2021
|
Joshua Driesen, Ziad El-Khatib, Niklas Wulkow, Mitchell Joblin, Iskriyana Vasileva, Andreas Glücker, Valentin Kruspel, Catherine Vogel |
Data-Powered Positive Deviance during the SARS-CoV-2 Pandemic—An Ecological Pilot Study of German Districts
|
International Journal of Environmental Research and Public Health, 18(9765), pp. 1-29, 2021 |
BibTeX
DOI
|
Niklas Wulkow, Péter Koltai, Vikram Sunkara, Christof Schütte |
Data-driven modelling of nonlinear dynamics by barycentric coordinates and memory
|
arXiv, p. 2112.06742, 2021 (under review) |
BibTeX
arXiv
|
Klaus-Dieter Hungenberg, Christian Schwede, Michael Wulkow, Niklas Wulkow |
Determination of reactivity ratios for acrylic acid and its dimer from classical parameter estimation and Bayesian approach
|
Canadian Journal of Chemical Engineering, pp. 1-10, 2021 |
BibTeX
DOI
|
Niklas Wulkow, Regina Telgmann, Klaus-Dieter Hungenberg, Christof Schütte, Michael Wulkow |
Deterministic and Stochastic Parameter Estimation for Polymer Reaction Kinetics I: Theory and Simple Examples
|
Macromolecular Theory and Simulations, Vol.30, 2021 |
BibTeX
DOI
|
Niklas Wulkow, Péter Koltai, Christof Schütte |
Memory-Based Reduced Modelling and Data-Based Estimation of Opinion Spreading
|
Journal of Nonlinear Science, Vol.31, 2021 |
BibTeX
DOI
|
2018
|
Natasa Djurdjevac Conrad, Daniel Fuerstenau, Ana Grabundzija, Luzie Helfmann, Martin Park, Wolfram Schier, Brigitta Schütt, Christof Schütte, Marcus Weber, Niklas Wulkow, Johannes Zonker |
Mathematical modeling of the spreading of innovations in the ancient world
|
eTopoi. Journal for Ancient Studies, Vol.7, 2018 |
PDF
BibTeX
|
2017
|
Niklas Wulkow
|
Modelling the Spread of Innovations by a Markov Process in a Bayesian Framework
|
Master's thesis, Freie Universität Berlin, Christof Schütte, Marcus Weber (Advisors), 2017 |
PDF
BibTeX
URN
|
Tim Conrad, Martin Genzel, Nada Cvetkovic, Niklas Wulkow, Alexander Benedikt Leichtle, Jan Vybiral, Gitta Kytyniok, Christof Schütte |
Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data
|
BMC Bioinfomatics, 18(160), 2017 |
BibTeX
DOI
|