph also by G = (V,A). We are given
traveling times τa ∈ Q+ for every arc a ∈ A. For an OD-pair (s, t) ∈ D,
an (s, t)-passenger path is a directed path in (V,A) from s to t. Let Pst be
the set of all (s, t)-passenger paths, P :=

⋃{p ∈ Pst : (s, t) ∈ D} the set of
all passenger paths, and Pa :=

⋃{p ∈ P : a ∈ p} the set of all passenger
paths that use arc a. The traveling time of a passenger path p is defined as
τp :=

∑

a∈p τa. See Table 4.3 for a list of all parameters that will be used in
this section.



Table 4.3: Notation and terminology for multi-commodity flow models.

G multi-modal transport network Gi subnetwork for mode i
Ti terminals for mode i ci line operating costs for mode i
cℓ operating costs for line ℓ Ci line fixed costs for mode i
κi vehicle capacity for mode i κℓ vehicle capacity for line ℓ
L set of all lines Le lines using edge e
D set of OD-pairs dst travel demand between s and t
τa traveling time on arc a τp traveling time on path p
P set of all passenger paths Pst paths between s and t
yp passenger flow on path p xℓ whether line ℓ is used
fℓ frequency of line ℓ Λe frequency bounds for edge e

4.3.1 The Change-and-Go Approach

The “change-and-go” approach for line planning was developed by Schöbel
and Scholl [13, 14]. It considers the passengers interests by taking transfers
into account. We will directly present a path formulation of their model.

Similar to the cost minimizing approach above, the model uses a line
pool L and a set of feasible frequencies F. We introduce binary variables xr,
r = (rℓ, rf ) ∈ R := L × F, that decide whether line rℓ with frequency rf is
used. Additionally, we have continuous variables yp that give the amount of
passengers that travel on path p ∈ P. The model is the following:

min
∑

p∈P

τp yp

s.t.
∑

p∈Pst

yp = dst ∀ (s, t) ∈ D (4.5)

∑

p∈Pa

yp ≤
∑

r∈R: e(a)∈rℓ

κrℓ
rf xr ∀ a ∈ A (4.6)

∑

r∈R: rℓ=ℓ

xr ≤ 1 ∀ ℓ ∈ L (4.7)

∑

r∈R

Crℓ
xr ≤ B (4.8)

xr ∈ {0, 1} ∀ r ∈ R
yp ≥ 0 ∀ p ∈ P.

Constraints (4.5) ensure that all passengers dst are transported from s to t.
The capacity constraints (4.6) provide the connection between passengers
using arc a and the capacities of the lines that use the corresponding undi-
rected edge e(a). Hence, lines are taken as undirected, i.e., by running back
and forth they can transport passengers in both directions. (It is easy to
incorporate undirected lines into the model.) Constraints (4.7) make sure



Figure 4.3: Construction of the expanded graph for the change-and-go approach. Left:

A small piece of the transportation graph with three lines. Right: Expanded graph with
transfer arcs (dotted, can be used in both directions).

that at most one frequency per line is picked and Constraint (4.8) provides
a budget bound for the costs of the lines. Here, Cℓ is a fixed cost for using
line ℓ. Note that this model allows several modes of transportation.

Schöbel and Scholl propose to modify the original graph G to a change-
and-go network in order to handle different aspects that are important in this
setting. The resulting graph has a separate edge for each line passing over
an edge in the original network. Furthermore, transfer arcs are inserted that
allow the transfer of passengers at transfer nodes.; see Figure 4.3. Depending
on the weights τa that are set on these arcs, one can either count the number
of transfers (τa = 1 on transfer arcs and τa = 0 otherwise) or penalize
transfers by setting a transfer time.

Theorem 4.4 (Schöbel and Scholl [13]). The change-and-go line planning
problem is NP-hard.

Proof. Consider an instance of the NP-complete set covering problem, i.e., a
finite set X = {1, . . . ,m}, subsets A1, . . . , An of X, and a positive integer K.
The question is whether there are at most K sets among A1, . . . , Am, such
that each element of X is contained in at least one of these sets. We assume,
without loss of generality, that X is ordered and the sets Ai are pairwise
distinct.

From an instance for the set covering problem, an instance for the line
planning problem is constructed as follows. The network contains 2m nodes
{s1, t1, . . . , sm, tm} with a complete set of arcs and edges E. The set of
origin-destination pairs is

D := {(si, ti) : i ∈ {1, . . . ,m}},

and dst = 1 for all (s, t) ∈ D. For each set Aj = {a1, a2, . . . , ak} (with
a1 < a2 < · · · < ak), we construct a line ℓj that visits the nodes

sa1
, ta1

, sa2
, ta2

, . . . , sak
, tak

,

in this order. We furthermore set F = {1}, Cℓ = 1, κℓ = 1, and B = K.



We claim that there exists a solution to the set covering problem if and
only if there exists a feasible solution to the change-and-go line planning
problem.

First assume that Ai1, . . . , Aik (i1 < i2 < · · · < ik, k ≤ K) form a
solution to the set covering problem. Then we take the lines ℓi1 , . . . , ℓik and
the budget constraint is fulfilled. Each edge {si, ti} is covered by a line, since
we have started with a solution to the set covering problem. Hence, each
passenger can travel on a line. Finally, the capacities κℓ = 1 suffice to carry
all passengers.

Conversely, let ℓi1 , . . . , ℓik be the chosen lines in the line plan. By the
budget constraint we have k ≤ K. We claim that Ai1 , . . . , Aik is a solution to
the set covering problem. Indeed, every passenger from si to ti is transported
and hence each element i ∈ X is covered. This proves the theorem.

Note that in the proof the construction of the change-and-go graph is
not needed.

4.3.2 Column Generation for the Change-and-Go Approach

The above model contains exponentially many variables yp, so we have to
use a column generation procedure to solve the LP relaxation. The LP
relaxation is obtained by removing the integrality constraints and replace
them by the corresponding bounds. If one can solve the LP relaxation one
can embed this into a branch-and-bound procedure to solve the original
mixed integer programming model. We will discuss here only the solution of
the LP relaxation.

In order to identify the pricing problems we will first derive the dual
linear program for the LP relaxation of the above problem. For this we will
write the LP relaxation original problem as follows:

min
∑

p∈P

τp yp

∑

p∈Pst

yp = dst ∀ (s, t) ∈ D (4.9)

∑

r∈R:e(a)∈rℓ

κrℓ
rf xr −

∑

p∈Pa

yp ≥ 0 ∀ a ∈ A (4.10)

−
∑

r∈R:rℓ=ℓ

xr ≥ −1 ∀ ℓ ∈ L (4.11)

−
∑

r∈R

Crℓ
xr ≥ −B (4.12)

xr ≥ 0 ∀ r ∈ R
yp ≥ 0 ∀ p ∈ P.



Note that we can leave out the bounds xr ≤ 1, because they are dominated
by inequalities (4.11) and the nonnegativity constraints xr ≥ 0.

We can now derive the dual program. To this end, let πst ∈ R be
the dual variables for Constraints (4.9), µa ≥ 0 the dual variables for Con-
straints (4.10), ηℓ ≥ 0 the dual variables for Constraints (4.11), and let δ ≥ 0
be the dual variable for the Constraint (4.12). Then the dual of the above
LP relaxation is:

max
∑

(s,t)∈D

dst πst −
∑

ℓ∈L

ηℓ − Bδ

πst −
∑

a∈p

µa ≤ τp ∀ p ∈ P

∑

e∈ℓr

κrℓ
rf

(
µa(e) + µa(e)

)
− ηrℓ

− Crℓ
δ ≤ 0 ∀ r ∈ R

µa ≥ 0 ∀ a ∈ A

ηℓ ≥ 0 ∀ ℓ ∈ L
δ ≥ 0.

Note that the variables xr are static in the model and need not be gener-
ated. Hence, we only have to discuss the pricing problem for the variables yp.
Here, we have to decide whether there exists a path p ∈ P such that

πst −
∑

a∈p

µa > τp,

where (πst, µa) are solutions of the dual LP above. Rewriting this condition
we get:

πst >
∑

a∈p

(
µa + τa

)
.

Hence, this pricing problem can be solved using a shortest path algorithm.
If there exists an (s − t)-path of length smaller than πst with respect to
the weights µa + τa ≥ 0, then this path satisfies the above inequality and
hence the corresponding variable has to be added to the master LP. Since the
weights are nonnegative, shortest paths can efficiently be found by Dijkstra’s
algorithm, for instance (see, e.g., Korte and Vygen [10] for a description of
Dijkstra’s algorithm).

By the above discussion we have:

Corollary 4.5. The LP relaxation of the change-and-go line planning ap-
proach can be solved in polynomial time.

4.4 Variable Lines Approach

In this section we will go one step further and do not use a line pool any-
more. That is, we will generate lines on the fly via a column generation



approach. The passengers can be freely routed as in the change-and-go ap-
proach. Detailed information can be found in Borndörfer, Grötschel, and
Pfetsch [1].

For the following, we need operating costs c1 ∈ QE1

+ , . . . , cM ∈ QEM

+

on the edges, fixed costs C1, . . . , CM ∈ Q+ for the set-up of a line for each
mode, vehicle capacities κ1, . . . , κM ∈ Q+ for each mode, and edge capacities
Λ ∈ QE

+. Let cℓ :=
∑

e∈ℓ ci
e be the operating cost of line ℓ of mode i, Cℓ := Ci

be its fixed cost, and κℓ := κi be its vehicle capacity. See Table 4.3 for a list
of all parameters.

With this notation, the line planning problem can be modeled using three
kinds of variables:

yp ∈ R+ the flow of passengers traveling from s to t on path p ∈ Pst,
fℓ ∈ R+ the frequency of line ℓ ∈ L,
xℓ ∈ {0, 1} a decision variable for using line ℓ ∈ L.

(LPP) min λ
( ∑

ℓ∈L

Cℓ xℓ + cℓ fℓ

)
+ (1 − λ)

∑

p∈P

τp yp

∑

p∈Pst

yp = dst ∀ (s, t) ∈ D (i)

∑

p∈Pa

yp −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (ii)

∑

ℓ∈Le

fℓ ≤ Λe ∀ e ∈ E (iii)

fℓ ≤ Fxℓ ∀ ℓ ∈ L (iv)

xℓ ∈ {0, 1} ∀ ℓ ∈ L (v)

fℓ ≥ 0 ∀ ℓ ∈ L (vi)

yp ≥ 0 ∀ p ∈ P. (vii)

Here, λ ∈ [0, 1] is a weighing parameter. See below for more information.

The passenger flow constraints (i) and the nonnegativity constraints (vii)
model a multi-commodity flow problem for the passenger flow, where the
commodities correspond to the OD-pairs (s, t) ∈ D. This part guarantees
that the demand is routed. The capacity constraints (ii) link the passenger
paths with the line paths to ensure sufficient transportation capacity on each
arc. The frequency constraints (iii) bound the total frequency of lines using
an edge. Inequalities (iv) link the frequencies with the decision variables for
the use of lines; they guarantee that the frequency of a line is 0 whenever
it is not used. Here, F is an upper bound on the frequency of a line; for
technical reasons, we assume that F ≥ Λe for all e ∈ E, see Section 4.4.2 for
more information.



4.4.1 Discussion of the Model

Let us discuss some properties of the model before we investigate its algo-
rithmic tractability.

Objectives: The objective of the model has two competing parts, namely,
to minimize total passenger traveling time

∑

p∈P

τp yp = τTy

and to minimize costs
∑

ℓ∈L

Cℓ xℓ + cℓ fℓ = CTx + cTf .

Here, CTx is the fixed cost for setting up lines and cTf is the variable cost
for operating these lines at frequencies f . The model allows to adjust the
relative importance of one part over the other by an appropriate choice of λ.
For instance, if λ = 0, only the second part of the objective (measuring the
total traveling time) is taken into account. Conversely, if λ = 1, only the first
part (measuring the sum of fixed and operating costs) are used. Including
fixed costs allows to consider objectives such as minimizing the number of
lines; note that LPP is a linear program (LP) if all fixed costs are zero.

Passenger Routes: Since the traveling times τ are nonnegative, we can
assume passenger routes to be (simple) paths.

Our model does not fix passenger paths according to a system split, but
allows to freely route passengers according to the computed lines. This is
targeted at local public transport systems, where, in our opinion, people
determine their traveling paths according to the line system and not only
according to the network topology.

Our model computes a set of passenger paths that minimize the total
traveling times τTy in the sense of a system optimum.

The routing in our model allows for passengers paths of arbitrary travel
times, which may force some passengers to long detours. We remark that
this problem could be handled by introducing appropriate bounds on the
travel times of paths. This would, however, turn the pricing problem for
the passenger paths into an NP-hard resource constrained shortest path
problem; see the chapter on duty and vehicle scheduling. Note also that
such an approach would measure travel times with respect to shortest paths
in the underlying network (independent of any line system). Ideally, however,
one would like to compare to the shortest paths using only arcs covered by
the computed line system.

Line Routes: The literature generally takes line routes as (simple) bidi-
rected paths, and we do the same. In fact, a restriction forcing some sort of
simplicity is necessary in order to prevent repetitions around cycles.



It is easy to incorporate additional constraints on the formation of indi-
vidual lines and constraints on sets of lines, e.g., that the length of a line
should not deviate too much from a shortest path between its endpoints or
bounds on the number of lines using an edge. Such constraints are important
in practice. In the following we consider bounds on the number of edges in
a line. Let us give two arguments why this case is practically relevant.

The first argument is based on an idea of a transportation network as a
planar graph, probably of high connectivity. Suppose this network occupies
a square, in which n nodes are evenly distributed. A typical line starts in the
outer regions of the network, passes through the center, and ends in another
outer region; we would expect such a line to be of length O(

√
n).

Real networks, however, are not only (more or less) planar, but often
resemble trees. In a balanced and preprocessed tree, where each node degree
is at least 3, the length of a path between any two nodes is only O(log n).

Transfers: Transfers between lines are currently ignored in our model, be-
cause constraints (iii) only control the total capacity on edges and not the
assignment of passengers to lines. The problem are not transfers between dif-
ferent modes, which can be handled by linking the mode networks Gi with
appropriate transfer edges, weighted by estimated transfer times. A simi-
lar trick could in principle be used for transfers between lines of the same
mode, using an appropriate expansion of the graph. However, this greatly
increases the complexity of the model, and it introduces degeneracy; it is
unclear whether such a model remains tractable for practical data.

Frequencies: Frequencies indicate the (approximate) number of times vehi-
cles need to be employed in order to serve the demand over the time horizon.
In a real world line plan, frequencies often have to produce a regular timetable
and hence are not allowed to take arbitrary fractional values. Our model,
however, treats frequencies as continuous values. This is a simplification.
We have introduced fixed costs in order to reduce the number of lines and
decrease the likelihood of low frequencies. In addition, we could have forced
our model to accept only a finite number of frequencies by enumerating lines
with fixed frequencies in a similar way to the linear cost minimizing model
in Section 4.2.3. The resulting model, however, would be much harder to
solve. On the other hand, since the frequencies are mainly used to adjust line
capacities, we do (at present) not care so much about “nice” frequencies and
view the fractional values as approximations or clues to “sensible” values.

4.4.2 Column Generation for the Variables Lines Approach

The LP relaxation of (LPP) can be simplified by eliminating the x-variables.
In fact, since (LPP) minimizes over nonnegative costs, one can assume
w.l.o.g. that inequalities (iv) are satisfied with equality, i.e., there is an opti-
mal LP solution such that Fxℓ = fℓ ⇔ xℓ = fℓ/F for all lines ℓ. Substituting



for x, we observe that the inequalities fℓ ≤ F remaining after the elimina-
tion are dominated by inequalities (iii) and hence can be omitted (recall that
we assumed F ≥ Λe). Setting γℓ = Cℓ/F + cℓ, we arrive at the following
equivalent, but simpler, linear program:

(LP) min λ
∑

ℓ∈L

γℓ fℓ + (1 − λ)
∑

p∈P

τp yp

∑

p∈Pst

yp = dst ∀ (s, t) ∈ D (i)

∑

p∈Pa

yp −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (ii)

∑

ℓ∈Le

fℓ ≤ Λe ∀ e ∈ E (iii)

fℓ ≥ 0 ∀ ℓ ∈ L (iv)

yp ≥ 0 ∀ p ∈ P. (v)

Note that (LP) contains only a polynomial number of inequalities (apart
from the nonnegativity constraints (iv) and (v)).

We want to solve (LP) with a column generation approach and therefore
investigate the corresponding pricing problems. We derive the following dual
program, where the variables of the dual are as follows: π = (πst) ∈ RD

(flow constraints (i)), µ = (µa) ∈ RA (capacity constraints (ii)), and η ∈ RE

(frequency constraints (iii)). The dual of (LP) is:

max
∑

(s,t)∈D

dst πst −
∑

e∈E

Λe ηe

πst −
∑

a∈p

µa ≤ (1 − λ)τp ∀ p ∈ Pst, (s, t) ∈ D

κℓ

∑

e∈ℓ

(
µa(e) + µa(e)

)
−

∑

e∈ℓ

ηe ≤ λγℓ ∀ ℓ ∈ L

µa, ηe ≥ 0 ∀ a ∈ A, e ∈ E.

It will turn out that the pricing problem for the line variables fℓ is a
longest path problem; the pricing problem for the passenger variables yp,
however, is a shortest path problem.

Pricing of the Passenger Variables

The pricing problem for the passenger path variables yp is exactly the same
as in the change-and-go approach and hence can be solved in polynomial
time, see Section 4.3.2.



Pricing of the Line Variables

The pricing problem for line variables fℓ is more complicated. The reduced
cost γℓ for a variable fℓ is

γℓ = λγℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)
.

The corresponding pricing problem consists in finding a (simple) path ℓ of
mode i such that

0 > γℓ = λγℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)

= λCℓ/F + cℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)

= λCi/F +
∑

e∈ℓ ci
e −

∑

e∈ℓ

(
κi (µa(e) + µa(e)) − ηe

)

= λCi/F +
∑

e∈ℓ

(
ci
e − κi (µa(e) + µa(e)) + ηe

)

⇔ ∑

e∈ℓ(κi (µa(e) + µa(e)) − ηe − ci
e) > λCi/F.

This problem turns out to be a maximum weighted path problem, since the
weights (κi (µa(e) + µa(e)) − ηe − ci

e) are not restricted in sign. Hence, the
pricing problem for the line variables is NP-hard [7]. This shows that solving
the LP relaxation (LP) is NP-hard as well.

If we restrict the lengths of the lines, however, we can show the following.

Theorem 4.6 (Borndörfer, Grötschel, and Pfetsch [1]). The LP relaxation
of (LPP) can be solved in polynomial time, if the lengths of the lines are
most k, with k ∈ O(log n).

Here the length of a line are the number of edges contained in it.

4.4.3 Algorithm

We now present a column generation algorithm for the solution of the model
(LPP) with length restricted lines. The algorithm solves the LP relaxation in
a first phase and constructs a feasible line plan using a greedy type heuristic
in a second phase.

To solve the LP relaxation, our algorithm iteratively prices out passen-
ger and line path variables until no improving variables are found. We solve
the master LP with the barrier algorithm and, towards the end of the pro-
cess, with the primal simplex algorithm of CPLEX 9.1. We check for new
passenger path variables for all OD-pairs using Dijkstra’s algorithm, see Sec-
tion 4.4.2, until no more improving passenger paths are found. If we don’t
find an improving passenger path, we price out line variables for all line
modes and all feasible terminal pairs. We use enumeration for this step.

In the second phase, our algorithm tries to construct a good integer so-
lution from a line pool consisting of the lines having nonzero frequencies in
the optimal LP solution. The heuristic is motivated by the observation that



the solution of the LP relaxation of a line planning problem often contains
lines with very low frequencies. We try to remove these lines by a simple
greedy method based on a strong branching selection criterion. In the be-
ginning the x-variables of all lines in the pool are set to 1. In each iteration,
we tentatively remove a line (set its x-variable to 0), compute the objective
λ cTf + (1 − λ) τTy of the LP obtained by fixing the line variables as de-
scribed, pricing passenger variables as needed, and add the fixed costs CTx

of all lines that are fixed to 1. After probing candidate lines with the smallest
f -values in this way, we permanently delete the line whose removal resulted
in the smallest objective. We repeat this elimination as long as the remaining
set of lines is still feasible, i.e., all demands can be routed, and the objective
function decreases.

4.4.4 Computational Results

In this section we report on computational experience with line planning
problems for the city of Potsdam, Germany. The experiments originate from
a joint project with the two local public transport companies ViP Verkehrs-
gesellschaft GmbH and Havelbus Verkehrsgesellschaft mbH, the city of Pots-
dam, and the software company IVU Traffic Technologies AG.

Potsdam is a medium sized town near Berlin; it has about 150,000 inhabi-
tants. Its public transportation system uses city buses and trams (operated
by ViP) and regional buses (operated by Havelbus). Additionally, there
are regional trains connecting Potsdam to its surroundings (operated by
Deutsche Bahn AG) and a city railroad (operated by S-Bahn Berlin) which
provides connections to Berlin. As regional trains and the city railroad are
not operated by ViP and Havelbus, the associated lines routes are assumed
to be fixed.

Data

Our data consists of a multi-modal traffic network of Potsdam and an as-
sociated OD-matrix, which had been used by IVU in a consulting project
for planning the Potsdam network (Nahverkehrsplan). The data represents
the line system of Potsdam of 1998. It has 27 bus lines and 4 tram lines.
Including line variants, the total number of lines was 80. The network has
951 nodes, including 111 OD-nodes, and 1321 edges. The maximum length
of a line is 47 edges.

The network was preprocessed as follows. We removed isolated nodes.
Then we iteratively removed “leaves” in the graph, i.e., nodes which have only
one neighbor, and iteratively contracted nodes with two neighbors. The
preprocessed graph has 410 nodes, 106 of which were OD-nodes, and 891
edges. We remark that although such preprocessing steps are conceptually



Table 4.4: Experimental results of line planning for λ = 0.9978.

Optimized LP solution – enumeration:
total traveling time: 108,360,036.33 [scaled: 238,392.08]
total line cost: 233,776.86 [scaled: 233,262.55]
LP objective value: 471,654.63
active line/pass. var.: 60/4879 transfers: 8777/64607

Optimized integer solution – greedy heuristic:
total traveling time: 112,581,291.50 [scaled: 247,678.84]
total line cost: 287,060.90 [scaled: 286,429.37]
integer objective value: 818,491.68
active line/pass. var.: 30/4767 transfers: 8638/60539

Reference LP solution:
total traveling time: 105,269,846.00 [scaled: 231,593.66]
total line cost: 501,376.24 [scaled: 500,273.21]
LP objective value: 731,866.87
active line/pass. var.: 61/4857 transfers: 8618/63310

Reference integer solution – greedy heuristic:
total traveling time: 106,952,869.00 [scaled: 235,296.31]
total line cost: 562,964.54 [scaled: 561,726.02]
integer objective value: 1,213,221.49
active line/pass. var.: 44/4814 transfers: 9509/70525

easy, the data handling can be quite intricate in practice; for instance, our
data included information on possible turnings of a line at road/rail crossings,
which must be updated in the course of the preprocessing.

The OD-matrix was also modified. Nodes with zero traffic were removed.
The original time horizon was one day, but we wanted to construct a line plan
for the peak hour. We therefore scaled the matrix to 40% in an (admittedly
rough) attempt to simulate afternoon traffic (3 p.m. to 6 p.m.). Note that the
resulting matrix is still quite symmetric (the maximum difference between
each of the two directions was 25) whereas a real afternoon OD-matrix would
not be symmetric. The scaled OD-matrix had 4685 nonzeros and the total
scaled travel demand was 42796.

All traveling times are measured in seconds and we always restricted the
maximum length of a line to 55 edges. Since no data was available on line
costs, we decided on Cℓ = 10000 (fixed costs) for each line ℓ and ci

e = 100
(operating costs) for each edge e and mode i. Hence, we do not distinguish
between costs of different modes (an unrealistic assumption in practice).

Experiments

Table 4.4 reports the results of several computational experiments with the
data and implementation that we have described. All experiments were



performed on a 3.4 GHz Pentium 4 machine running Linux. In the table,
the total traveling time is τTy and total line cost is γTf , the scaled values are
(1−λ) τ Ty and λγTf , respectively; all four values refer to the LP relaxation
(LP). The LP objective value is λγTf + (1 − λ) τTy, the integer objective
value refers to λ (CTx + cTf) + (1 − λ) τTy. The last line in each block of
results gives the number of active (i.e., nonzero) line and passenger variables,
and the number of passenger transfers (first number) that were needed as
well as the number of transfering passengers (second number). Note that we
can compute transfers from passenger routes as an afterthought, although
our optimization model is currently insensitive to them.

Note that our costs are not realistic. Therefore the frequencies that we
compute cannot be compared to the ones used in practice. To allow some
adaptation to our cost model, we let the frequencies of all lines be variable,
in particular, the frequencies of the city railroad and regional train lines.

In our first experiment, we solved the LP relaxation (LP) of the Potsdam
problem. We set λ = 0.9978, which roughly balances the two parts of the
objective function. The resulting LP had 5761 rows. Using enumeration,
we obtained an optimal solution after 451 seconds and 283 iterations (i.e.,
solutions of the master LP), of which 15 were used to price lines. The pricing
problems needed a total time of 183 seconds of which most was used for the
pricing of line paths. Hence, more than half of the time is spent for solving
the master LPs.

We also investigated the passenger routing of our LP solution for the
enumeration variant in more detail. To connect the 4685 OD-pairs only 4879
paths are needed, i.e., most OD-pairs are connected by a unique path. The
total traveling time is 108,360,036.33 seconds, see Table 4.4. For comparison,
when we ignore capacities and route all passengers between every OD-pair on
the fastest path in the final line system, the total traveling time is 95,391,460
seconds. This is a relative difference of 12%. This seems to be an acceptable
deviation.

In our second experiment, we computed two integer solutions for (LPP)
associated with the parameter λ = 0.9978, as above. The first solution
is obtained by rounding all nonzero x-variables in the solution of the LP
relaxation, computed with the enumeration variant, to 1. The (integer) ob-
jective of this rounded solution is 1,058,079.69, which leads to a gap of 55%
compared to the LP relaxation value of 471,654.63. The second solution is
obtained by the greedy algorithm described in Section 4.4.3, starting from
the same LP solution (only lines for city buses, trams, and regional buses
were removed). It has 30 lines (17 bus lines and 2 tram lines), down from 60
in the first solution, see Table 4.4; it took 1368 seconds to compute. The
final (scaled) operating costs are 286,429.37, while the final fixed costs are
λ · 300, 000 = 299, 340. The integer objective of 818,491.68 has a gap of 42%
with respect to the LP relaxation value of 471,654.63. Note that the results
heavily depend on the cost structure: decreasing the fixed costs automati-
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Figure 4.4: Total traveling time (solid, left axis) and total line cost (dashed, right axis)
in dependence on λ (x-axis in logscale).

cally reduces the gap. In our context, with high fixed costs, emphasis is put
on reducing the number of lines (recall that the costs were artificial). The
result obtained seems to be quite good, given that the original line system
contained 27 bus lines and 4 tram lines; it seems unlikely that one can re-
duce the number much further. Furthermore, the lower bound of the LP
relaxations is typically very weak for such fixed cost problems. Still, more
research is needed to provide better lower bounds and primal solutions.

We compare the LP and integer solutions to “reference solutions” shown
in the lower part of Table 4.4. The reference LP solution is obtained by fixing
the paths of the original lines of Potsdam and then solving the resulting LP
relaxation without generating new lines, but allowing the frequencies of the
lines to change. The reference integer solution is obtained by applying the
greedy heuristic to the reference LP solution. The results show that allowing
the generation of new line paths reduces line costs in both cases to roughly
50% and the total objective to roughly 2/3 of the original values, while the
total traveling time increases by a few percent. Hence, in these experiments
the greedy algorithm has not changed the relative improvement obtained
from optimizing lines.

Our third experiment investigates the influence of the parameter λ on the
solution. We computed the solutions to the LP relaxation for 21 different
values of λi, taking λi = 1 −

(
1 − i/20

)4
, for i = 0, . . . , 20. This collects

increasingly more samples near λ = 1, a region where the total traveling
time and the total line cost are about equal.

The results are plotted in Figure 4.4. This figure shows the total traveling
time and the total line cost depending on λ. The extreme cases are as
expected: For λ = 0, the line costs do not contribute to the objective and are
therefore high, while the total traveling time is low. For λ = 1, only the total



line cost contributes to the objective and is therefore minimized as much as
possible at the cost of increasing the total traveling time. With increasing λ,
the total line cost monotonically decreases, while the total traveling time
increases. Note that each computed pair of total traveling time and line
cost constitutes a Pareto optimal point, i.e., is not dominated by any other
attainable combination. Conversely, any Pareto optimal solution of the LP
relaxation can be obtained as the solution for some λ ∈ [0, 1], see, e.g.,
Ehrgott [6].
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