Prof. Dr. Martin Rumpf: Surface Animation and Riemannian Shape Calculus

Berliner Colloquium für wissenschaftliche Visualisierung
Montag, 20. März 2017, 15:00 Uhr
Ortswechsel: FU Berlin (Institut für Informatik)
Takustrasse 9, 14195 Berlin
Hörsaal Informatik
Prof. Dr. Martin Rumpf, Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn
Splines and subdivision curves are flexible tools in the design and manipulation of curves in Euclidean space. We study generalizations of interpolating splines and subdivision schemes to the Riemannian manifold of shell surfaces in which the associated metric measures both bending and membrane distortion. This enables the animation of shells via the smooth interpolation of a given set of key frame control meshes. Using a variational time discretization of geodesics efficient numerical implementations can be derived. These are based on a discrete geodesic interpolation, discrete geometric logarithm, discrete exponential map, and discrete parallel transport.