Exercise 12: Implementing the Lin-Kernighan heuristic for the TSP

Markus Reuther

Zuse Institute Berlin

January 19, 2012
Outline

1. The Traveling Salesman Problem

2. The Lin-Kernighan heuristic
The Traveling Salesman Problem

Given
- Complete undirected graph $G = (V, E)$
- Metric edge costs $c_e \geq 0$ for all $e \in E$.

Problem
- Find a Hamiltonian cycle with minimal cost.
Lin-Kernighan (LK)

- **Most famous and best** local search approach for the sym. TSP.
- Best **exact** solver for the TSP is **Concorde** (Applegate, Bixby, Chvátal, Cook).
- Best LK-Code today: Keld Helsgaun.
- **Concorde + Code of Helsgaun, 2006:** p1a85900 solved (**world record**). (Applegate, Bixby, Chvátal, Cook, Espinoza, Goycoolea, Helsgaun)
k-opts

- *k-opt neighborhood for tour \(x \): \(\mathcal{N}_k(x) \) consists of all tours, which can be constructed from \(x \) by deleting and adding \(k \) edges.*
k-opts

- k-opt neighborhood for tour x: $\mathcal{N}_k(x)$ consists of all tours, which can be constructed from x by deleting and adding k edges.

Observations

- Two hamiltonian cycles only differ in k edges ($2 \leq k \leq n$), i.e.: $x_{opt} \in \mathcal{N}_k(x)$ for every x.
- **Problem 1:** k-optimality in \mathcal{N}_k can only be tested in $O(n^k)$.
- **Problem 2:** k is unknown.
- **Approach:** Choose an **efficient searchable** neighborhood such that k can be chosen dynamically.

⇒ Sequential k-opt moves.

Definition: Sequential k-opt move

A k-opt move is called sequential if it can be described by a path alternating between deleted and added edges.
k-opts

- **k-opt neighborhood for tour x:** $\mathcal{N}_k(x)$ consists of all tours, which can be constructed from x by deleting and adding k edges.

Observations

- Two hamiltonian cycles only differ in k edges ($2 \leq k \leq n$), i.e.: $x_{opt} \in \mathcal{N}_k(x)$ for every x.
- **Problem 1:** k-optimality in \mathcal{N}_k can only be tested in $O(n^k)$.
- **Problem 2:** k is unknown.
- **Approach:** Choose an **efficient searchable** neighborhood such that k can be choosen dynamically.

\Rightarrow **Sequential k-opt moves.**
k opts

- **k-opt neighborhood for tour** x: $\mathcal{N}_k(x)$ consists of all tours, which can be constructed from x by deleting and adding k edges.

Observations

- Two hamiltonian cycles only differ in k edges ($2 \leq k \leq n$), i.e.: $x_{opt} \in \mathcal{N}_k(x)$ for every x.
- **Problem 1**: k-optimality in \mathcal{N}_k can only be tested in $O(n^k)$.
- **Problem 2**: k is unknown.
- **Approach**: Choose an **efficient searchable** neighborhood such that k can be chosen dynamically.

 \implies **Sequential** k-opt moves.

Definition: Sequential k-opt move

- A k-opt move is called sequential if it can be described by a path alternating between deleted and added edges.
Example

Sequential 6-opt

Double-Bridge-Move (4-opt)
Lin-Kernighan

Flip operations

Operation: flip(next(a), prev(b))

Gain g_t of flip t:

$$g_t = c(a, \text{next}(a)) + c(\text{prev}(b), b) - c(\text{next}(a), b) - c(a, \text{prev}(b))$$
Lin-Kernighan

Flip operations

Operation:
flip(next(a), prev(b))

Gain g_t of flip t:

$$g_t = c(a, \text{next}(a)) + c(\text{prev}(b), b) - c(\text{next}(a), b) - c(a, \text{prev}(b))$$

Lin-Kernighan

- Choose a fix starting node a and construct the alternating path by a sequence of flip operations of the form $\text{flip}(\text{next}(a), \text{prev}(b))$.
- The goal within this construction is to obtain

$$\sum_{i=1}^{k} g_{t_i} > 0.$$
Example

\[v_1 v_2 - v_8 v_7 - v_4 v_3 - v_{10} v_9 - v_{12} v_{11} - v_6 v_5 - \]

\[\text{flip}(v_2, v_4) \]
Example

\[v_1 v_4 - v_7 v_8 - v_2 v_3 - v_10 v_9 - v_{12} v_{11} - v_6 v_5 - \]

\(\text{flip}(v_4, v_6)\)
Example

\[v_1 v_6 - v_{11} \ v_{12} - v_9 \ v_{10} - v_3 \ v_2 - v_8 \ v_7 - v_4 \ v_5 - \]

\[\text{flip}(v_6, v_8) \]
Example

\[v_1 v_8 - v_2 v_3 - v_{10} v_9 - v_{12} v_{11} - v_6 v_7 - v_4 v_5 - \]

\[\text{flip}(v_8, v_{10}) \]
Example

\[v_1 v_{10} - v_3 v_2 - v_8 v_9 - v_{12} v_{11} - v_6 v_7 - v_4 v_5 -\]

\[\text{flip}(v_{10}, v_{12})\]
Example

\[v_1 v_{12} - v_9 v_8 - v_2 v_3 - v_{10} v_{11} - v_6 v_7 - v_4 v_5 -\]
Example
Implementation details

- Backtracking
- Neighborhood graph
 - k-Nearest graph
 - α-Nearest graph
 - Delaunay triangulation
- Mak-Morton-Moves
- alternateStep()
- Swaps
- Bentley-Marking-Scheme
- Kicking-Strategic
 - Double-Bridge-Moves
 - ...

Neighborhood graphs for the choice of the edge \(\{a, \text{next}(a)\} \)

Figure: Neighborhood graph: 15 nearest neighbors
Neighborhood graphs for the choice of the edge \(\{a, \text{next}(a)\} \)

Figure: Neighborhood graph: Delaunay triangulation