MODAL-NanoLab
The NanoLab project is part of the MODAL research campus. Data-based methods play an essential role in the development and application of photonic technologies. Efficient and optimal development of new technologies is often only possible with the help of simulations of the physical properties of the corresponding devices. In areas such as sensor technology and quality control, the evaluation of data enables decision-making and quantification processes. In addition to model-based simulations of measurement processes, artificial intelligence methods are becoming increasingly important here.
The aim of the project is to develop methods for efficient, error-controlled/self-adaptive simulation of light-matter interactions in resonant nanostructures. The methods are based on models for mode expansion of relevant quantities and use contour integral methods to calculate the modes and expansion coefficients. The application of these methods is tested in cooperation with technological application partners using realistic challenging examples.
Recent results from a collaboration between Wrocław University of Science and Technology, Technische Universität Berlin, Maria Curie Sklodowska University, Fibrain, PicoQuant, JCMwave, and Zuse Institute Berlin have been published in Advanced Quantum Technologies. The manuscript describes a user-friendly, fiber-coupled, single-photon source operating at telecom wavelength [A. Musial, et al., 2020]. Numerical design has been performed at JCMwave and ZIB. The publication has been highlighted by presenting it on the journal cover page.
Publikationen
2021 |
|||
Xavier Garcia Santiago, Sven Burger, Carsten Rockstuhl, Philipp-Immanuel Schneider | Bayesian optimization with improved scalability and derivative information for efficient design of nanophotonic structures | J. Light. Technol., Vol.39, p. 167, 2021 |
BibTeX
DOI arXiv |
2020 |
|||
Anton Pakhomov, Franz Löchner, Lin Zschiedrich, Sina Saravi, Martin Hammerschmidt, Sven Burger, Thomas Pertsch, Frank Setzpfand | Far-field polarization signatures of surface optical nonlinearity in noncentrosymmetric semiconductors | Sci. Rep., Vol.10, p. 10545, 2020 |
BibTeX
DOI |
Anna Musiał, Kinga Zolnacz, Nicole Srocka, Oleh Kravets, Jan Große, Jacek Olszewski, Krzysztof Poturaj, Grzegorz Wojcik, Paweł Mergo, Kamil Dybka, Mariusz Dyrkacz, Michal Dlubek, Kristian Lauritsen, Andreas Bülter, Philipp-Immanuel Schneider, Lin Zschiedrich, Sven Burger, Sven Rodt, Waclaw Urbanczyk, Grzegorz Sek, Stephan Reitzenstein | Front Cover: Plug&Play Fiber‐Coupled 73 kHz Single‐Photon Source Operating in the Telecom O‐Band (Adv. Quantum Technol. 6/2020) | Adv. Quantum Technol., Vol.3, p. 2070061, 2020 |
BibTeX
DOI |
Kevin Martens, Felix Binkowski, Linh Nguyen, Li Hu, Alexander O. Govorov, Sven Burger, Tim Liedl | Long- and Short-Ranged Chiral Interactions in DNA Assembled Plasmonic Chains | arXiv, 2020 (under review) |
BibTeX
arXiv DOI |
Daniel Werdehausen, Xavier Garcia Santiago, Sven Burger, Isabelle Staude, Thomas Pertsch, Carsten Rockstuhl, Manuel Decker | Modeling Optical Materials at the Single Scatterer Level: The Transition from Homogeneous to Heterogeneous Materials | Adv. Theory Simul., Vol.3, p. 2000192, 2020 |
BibTeX
DOI |
Anna Musiał, Kinga Zolnacz, Nicole Srocka, Oleh Kravets, Jan Große, Jacek Olszewski, Krzysztof Poturaj, Grzegorz Wojcik, Paweł Mergo, Dybka Kamil, Mariusz Dyrkacz, Michal Dlubek, Kristian Lauritsen, Andreas Bülter, Philipp-Immanuel Schneider, Lin Zschiedrich, Sven Burger, Sven Rodt, Waclaw Urbanczyk, Grzegorz Sek, Stephan Reitzenstein | Plug&play fibre-coupled 73 kHz single-photon source operating in the telecom O-band | Adv. Quantum Technol., Vol.3, p. 2000018, 2020 |
BibTeX
DOI arXiv |