
Lecture Notes

Multicommodity Flows and
Column Generation

Marc Pfetsch

Zuse Institute Berlin

pfetsch@zib.de

last change: 12/18/2006

Technische Universität Berlin
Fakultät II, Institut für Mathematik

WS 2006/07

Ganzzahlige Optimierung im
Öffentlichen Verkehr

Ralf Borndörfer, Christian Liebchen, Marc Pfetsch

Chapter 3

Multicommodity Flows and Column Generation

The goal of this chapter is to give a short introduction into multicommodity
flows and column generation. Both will be used later on.

3.1 Multicommodity Flows

We begin our journey to multicommodity flows with a review of maximum
flows, i.e., the case where we have only one commodity. The main goal in
this part is to fix notation and remind the reader of the basic results on max
flows.

3.1.1 Maximum Flows

Let D = (V,A) be a directed graph (or digraph) with nonnegative capaci-
ties ua ≥ 0 for each arc a ∈ A. The digraph D together with the vector (ua)
is sometimes called a (capacitated) network. Let s and t be two distinct
nodes of D; s is called source and t is called target ; see Figure 3.1 for an
example. A (nonnegative) vector x ∈ RA

+ is called an (s− t)-flow, if it fulfills
the following constraints:∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0, for all v ∈ V \ {s, t}. (3.1)

Here δ+(v) := {(v, w) ∈ A} and δ−(v) := {(u, v) ∈ A} are the out-arcs
and in-arcs of v, respectively. These equations are called flow conservation
constraints, since they guarantee that the in-flow equals the out-flow for all
nodes except s and t. The value of a flow (xa) is the net out-flow of the

s t

[2
]

[1]

[2]

[2]

[2]

[1]

[2
][1]

[1]

[1
]

Figure 3.1: Example for maximum flows. Given are the capacities of each arc.

1

s t

0

1

0

1

0

1

01

1

1

s t

1

1

1

0

1

1

10

0

0

Figure 3.2: Two feasible flows for the example: the flow on the left has value 1 and the
flow on the right has value 2.

source s, i.e., the out-flow minus the in-flow of node s:∑
a∈δ+(s)

xa −
∑

a∈δ−(s)

xa.

A flow (xa) is called feasible if

xa ≤ ua for all a ∈ A. (3.2)

The maximum (s− t)-flow problem is to find a feasible flow of maximum
value. It can be computed by the following linear program:

max
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 for all v ∈ V \ {s, t} (3.3)

0 ≤ xa ≤ ua for all a ∈ A.

Since linear programs can be solved in polynomial time, the maximum (s−t)-
flow problem can be solved in polynomial time.

An interesting variant is the one in which we require the flow to be integer.
In fact, the flow value does not decrease when enforcing this restriction.

Theorem 3.1 (Ford and Fulkerson, 1968). If the capacities are integers,
i.e., ua ∈ Z+ for all a ∈ A, there exists an integer solution (xa) ∈ ZA

+ to the
maximum (s− t)-flow problem.

This theorem follows from the so-called augmenting path algorithm (of
Ford and Fulkerson) that at each stage maintains an integer feasible flow and
increases the flow value. A variant of the original algorithm (due to Edmonds
and Karp) can be shown to run in time O

(
m2n

)
and there exist algorithms

that run in time O
(
n3

)
, see, for example, Korte and Vygen [5]. Hence, the

integer maximum (s − t)-flow problem is solvable in strongly polynomial
time, i.e., in time that only depends on n and m and not on the capacities.

s v1 vk−1 t. . .

Figure 3.3: Example network with exponentially many (s − t)-paths. There are k + 1
nodes in a sequence s = v0, v1, . . . , vk = t. Between each node pair there are two parallel
arcs. In total there are 2k paths between s and t.

There exists an alternative proof of the above theorem, which shows that
the constraint matrix of the above LP is totally unimodular. This implies
that there exists an integer optimal solution to every linear program with
this constraint matrix, as long as the right hand side is integer.

3.1.2 Path Flows

The feasible flows used in formulation (3.3) are also called edge flows. There
exists an alternative formulation that uses a nonnegative variable fp for each
(s−t)-path p. An (s−t)-path is a sequence of arcs a1, . . . , ak that starts at s
and ends at t, such that no node is visited twice by the path (this sometimes
is called a simple path). Let Pst be the set of all (s− t)-paths and let Pa be
the paths that use arc a, i.e., Pa := {p ∈ Pst : a ∈ p}. A feasible path flow
is a nonnegative vector (fp)p∈Pst such that:∑

p∈Pa

fp ≤ ua for all a ∈ A.

The path formulation of the maximum (s− t)-flow problem is the following:

max
∑

p∈Pst

fp

s.t.
∑
p∈Pa

fp ≤ ua for all a ∈ A (3.4)

fp ≥ 0 for all p ∈ Pst.

Flow conservation constraints like (3.1) are not necessary in this formulation,
since the flow is automatically conserved along each path. This simpler
structure of (3.4) comes at the cost of exponentially many variables, see
Figure 3.3. We will discuss a method that allows to efficiently solve the path
formulation in a bit more general context in the next section. We call the
sum in the objective function the value of the path flow f = (fp)p∈P.

For the meantime assume that we have a path flow (fp) available. Then
we can easily compute an edge flow xa as follows:

xa =
∑
p∈Pa

fp.

s t s t s t

Figure 3.4: Path decomposition of the flow on the right hand side of Figure 3.2. The
values fp are equal to 1 in both cases. Left over are only cycles, see the right most picture.

This shows that each path flow uniquely determines an edge flow. Conversely,
we can also compute a path flow with the same value from an edge flow by
a method that is called path decomposition. Let D(x) be the directed graph
consisting of those arcs a of D for which xa > 0. Let p ∈ Pst be an (s−t)-path
in D(x). We let

fp := min{xa : a ∈ p}

and subtract fp from xa for all arcs a ∈ p. Then we repeat the process with
the new digraph D(x). The process ends when there is no (s− t)-path left.
We then remove the remaining flow – this flow can only appear along cycles
that do not contribute to the flow from s to t. See Figure 3.4 for an example.

Note that the path flow is not uniquely determined by the edge flow, but
this will not play a role in the following.

3.1.3 The Multicommodity Flow Problem

A generalization of the maximum (s− t)-flow problem is the multicommod-
ity flow (MCF) problem. In this setting, we are given k commodities, i.e.,
node pairs (s1, t1), . . . , (sk, tk); we sometimes also call the index i ∈ [k] a
commodity. For each i = 1, . . . , k, we want to find an (si − ti)-flow, such
that the sum of these flows on each arc does not exceed a given capacity.
We call a vector (xi

a), with a ∈ A, i ∈ [k], a feasible multicommodity flow if
it satisfies the following constraints:

∑
a∈δ+(v)

xi
a −

∑
a∈δ−(v)

xi
a = 0 for all v ∈ V \ {si, ti}, i ∈ [k],

k∑
i=1

xi
a ≤ ua for all a ∈ A.

The first type of constraints are separate flow conservation constraints for
each commodity. The second type implements the capacity constraints on
each arc. The multicommodity flow problem is to maximize the sum of the

flow values of the individual commodities:

max
k∑

i=1

(∑
a∈δ+(si)

xi
a −

∑
a∈δ−(si)

xi
a

)
s.t.

∑
a∈δ+(v)

xi
a −

∑
a∈δ−(v)

xi
a = 0 for all v ∈ V \ {si, ti}, i ∈ [k] (3.5)

k∑
i=1

xi
a ≤ ua for all a ∈ A

xi
a ≥ 0 for all a ∈ A, i ∈ [k].

Since this is a linear program, the multicommodity flow problem can be
solved in polynomial time. In fact, Tardos showed that it can be solved
in strongly polynomial time, i.e., there exists an algorithm whose running
time does not depend on the capacities ua (see Grötschel, Lovász, and Schri-
jver [4]). Note, however, that the multicommodity flow problem turns NP-
hard, if we require the flows to be integers, see Garey and Johnson [3]. This
is in contrast to the maximum (s− t)-flow problem, see the discussion after
Theorem 3.1. Furthermore, it is not true that exists an integer multicom-
modity flow whenever there exists a feasible multicommodity flow.

As for the maximum (s− t)-flow problem there exists a path formulation
for the multicommodity flow problem. As above, Pst is the set of all (simple)
(s − t)-paths and we define P = Ps1,t1 ∪ · · · ∪ Psk,tk . Again Pa is the set of
paths that use arc a, i.e., Pa := {p ∈ P : a ∈ p}. We have a variable fp for
each p ∈ Psi,ti and i ∈ [k]. This yields the following program:

max
∑
p∈P

fp

s.t.
∑
p∈Pa

fp ≤ ua for all a ∈ A (3.6)

0 ≤ fp for all p ∈ P.

A variant is the following. We are given arc costs ca for every a ∈ A and
demand values dsi,ti ≥ 0 for i = 1, . . . , k. The goal is to find a minimum cost
multicommodity flow that fulfills all demands, i.e.,

min
∑
p∈P

(∑
a∈p

ca

)
fp

s.t.
∑

p∈Psi,ti

fp = dsi,ti for all i = 1, . . . , k

∑
p∈Pa

fp ≤ ua for all a ∈ A

0 ≤ fp for all p ∈ P.

We will use this variant in some line planning models, but will use the first
model in this chapter because it is a bit easier to derive the column generation
algorithm for it.

Although the edge formulation (3.5) shows that the MCF problem can
be solved in polynomial time, in practice, it is often a good idea to use
the path formulation and column generation instead (see the next section).
The reason is that the storage needed for the edge formulation is often very
large: assume that the graph has 1000 nodes and 10000 edges, a size that
still seems reasonable. Furthermore, assume that you want to send flow from
every node to every other, i.e., the number of commodities is 1000 · 1000 =
1, 000, 000. The number of variables in (3.5) is then: 1, 000, 000 · 10000 =
10, 000, 000, 000. If you take 8 Bytes for each variable, you already need a
storage of at least 80 Giga-Byte. In practice, often column generation can
solve the path formulation (3.6) with much less storage (and time).

3.2 Column Generation

Column generation is a method to efficiently solve linear programs with a
huge number of variables. It is dual to the cutting plane method. The
principal idea, due to Ford and Fulkerson [2], works as follows: We want to
solve an LP, called master LP, and consider a restricted master LP, which
contains all constraints of the master LP, but only a subset of the variables.
Then we solve a pricing problem, i.e., we decide whether there is a variable
that is currently not contained in the restricted master LP, but might improve
the objective function. If there are no such variables, it is guaranteed that
the current solution of the restricted master LP is optimal for the whole
problem. Otherwise, we add the variables and iterate.

3.2.1 Interlude: Duality Theorem for Linear Programming

We need some facts from duality theory for linear programs. Consider the
following linear program, the so-called primal program:

max cTx

s.t. Ax ≤ b

x ≥ 0,

where A ∈ Rm×n and b ∈ Rm. A vector x ∈ Rn is feasible for the primal
program if Ax ≤ b and x ≥ 0. The dual program is

min bTy

s.t. ATy ≥ c

y ≥ 0.

A vector y ∈ Rm is feasible for the dual program if ATy ≥ c and y ≥ 0.

Lemma 3.2 (Weak Duality). We have

max{cTx : Ax ≤ b, x ≥ 0} ≤ min{bTy : ATy ≥ c, y ≥ 0},

if both programs have a feasible solution.

Proof. Let x ≥ 0 satisfy Ax ≤ b and y ≥ 0 satisfy ATy ≥ c, i.e., x and y
are feasible for the primal and dual program, respectively. Then we have

cTx ≤ (ATy)Tx = yTAx ≤ yTb,

because x, y ≥ 0.

We define max ∅ := −∞ and max{cTx : x ∈ X} := ∞, if the set X
is unbounded with respect to c (and taking the maximum), i.e., there exists
x ∈ X and r ∈ R

n with cTr > 0 such that x + λ r ∈ X for all λ ≥ 0.
Similarly, we define min ∅ := ∞ and min{cTx : x ∈ X} := −∞ if X is
unbounded with respect to c (and taking the minimum), i.e., there exists
x ∈ X and r ∈ Rn with cTr < 0 such that x + λ r ∈ X for all λ ≥ 0.

Theorem 3.3 (Duality Theorem).

max{cTx : Ax ≤ b, x ≥ 0} = min{bTy : ATy ≥ c, y ≥ 0},

if at least one of the programs has a feasible solution.

Remark 3.4. From the duality theorem it follows that if the primal is un-
bounded, then the dual has no feasible solution and conversely. If they are
both feasible their optimal solution values are equal. It can, however, happen
that both programs have no feasible solution.

3.2.2 Column Generation for MCF

Let us describe the column generation method for the multicommodity flow
problem formulation (3.6). We denote by (MCF) the master LP (3.6) and
its dual by (D-MCF). Let P′ ⊆ P be a subset of all paths and consider the
restricted master LP w.r.t. P′:

(MCF′) max
∑
p∈P′

fp

s.t.
∑
p∈P′

a

fp ≤ ua for all a ∈ A

fp ≥ 0 for all p ∈ P′.

A feasible solution (f ′p)p∈P′ for (MCF′) yields a feasible solution (fp)p∈P

for (MCF) by setting fp = f ′p for p ∈ P′ and fp = 0 for p ∈ P \P′. It follows
that the optimal solution value v(MCF′) of (MCF′) is not larger than the
optimal solution value of (MCF), i.e., v(MCF′) ≤ v(MCF). We want to
decide whether the solution (f ′p) is optimal for (MCF). If this is not the
case, we want to add additional variables to (MCF′) that help improve the
solution value. How can we do that?

We use the dual restricted master LP :

(D-MCF′) min
∑
a∈A

ua µa

s.t.
∑
a∈p

µa ≥ 1 for all p ∈ P′

µa ≥ 0 for all a ∈ A.

Note that 0 is feasible for (MCF) and (MCF′), and they are bounded (their
flow value is not larger than

∑
a∈A ua < ∞). Hence, it follows from the

duality theorem that v(D-MCF′), v(D-MCF) < ∞ and

v(D-MCF′) = v(MCF′) ≤ v(MCF) = v(D-MCF). (3.7)

Let µ be a solution to (D-MCF′) and imagine that the dual constraints∑
a∈p

µa ≥ 1 (3.8)

are even satisfied for all p ∈ P (and not only for p ∈ P′ as guaranteed by
the formulation of (D-MCF′)). Then µ is feasible (and hence optimal) for
(D-MCF). Therefore, in this case

v(D-MCF) = v(D-MCF′),

and equality holds in (3.7) throughout. This shows that our solution (f ′p) to
(MCF′) was in fact optimal for the original problem (MCF). Hence, we are
done in this case. If there exists a path p for which (3.8) is violated, we add
the corresponding variable to (MCF′) and repeat the process.

Deciding whether (3.8) is satisfied for all paths is the so-called pricing
problem and can efficiently be done as follows. We compute a shortest path
w.r.t. to the weights µ ≥ 0 for each commodity (si, ti), e.g., by Dijkstra’s
algorithm (see, for instance, Korte and Vygen [5]); this is possible since the
weights are nonnegative. If the shortest paths are all at least of weight 1,
we know that (3.8) is satisfied for all paths, otherwise we have found a path
that violates (3.8). See Algorithm 1.

We have observed that the pricing problem can be solved in polynomial
time. Hence the big question is how many iterations this algorithm will take.

Algorithm 1 Column Generation for MCF
1: repeat
2: Solve (MCF′) for P′

3: Let µ be the dual variables for (D-MCF′)
4: for i = 1, . . . , k do
5: Find a shortest (si − ti)-path w.r.t. weights (µa)
6: If weight of shortest path p is less than 1, add p to (MCF′)
7: end for
8: until no path has been added

Do we need to generate exponentially many paths (variables) to solve (MCF)
to optimality in the worst case? The following general theorem shows that
if one takes care in the implementation, i.e., one uses the ellipsoid method
to solve the LPs, one only needs polynomially many iterations.

Theorem 3.5. If the pricing problem for a linear program with a fixed num-
ber of constraints, but arbitrarily many variables (not counting for the input
length), can be solved in polynomial time, the LP can be solved in polynomial
time.

Proof. Column generation is the dual process to a cutting plane method. The
pricing problem corresponds to a so-called separation problem. Here, for a
class of inequalities, one has to decide whether all inequalities are satisfied
by a given point or to produce a violated inequality.

From the results of Grötschel, Lovász, and Schrijver [4] on the ellipsoid
method, it follows that a cutting plane algorithm runs in polynomial time if
and only if the separation problem can be solved in polynomial time. This
translates to the statement of the theorem.

Corollary 3.6. The path formulation (3.6) for the MCF can be solved in
polynomial time.

Remark 3.7. In fact, our presentation above was in terms of the separation
problem for inequalities (3.8). We showed that this separation problem can
be solved in polynomial time. The result of Grötschel, Lovász, and Schrijver,
mentioned in the proof of Theorem 3.5, is often referred to as (polynomial
time) equivalence between optimization and separation.

On can even show that one only needs |A| many paths in P′ to find
an optimal solution for (MCF). Hence, one only needs very few variables
compared to the edge formulation.

Lemma 3.8. There exists a set of paths P′ ⊆ P of size |P′| = |A| such that
v(MCF′) = v(MCF).

Proof. Consider a basic feasible optimal solution to (MCF). Since there
are |A| many constraints, the basis is of this size. Hence, at most |A| com-
ponents (i.e., paths) have a nonzero entry. Therefore, it suffices to let P′

consist of the corresponding paths.

Remark 3.9. The problem remains, however, to find the optimal variables.
This might take a long time, since in practice it often happens that the
inequalities corresponding to some paths are violated, yet adding the variable
does not improve the objective function value, i.e., the variables are zero in
the master LP.

Remark 3.10. One should note that one can also develop a column genera-
tion method for the edge formulation of MCF, since also there most variables
will be zero. However, since there are more constraints in the formulation,
the size of the bases are larger and hence a larger number of variables can
be nonzero.

3.2.3 Alternative View 1: Reduced Costs

Column generation can also be viewed as a pivot step in the reduced simplex
algorithm. We again explain it for the example of multicommodity flows.

Consider the path formulation of MCF in matrix form:

(MCF) max 1Ty

s.t. My ≤ u

y ≥ 0.

Here, 1 is the vector of all ones, and M ∈ Rm×n is the constraint matrix
of the capacity constraints. We add slack variables s ∈ Rm to obtain the
equivalent formulation in standard form:

max 1Ty

s.t. My + s = u

y, s ≥ 0.

Setting A := [M I] ∈ R
m×(n+m), where I is the identity matrix of size

m×m, we get

max cTz

s.t. Az = u

z ≥ 0,

where c = (1,0) and z = (y, s). Let now B ⊆ {1, . . . , n + m} be a basis
for A, i.e., |B| = m and AB (the submatrix of A obtained by taking the

columns indexed by B) is invertible. The reduced costs corresponding to B
are defined by

rj := cj − cT
BA−1

B Aj for j ∈ N := {1, . . . , n + m} \B,

where cB is the subvector of c indexed by B and Aj is the jth column of A.
The vector cT

BA−1
B =: µT is the dual solution corresponding to B.

In the reduced simplex algorithm the pivot step chooses j ∈ N with
rj > 0. Such a column might increase the objective function value if pivoted
into the new basis B. For the MCF this means that

0 < rj = cj − µTAj .

If j ∈ {1, . . . , n}, the jth column of A is the incidence vector of a path p and
cj = 1. This leads to

0 < rj = 1−
∑
a∈p

µa ⇔
∑
a∈p

µa < 1,

which is exactly the condition that we derived above for p being a candidate
path. For j ∈ {n + 1, . . . , n + m}, we get

0 < rj = 0− µTej−n = −µj−n.

Here, ei is the ith unit vector. Since by definition µ ≥ 0 this condition is
never fulfilled.

Summarizing, the revised simplex can be viewed as a special case of
column generation. The pivot choice of a new column entering the basis
corresponds to the pricing problem.

3.2.4 Alternative View 2: Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition can be seen as a general way to derive models
that are suitable to column generation. Generating columns will correspond
to generating vertices or rays of a particular polyhedron. As above, we
explain the method on the example of MCF.

We start with the MCF in its edge formulation:

max cTx

s.t. Nx = 0

Ux ≤ u

x ≥ 0.

Here, Nx = 0 codes flow conservation and Ux ≤ u the capacity constraints.
We now take the subset of the constraints corresponding to the flow conser-
vation and nonnegativity constraints and consider the corresponding poly-
hedron:

P := {x ≥ 0 : Nx = 0}.

This polyhedron has a single vertex 0 (and hence is a cone) and a finite num-
ber of rays r1, . . . , rs. By the Minkowski-Weyl theorem (see Schrijver [6])
we can write

P = cone{r1, . . . , rs} := {λ1r
1 + · · ·+ λsr

s : λ1, . . . , λs ≥ 0}.

It turns out that in our case the rays ri correspond to incidence vectors of
paths and cycles in the digraph. The above decomposition corresponds to
the path decomposition mentioned in Section 3.1.2. More precisely, the rays
have the following structure

(ri)T := [0, . . . , 0, (r̃i)T, 0, . . . , 0].

Here, r̃i correspond to entries of some commodity j and is a multiple of an
(sj − tj)-path or a cycle. Because of the flow conservation constraints, all
nonzero entries in r̃i have the same size wi. Because cycles do not change
the flow value in the model below, we can assume that they do not appear
among the ri.

We now use the above description to represent a feasible x and plug it
into the original formulation. This yields:

max λ1c
Tr1 + · · ·+ λsc

Trs

s.t. λ1Nr1 + · · ·+ λsNrs = 0

λ1Ur1 + · · ·+ λsUrs ≤ u

λ1r
1 + · · ·+ λsr

s ≥ 0

λ1, . . . , λs ≥ 0.

Since by construction, Nri = 0 and ri ≥ 0, we can drop the first and third
class of constraints to get

max λ1c
Tr1 + · · ·+ λsc

Trs

s.t. λ1Ur1 + · · ·+ λsUrs ≤ u

λ1, . . . , λs ≥ 0.

We can now set yi = wi λi (see above for a definition of wi). These new
variables denote the flow on the path pi corresponding to ri. If we now
analyze the structure of c and U be note that we have recovered the path
formulation of MCF:

max y1 + · · ·+ ys

s.t.
∑

i:a∈pi

yi ≤ ua for all a ∈ A

y1, . . . , ys ≥ 0,

This is equivalent to (3.6).
Therefore, Dantzig-Wolfe decomposition derives the path formulation

from the edge formulation of MCF. Furthermore, the pricing problem cor-
responds to a generation of rays in P .

Let us close this chapter with a note on the general method of Dantzig-
Wolfe decomposition and its relation to solving integer programs.

Consider an integer program

max cTx

s.t. Ax ≤ b (3.9)
Dx ≤ d

x ∈ Zn
+.

Again, we chose a subset of the constraints, include the integrality con-
straints, and take the convex hull:

P := conv{x ∈ Zn
+ : Ax ≤ b}.

This again is a polyhedron, and hence, by the Minkowski-Weyl theorem, we
can write

P = conv{v1, . . . ,vt}+ cone{r1, . . . , rs},

where

conv{v1, . . . ,vt} := {µ1v
1 + · · ·+ µtv

t :
t∑

i=1

µi = 1, µ1, . . . , µt ≥ 0}.

Substituting x using this representation and removing the constraints Ax ≤
b (which are automatically fulfilled) yields the master problem:

max
t∑

i=1

µic
Tvi +

s∑
i=1

λic
Tri

s.t.

t∑
i=1

µiDvi +
s∑

i=1

λiDri ≤ d

t∑
i=1

µi = 1 (3.10)

t∑
i=1

µiv
i +

s∑
i=1

λir
i ∈ Zn

+

µ1, . . . , µt, λ1, . . . , λs ≥ 0.

Note that we have to keep the constraint that x has to be integral, if we want
to solve the integer program by branch-and-bound methods; for solving the
LP-relaxation it of course can be removed.

The idea of including the integrality requirement into P is to improve
the value of the LP-relaxation, since the feasible set is smaller. However, if

P ′ := conv{x ∈ Rn
+ : Ax ≤ b}

is integral, i.e., has only integral vertices, then it turns out that this “does
not help”:

Theorem 3.11. Let P ′ be an integral polyhedron. Then the value of the
LP-relaxation of (3.10) is equal to the value of the LP-relaxation of (3.9).

The proof is not hard, but we will omit it here.

3.2.5 Final Remarks on Column Generation

In the above presentation we explained column generation at the example of
the multicommodity flow problem only. It should, however, not be too hard
to generalize the approach, once the main features have become clear.

Much more could be said about column generation, especially about solv-
ing integer programs with column generation. This will play a role when
solving vehicle and duty scheduling problems. The article of Desrosiers and
Lübbecke [1] can be a starting point for further reading, as well as the other
articles in this book.

Bibliography

[1] J. Desrosiers and M. E. Lübbecke, A primer in column generation, in
Column Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon, eds.,
Springer-Verlag, New York, 2005, ch. 1, pp. 1–32.

[2] L. R. Ford, jr. and D. R. Fulkerson, A suggested computation for maximal
multi-commodity network flows, Manage. Sci. 5 (1958), pp. 97–101.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, New York,
1979.

[4] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Algorithms and Combinatorics 2, Springer-Verlag,
Heidelberg, 2nd ed., 1993.

[5] B. Korte and J. Vygen, Combinatorial optimization. Theory and algorithms,
Algorithms and Combinatorics 21, Springer, Berlin, 2nd ed., 2002.

[6] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons,
Chichester, 1986.

15

