
On Intrinsic Dimension Estimation
and Minimal Diffusion Maps
Embeddings of Point Clouds

von

Johannes von Lindheim

Masterarbeit in Mathematik
vorgelegt dem Fachbereich Mathematik und Informatik

der Freien Universität Berlin
am 11.05.2018

Betreuer: Dr. Ralf Banisch
Zweitgutachter: Prof. Dr. Christof Schütte

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorge-
legen.

Berlin, den 11.05.2018

Johannes von Lindheim
Institut für Mathematik
Arnimallee 6
Freie Universität Berlin
14195 Berlin
jojovli@gmx.de

Contents

Acknowledgments v

1. Introduction 1

2. Intrinsic Dimension Estimation 3
2.1. Background . 3
2.2. Relevant Work . 5
2.3. The Gaussian Annulus Approach . 8

2.3.1. Strategy 1: Norm Density Peak . 10
2.3.2. Strategy 2: Mean Squared Distance from the Center 13
2.3.3. Heuristics for the Scale Parameters 15
2.3.4. Towards an Algorithm . 19

2.4. Numerical Experiments . 22
2.4.1. Increasing ID and Noise . 22
2.4.2. Benchmark Comparison . 23

2.5. Discussion and Further Research . 30

3. The Higher Harmonics Problem of Diffusion Maps 32
3.1. Relevant Work . 33
3.2. Diffusion Maps . 33
3.3. The Higher Harmonics Problem . 38
3.4. Minimal Diffusion Maps . 40
3.5. Numerical Experiments . 45

3.5.1. Synthetic Data . 45
3.5.2. Real-World Data . 53

3.6. Discussion and Further Research . 57

A. Preliminaries 61

Acknowledgments

I would like to thank my thesis supervisor Dr. Ralf Banisch for the academic encoura-
gement, lots of useful advice and all the continual support. I also would like to thank
the head of my research group at the Zuse Institute Berlin, PD Dr. Marcus Weber,
for interesting discussions and the large freedom I had in my work. Special thanks
to Luzie Helfmann and Lukas Polthier for proofreading this thesis and the helpful
feedback.

1. Introduction

Since the beginning of the information age, the number of ways to capture information
with sensors, apps, videos, tracking of consumer behavior on the Internet, social media
etc. has been quickly increasing. According to an IBM Cloud Marketing study for
2017 [Clo16], 2.5 quintillion bytes are created every day. Often, this data is given in
the form of a number of n observations, each of them described by a number of D
variables or attributes, where D is high. One views such a set X of these observations
as a cloud of data points {x ∈X} ⊂ RD. This data is often hard to deal with because
of the curse of dimensionality. For a high number D of variables, not only humans
struggle with interpreting this data, but also algorithms and machines.

There are a lot of situations, however, where the intrinsic structure of a point cloud
X requires a much lower number of so-called features to describe it, compared to its
extrinsic structure. This number is called the intrinsic dimension (ID) d of the data,
with d≪D. The task of manifold learning of nonlinear dimensionality reduction is to
find a map Φ ∶ RD → Rd or an embedding X ⊂ Rd respectively, such that the intrinsic
structures of the original point cloud are preserved (see figure 1.1).

data measurement

manifold learningΦ

feature space
intrinsic

ℝ�

variable space
extrinsic

ℝ�

0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

40

10

5

0

5

10

15

10
5

0
5

10

05
1015
2025
30
35
40

Figure 1.1.: Schematic illustration of manifold learning. Φ ∶ RD → Rd shall map the
data from the variable space to a lower-dimensional feature space, such
that the intrinsic structure is preserved. The colormap indicates one fe-
ature or parameter of the dataset, which has intrinsic dimension d = 2.
The extrinsic dimension in this example is D = 3.

A reduction of the dimension has the following advantages:

� It mitigates the curse of dimensionality effect, so that potentially less data points
are required to achieve certain tasks.

� It saves computation time and storage.

� It sometimes makes the data interpretable, breaking it down to the “human
processing power”.

This procedure has numerous applications, including statistics, economics, molecular
dynamics, genomics, finance and machine learning. There are many algorithms to

1

1. Introduction

successfully achieve a dimensionality reduction, e.g. Principal Component Analysis
(PCA) [AW10] and its variants, Multidimensional Scaling (MDS) [Kru64] and its va-
riants, Locally-Linear Embedding (LLE) [RS00] and its variants, ISOMAP [TDSL00],
diffusion maps [CL06a] etc. pp.

Most of these algorithms require the a priori unknown intrinsic dimension d of the
data as input. That is, they need to know, to how many dimensions to reduce the
data. Therefore, it is often desirable to estimate the ID beforehand, which is termed
intrinsic dimension estimation. We will consider this topic in chapter 2. In chapter
3, we turn to one the the “state-of-the-art” algorithms of manifold learning, called
diffusion maps. One unsolved problem with that algorithm is that it does not reduce
the data to its minimal dimension because of the so-called higher harmonics problem.
It occurs whenever the data is anisotropic, that is, it does not extend equally wide
into all directions. In the course of chapter 3, a new algorithm based on importance
sampling resolving this problem in most of the cases is presented.

My Contributions

� A novel framework for intrinsic dimension estimation based on importance sam-
pling.

� A discussion of the higher harmonics problem of diffusion maps and a novel
algorithm designed to resolve it.

� Implementations and numerical experiments in Python to test the presented
approaches. Comparison of the novel ID estimators to existing algorithms from
the literature.

For an overview on some notation used throughout this thesis, see table 1. Chapter-
specific notation is introduced on the fly.

Symbol Description

X finite dataset, X = {x1, . . . , xn} ⊂ RD
n number of data points, i.e. n = #X
M underlying manifold of X
d intrinsic dimension of X resp. dimension of M

D extrinsic dimension of X, i.e. X ⊂ RD
x data point x ∈X (or x ∈M, depending on the context)
Nx a neighborhood (nearby data points) of x ∈X, i.e. Nx ⊂X
∼ neighborhood relation, i.e. x ∼ y ∶⇔ y ∈ Nx

y, yi (generic) neighbor of x, i.e. y, yi ∈ Nx

nx number of neighbors of x, i.e. nx = #Nx

N number of pairs of neighbors, i.e. N = ∑xi∼xj∈X,i<j 1

Table 1.1.: General notation used in this thesis.

2

2. Intrinsic Dimension Estimation

Suppose that we have a dataset X = {x1, . . . , xn} ⊂ RD in D-dimensional real space.
We assume that the data is sampled according to some probability density q, that has
support on a submanifoldM ⊂ RD of dimension d, i.e. supp(q) ⊂M with dim(M) = d.
We then say that our data X has intrinsic dimension (ID) equal to d. In a lot of
real-world cases, the data may be also perturbed with noise. The problem intrinsic
dimension estimation is concerned with, is to give an estimate d̂ of the ID from a
given dataset without any knowledge about q or M. Sometimes, the task is also to
estimate ID locally for all data points x ∈ X, for instance if the data is sampled from
multiple manifolds with different dimension. Consider e.g. a line intersected with a
plane, then the estimated ID should be 2 for points in the plane and 1 for points in
the line.

We proceed as follows. First, some mathematical notations of the dimension of
sets are introduced in 2.1. In section 2.2 some of the wide range of ID heuristics
existing in the literature are briefly reviewed. A novel ID estimation approach is
presented in section 2.3. After starting this section by motivating the approach,
we introduce two strategies in subsections 2.3.1 and 2.3.2 implementing this ansatz.
Heuristics for choosing the important scale parameters are presented in subsection
2.3.3 and subsection 2.3.4 completes the derivation of several variants of the new
approach by showing an optimization and closing the section a pseudocode and a
brief computational complexity analysis. These algorithms are tested qualitatively for
increasing intrinsic dimension and noise scale in 2.4.1. Additionally, they are compared
to a large variety of different ID heuristics from the literature in a benchmark precision
test in subsection 2.4.2. Finally, section 2.5 highlights some unsolved questions and
possible spots for future work.

2.1. Background

We will first briefly introduce some of the mathematical notions of the dimension of
sets, on which many intrinsic dimension estimators rely upon. The first mathematical
definition of dimension of sets is due to Hausdorff [Hau18].

Definition 2.1 (Hausdorff dimension): Let Ω be a metric space. For d ∈ [0,∞), the
d-dimensional Hausdorff content of Ω is defined as

CdH(Ω) ∶= inf {∑
i

rdi ∶ ∃ cover of Ω by a countable set of balls with radii ri > 0} .

Then the Hausdorff dimension of Ω is defined as

dimH(Ω) ∶= inf{d ≥ 0 ∶ CdH(Ω) = 0}.

One may make sense of the definition by recalling that the volume of d-dimensional
balls with increasing radius r grows proportional to rd in Euclidean space. Hence,

3

2. Intrinsic Dimension Estimation

the Hausdorff dimension intuitively is the lowest number, for which the set Ω can
be covered with d-dimensional balls. Note that this definition is applicable to more
general sets than manifolds like fractal sets, possibly having a real-valued Hausdorff
dimension in general.

It is also possible to define a notion of dimension locally, that is, in one single data
point [You82].

Definition 2.2 (Pointwise dimension): Let Br(x) be a closed ball of radius r and
center x ∈ RD. If p is a probability measure such that the limit

dp(x) = lim
r→0

log p(Br(x))

log r

exists, then dp(x) is called the pointwise dimension in the point x.

As an intuition, if we take p to be the normalized Lebesgue measure measuring
volume on the d-dimensional manifold M, then for x ∈M we get

dp(x) = lim
r→0

log(c ⋅ rd)

log r
= lim
r→0

log c + d log r

log r

r→0
Ð→ d,

since vol(Br(x)) scales like rd.
Moreover, there is a topological definition of dimension [Jam99].

Definition 2.3 (Lebesgue covering dimension): Given a topological space X , a set
Y ⊂ X and a covering C = {Ci} of Y so that ⋃i Ci ⊇ Y, a refinement of the cover C is
any other covering C′, so that for every C ′ ∈ C′ there is a set C ∈ C, such that C ′ ⊂ C.

Then the topological dimension of X is the smallest number d ∈ N0, such that
every open cover C of X admits an open refinement C′ such that every point x ∈ X is
contained in at most d + 1 sets in C′. If no such minimal integer value exists, X has
infinite topological dimension.

These concepts may be useful for designing ID estimators. We cannot directly use
them in our practical problem, however, since we only have a finite point cloud, which
has dimension zero for all of these definitions. This is why the intrinsic dimension
problem is ill-posed in the situation of a fixed finite dataset and no knowledge about
M, which is unfortunately the usual case. After all, the point cloud is a finite collection
of zero-dimensional manifolds. Assuming that the data is sampled from a single
manifold does not solve the problem, since the data always lies on a one-dimensional
curve.

What makes this problem also ill-posed is the allowed scale of the (full-dimensional)
noise the data is perturbed with. One may recognize a low-dimensional manifold as
low-dimensional, if the noise has a low variance relative to the manifold. However,
what is the threshold for the scale of the noise, at which one would assign d = D as
intrinsic dimension to the data X?

Moreover, ID is dependent on the scale, at which one looks at the data. This is
related to the previous paragraph. For instance, if we have a one-dimensional curve,

4

2. Intrinsic Dimension Estimation

perturbed with two-dimensional noise, then the manifold looks two-dimensional at a
fine scale, since the noise looks full-dimensional. On a slightly coarser scale, the data
looks more or less one-dimensional. On an even coarser scale, ID estimation is hard,
since linear techniques overestimate ID because of the curvature of M.

These are three of the various problems that make ID estimation hard. According
to [CS16], an ideal ID estimator has the following properties:

1. It is computationally feasible.

2. Is is robust to multiscaling.

3. It is robust to high intrinsic dimensions.

4. It has an operative range, that is, provide guarantees about when the ID esti-
mator gives reliable estimates with regard to properties of the dataset X, e.g.
the cardinality n = #X.

5. It needs to be accurate, that is, yield estimates close to the dimension of the
underlying manifold M, the data is sampled from.

The goal in this chapter is to present a novel estimation approach that shall be precise
at least on noise-free datasets and is capable of measuring ID locally, that is, the
heuristic should be able to assign an individual estimate to every data point x ∈ X.
The estimator will fulfill properties 1, 3 and 5.

2.2. Relevant Work

In this section, we will get an overview on the different categories ID estimators can
be divided into, and some notable examples from each category. The categorization
mainly follows the more detailed survey [CCCR15] on intrinsic dimension estimation
methods. All algorithms that we will use in section 2.4 for the benchmark comparison
of the novel approaches are presented in this section.

A first distinction can be made between global and local methods. Global methods
try to estimate the ID of the dataset as a whole, while local methods only use local
neighborhoods separately to estimate ID. If a global estimate is needed in case of
constant ID on the entire dataset, the local estimates are combined. It is claimed in
[CCCR15], however that all recent methods are local methods, since the results are
not reliable when trying to estimate ID on the largest scale of the data. Therefore,
we will not distinguish between global and local in the following.

Projective

Projective methods try to project the data to a lower-dimensional subspace in some
way. The dimension of this subspace is then the estimated ID of the data. This
is exactly the situation of manifold learning, introduced in chapter 1. In fact, a lot
of manifold learning techniques like multidimensional scaling (MDS), ISOMAP, locally

5

2. Intrinsic Dimension Estimation

linear embedding (LLE) etc. can be used to estimate ID. The methods in the literature
either try to preserve distances in the projection (like MDS and its variants) or try
to minimize the projection error between the projected and the original data, like
Principal Component Analysis and its variants (PCA, local PCA (LPCA), Kernel PCA
(KPCA) etc.).
MLSVD is one of the most notable projective methods because its construction is

explicitly taking into account the multiscaling of the data. It builds Singular Value
Decompositions (SVDs; basically a variant of PCA) in D-dimensional balls Br(x) around
the data points x ∈X for different choices of r. Using a least-squares fitting procedure,
the analysis of the scale-dependent singular values σ1(r), . . . , σD(r) reveals a range of
scales {rmin, . . . , rmax}, which is not influenced by noise (too small scales) or curvature
(too large scales). The estimate d̂ is taken to be the index j maximizing the spectral
gap σj(rs) − σj+1(rs) for rs ∈ {rmin, . . . , rmax}.

Topological

Topological estimators try to estimate the covering dimension (see definition 2.3).
There are only few techniques doing so, one being the Tensor Voting Framework
(TVF) [MM04] and its variants [LCC08]. The TVF iteratively diffuses local information
on the tangent space of every data point x ∈ X in the form of tensors, whose eigen-
vectors span the local tangent space. Although interesting, these methods are either
computationally not feasible for high extrinsic dimensions D or not robust to the high
dimensionality or curvature.

Fractal

Fractal ID estimators are called that way, because they do not assume a dimension,
which is a whole number, but also allow to estimate the dimension of fractals. These
techniques rely on the idea that the volume of d-dimensional balls with radius r grows
proportional to rd.

One of the most prominent algorithms of this type is the correlation dimension (CD).
Set

Cn(r) ∶= (
n

2
)
−1 n

∑
i=1,i<j

#{j ∶ ∥xi − xj∥2 < r}

which is counting the fraction of all pairs of points, which lie at most a neighbor radius
r apart. Then, for a countable dataset, the correlation dimension (CD) is defined as

dimcorr = lim
r→0

lim
n→∞

logCn(r)

log r
.

This is related to the pointwise dimension (see definition 2.2). In practice the esti-
mate is computed using a range of radii {ri} and fitting a line through the points
(log ri, logCn(ri)).

6

2. Intrinsic Dimension Estimation

A smoothed version of this estimator was proposed in [HA05], denoted by Hein

in the following. The idea is to replace the “hard” counting by a smooth kernel kh
having bandwidth h. Precisely, they define

U(n,h, d) ∶= (
n

2
)
−1 n

∑
i=1,i<j

1

hd
kh(∥xi − xj∥

2/h2)

where d is a possible intrinsic dimension of the data. By varying the different parame-
ters (varying n by subsampling), they analyze the convergence behavior of U(n,h, d).
The estimate is taken to be the number d ∈ {1, . . . ,D} which minimizes the maximum
slope when varying n. This work is also notable for the synthetic datasets specifically
designed to test the precision of the proposed heuristic, which are also employed in
other works.
CD is heavily influenced by the choice of the scale of parameters, hence in [Tak85]

Takens proposes an estimator that estimates the expectation value of CD by a max-
imum likelihood approach on the distribution of distances between the points. The
estimate d̂ is computed as

d̂ = −
⎛

⎝

1

#Q

#Q

∑
i=1

rk
⎞

⎠

−1

,

where Q = {rk ∶ rk < r} and the rk are the Euclidean distances between the data
points.

Nearest-Neighbor-Based

Methods of this type try to estimate ID by studying distributions of points in small
neighborhoods. This category includes MLE, one of the most cited ID algorithms,
presented in [LB05]. MLE models the neighbors yi of a data point x for growing radii r
as events of a Poisson process and the distances ∥x−yi∥2 between x and the neighbors
yi as the corresponding arrival times. This depends on d, so d can be estimated by
maximizing the log-likelihood of the empirically observed processes, i.e. the ones given
by the data. A global ID estimate is obtained by averaging the values for all points.
MLE has multiple variants, e.g. trying to remove the parameter choice of the number
of neighbors to be considered or to remove biases of the estimator.

Another important set of estimators consists of the MiNDML-heuristics, MiNDKL, as well
as DANCo and its fast implementation FastDANCo. The MiNDML-heuristics are presented
in [RLC+12] and exploit the probability density function g(r, k, d) = kdrd−1(1− rd)k−1

of the distance of the nearest neighbor y of x. The ID estimate d̂ is then computed
by a maximum-likelihood-approach. This can be done by trying all different possible
d ∈ {1, . . . ,D}, which is called MiNDMLi. The other possibility, being able to produce
a fractal dimensionality estimate, is called MiNDMLk, which maximizes the same log-
likelihood by setting its derivative to zero and solving for d, which produces a real-
valued estimate in general. In the same paper, MiNDKL is introduced, which compares

7

2. Intrinsic Dimension Estimation

the empirical probability density function of the neighborhood distances from the
data with the analytical one obtained from uniformly sampled points on hyperspheres
of known increasing dimensionality. The ID estimate is obtained by minimizing the
Kullback-Leibler-divergence (KL-divergence) between these two distributions.

An extension of MiNDKL is DANCo [CBR+14]. This heuristic does not only take into
account the nearest-neighbor-distances but also the angles between them. So additi-
onally to the distance distribution, it also compares the empirical angle distribution
with the Mises-Fisher-distribution (the analog of the Gaussian distribution in real
space on a d-dimensional hypersphere). DANCo again chooses the dimension which
minimizes the KL-divergence, more precisely the sum of the two KL-divergences for
the norms and the angles, respectively. A fast variant FastDANCo is also presented in
that paper, which uses fitted functions trained using some example datasets, instead
of the true statistics employed in the DANCo-algorithm.

A recent variant of the nearest-neighbor-approach is TWO-NN [FdRL17], which is
easy to implement and also tries to account for the multiscaling by subsampling the
data. In principle, it only employs the distance between the two nearest neighbors of
each data point (hence its name).

Graph-Based

Tools from graph theory can be used to solve a wide range of problems. Also in the field
of ID estimation, several techniques have been introduced. Examples include the k-
nearest-neighbor-graph (kNNG) [CH06], the Minimum Spanning Tree (MST) [FR83], the
sphere influence graph (SIG) [PY01] and their corresponding (generalized) variants.
They use several statistics on the constructed graphs, e.g. the length functional (the
sum of all edge weights) in the case of the MST.

A recent method employing graph distances in a multiscale fashion is presented in
[GC16], yielding promising results in terms of precision.

2.3. The Gaussian Annulus Approach

To estimate the intrinsic dimension of a finite dataset X, a statistic T ∶ Rn×D → R on
the data is needed that depends on the ID of X. We evaluate the statistic for our given
dataset and rearrange the equation, such that one side depends on the measurement
and the other side is our ID estimate d̂.

Motivation

The statistics chosen in this thesis are inspired by a property of the standard multi-
variate (d-dimensional) Gaussian (or normal) distribution with density function

pd(x) =
1

(2π)d/2
exp (−∥x∥2

2).

8

2. Intrinsic Dimension Estimation

Namely, standard d-dimensional Gaussian distributed data will have the property that
most of the probability mass lies on an annulus of Euclidean distance

√
d from the

center of the Gaussian. More precisely, one can state the following theorem:

Theorem 2.4 (Gaussian Annulus Theorem): For a d-dimensional spherical standard

Gaussian with unit variance in each direction, for any β ≤
√
d, all but at most 3e−cβ

2

of the probability mass lies within the annulus

√
d − β ≤ ∥x∥ ≤

√
d + β (2.1)

For a proof, the reader is referred to [BHK16].
Note that this property just depends on the norms ∥x∥ and not on the angles (the

d-dimensional Gaussian distribution is rotationally invariant), although there are also
e.g. concentration phenomena regarding angles. As mentioned in section 2.2, there
are also ID heuristics working with angles (e.g. DANCo).

As an intuition, why the radius of the annulus depends on d, consider a cente-
red d-dimensional normal distribution and its variance. One may easily check that
the standard multivariante normal distribution is made up from d one-dimensional
Gaussians:

pd(x) =
1

(2π)d/2
exp(

d

∑
i=1

−x2
i) =

d

∏
i=1

1

(2π)1/2 exp (−x2
i) =

d

∏
i=1

p1(xi).

Therefore, d appears in a number of ways in the context of the Gaussian distribution.
For instance, consider the mean squared distance from the center of d-dimensional
Gaussian distributed data (the center is chosen to be 0 here):

Epd [∥x∥
2
2] = E [

d

∑
i=1

x2
i] = d Ep1 [x

2
1] = d. (2.2)

This fact is used in Strategy 2, see subsection 2.3.2. The Gaussian annulus theorem
2.4 states that not only is this expectation value (2.2) equal to d, but that random
samples of ∥x∥2

2 with x ∼ pd are even tightly concentrated around d. This is useful for
Strategy 2, since therefore there are not many data points required to get a reliable
estimate.

Reweighting

Recall that the goal is to measure ID locally at all data points x ∈ X. How should
the ideas with the Gaussian distribution be used, since we do not have Gaussian
distributed data at x to begin with? In this thesis we locally reweigh the data points
in such a way that they are indeed Gaussian distributed. In fact, the ideas behind
importance sampling will be used for this approach (see appendix A). We assume that
both the sample density q and the manifoldM are smooth enough, so that locally (in
the neighborhood of the data point x ∈ X, at a sufficiently small scale σ) the sample
density q is well approximated by a uniform distribution U(BTxM

r (x)) on a ball of

9

2. Intrinsic Dimension Estimation

radius r around x on TxM. TxM denotes the tangent space at x ∈M, which is the
affine space spanned by the tangential vectors at x. Then we can assign weights

wuσ(i) ∶= px,d,σ(yi) = exp(−
∥x − yi∥

2
2

σ2
)

to the neighbors yi of a data point x, where we want to estimate ID. The superscript
“u” stands for unnormalized, for more details on the choice of this notation see sub-
section 2.3.2, where we introduce the key idea of importance sampling. (Note that
we omitted the normalizing constant (2π)d/2 here because of proportionality.) As an
intuition, one could view a weight wi as the fraction of the probability mass located
at yi, that is, if wi =

1
5 , one may think of “one fifth of a data point”. In order to arrive

at a normalized probability distribution, we normalize the weights:

wσ(i) ∶=
wuσ(i)

∑
nx
j=1w

u
σ(j)

(2.3)

The key to this is that the assignment of these weights does not depend on d or
on the tangent space TxM but just ∥x − yi∥2; nevertheless, the reweighted uniform
distribution will be a d-dimensional standard Gaussian distribution (or more precisely,
a Gaussian distribution with cutoff at radius r). This also directly follows from the
decomposition of the Gaussian into one-dimensional Gaussians: The restriction of a
d-dimensional Gaussian density function to some k-dimensional hyperplane though x
yields a k-dimensional Gaussian (apart from the normalization constant).

Two concrete ways to perform these reweightings are considered in this thesis. They
result in two different strategies to perform an ID estimate. The first one, see section
2.3.1, directly tries to assemble the case of Gaussian distributed data using a “weighted
kernel density estimation”, while the second one samples the quantity ∥x − yi∥

2
2 from

a Gaussian using importance sampling.
Note that σ is always an important scale parameter to choose here. Therefore,

after deriving the two strategies, a heuristic designed for this purpose is presented in
subsection 2.3.3.

To use Gauss kernels instead of the given distribution is on the one hand motivated
by the beautiful and direct connection of the used statistics in equations (2.1) and
(2.2) with the intrinsic dimension d. On the other hand, it is confirmed e.g. by [HA05]
that using Gaussian kernels instead of hyperspheres, for instance (corresponding to a
step function 1Br(x)), can be useful. They achieve better results with their heuristic
Hein using Gaussian kernels compared to the step function analog, the correlation
dimension CD [GP83].

2.3.1. Strategy 1: Norm Density Peak

The first strategy is directly trying to assemble the situation of Gaussian distributed
data and then determining the radius of the annulus from theorem 2.4. To get a

10

2. Intrinsic Dimension Estimation

real-valued estimate d̂, we need to remove the β-parameter in inequality (2.1). We do
this by computing the exact maximum of the density of the norms ∥x − y∥2 instead
of looking at intervals, where x is the center of our Gaussian now and y is a variable
neighboring point.

The Gauss kernel is rotationally symmetric since its density function just depends
on ∥x − y∥2. Consequently, we can integrate out the angular coordinates (i.e. we
integrate over the (d−1)-dimensional hyperspheres) and arrive at the one-dimensional
probability density function, just depending on the distance r = ∥x − y∥2 from the
center. That is, we use the probability distribution of the one-dimensional random
variable Z = ∥x−y∥2, whenever we draw a sample y from the d-dimensional Gaussian.
We then expect this probability density function (pdf) to have a bump around

√
d,

since most mass is concentrated at ∥x−y∥2 =
√
d (the radius of the Gaussian annulus).

Instead of performing the explicit integral calculation, using the idea “mass = den-
sity × volume”, it is clear that for the density function ξ ∶ R → R just depending on
r = ∥x− y∥2 (compared to pd ∶ Rd → R) we must have ξd(r)∝ exp (−r2/2) ⋅ rd−1. Here,

exp (−r2/2) is the probability density part and rd−1 is the (proportional) volume of
the (d − 1)-dimensional hypersphere of radius r. In order to arrive at a probability
density function, we have to compute the normalizing constant. Using the computer
algebra program Mathematica [WRI], we obtain

ξd(r) = C
−1 exp(

−r2

2
) ⋅ rd−1 with C = Γ(

d

2
)2

d
2
−1

where Γ is the Gamma function.
In practice, however, a choice for the variance of the standard Gaussian has to

be made. Denote the variance of the one-dimensional Gaussians by σ2. The den-
sity function for the d-dimensional normal distribution with center x (and covariance
matrix Σ = σ2I) is

px,d,σ(y) =
1

(2π)d/2σd
exp(−

∥x − y∥2

2σ2
).

Using the argument

px,d,σ(y) = C exp(−
∥x − y∥2

2

σ2
) = C exp(−∥

x − y

σ
∥

2

2
) = px,d(y/σ)

directly yields the formula for the density of the norms in the case of arbitrary variance
of the Gaussian:

ξd,σ(r) = C
−1 exp(

−r2

2σ2
) ⋅ rd−1 with C = σdΓ(

d

2
)2

d
2
−1.

We will call ξd or ξd,σ (depending on the context) the annulus bump function in the
following. Figure 2.1 includes a plot of this function and an empirical validation of

11

2. Intrinsic Dimension Estimation

the formulas. We see that indeed most of the area under the graph is concentrated
around σ

√
d.

0 2 4 6 8 10
r = x 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

q d
,

(r)

empirical from Gaussian
empirical from reweighting
bump function

Figure 2.1.: In blue, the annulus bump function is plotted for d = 10 and σ = 2.0.
The graph in green is the pdf estimated with a Gaussian kernel density
estimation of the norms ∥x∥2 of 1000 data points drawn from a cente-
red Gaussian distribution with the same d and σ. The graph in orange
was obtained by “simulating” a Gaussian distribution: 1000 data points
were drawn uniformly from the 10-dimensional cube 2.0⋅σ

√
d − 1⋅[−1,1]10,

which is chosen large enough to fully “contain” the annulus. Then a weig-
hted kernel density estimation was performed for σ = 2.0 (see appendix A
and the text for more details).

Finally, some further calculus performed by Wolfram Mathematica [WRI] yields
that the maximum of the annulus bump function lies at

rmax = σ
√
d − 1. (2.4)

In other words, if we sample from a d-dimensional Gaussian with some σ, the norms
of the samples will be maximally concentrated at rmax = σ

√
d − 1. Interestingly, the

maximum does not lie exactly at σ
√
d as one would expect from the Gaussian annulus

theorem 2.4. This is because the bump is not symmetric but slightly skewed: The
maximum is “tilted to the left” a bit. See figure 2.1 again for an example; the maximum
indeed lies at σ

√
d − 1 = 2

√
10 − 1 = 6 in this example.

Consequently, we obtain our ID estimate via

rmax = σ
√
d − 1 ⇔ d = (

rmax

σ
)

2

+ 1 (2.5)

i.e. we measure rmax and estimate d̂ ∶= (rmax

σ
)

2
+ 1 at the point x.

12

2. Intrinsic Dimension Estimation

The question remains how to measure the position of the bump when we do not
have Gaussian distributed data. This is where the reweighting inspired by importance
sampling is applied: We use a weighted kernel density estimation (weighted KDE).
Briefly summarized, we are not adding a full Gauss hat for every norm of a neighbor
∥x−yi∥2 to the overall estimation of the density function, but we rescale them according
to their weight wuσ(i) from equation (2.3); see appendix A for more details. Note that
we do not include x as its own neighbor, since it would not be a randomly drawn
point from either the uniform or the Gaussian distribution.

Figure 2.1 shows such a “simulated” Gaussian bump function. 1000 data points
were drawn from a uniform distribution and a weighted kernel density estimation
with the same σ as the analytical bump function was applied, trying to resemble the
original annulus bump function using this reweighting described above. There is not
a perfect agreement between the graphs, but still the density peak of the “simulated”
bump function lies at about the same location rmax ≈ 6.

In summary, Strategy 1 tries to manually and locally assemble annulus bump functi-
ons that we would have in the case of Gaussian distributed data at the points x ∈ X.
Then it extracts a local ID estimate from the measurement of the maximum density
spot rmax of that function, since we expect it to be at rmax = σ

√
d − 1.

2.3.2. Strategy 2: Mean Squared Distance from the Center

The second strategy presented in this thesis does not assemble the annulus function
and then extract some statistics, but it directly estimates the mean squared distance
Epx,d,σ[∥x− y∥2

2] from the center x of the Gaussian. We are interested in this quantity
because

Epx,d,σ [∥x − y∥2
2] = E [

d

∑
i=1

(x − y)2
i] = d Epx,1,σ [(x1 − y1)

2] = σ2d, (2.6)

analogously to equation (2.2). Hence, if we choose σ and estimate the expected mean
squared distance of the neighbors from the center x of the Gaussian distribution, we
have an estimate for d by dividing (2.6) by σ2.

The corresponding estimation shall be performed using ideas from importance sam-
pling. The key idea of that procedure applied to our context is described in appendix
A.

Estimating the Mean Squared Distance from the Center

How may we use the quite general theorem A.1 on self-normalizing importance sam-
pling estimates for an ID estimator, if we assume our data in the neighborhood Nx

around x to be distributed uniformly in a unit ball Br(x)? The natural idea is to
view the neighbors yi ∈ Nx as samples from this uniform distribution as the im-
portance distribution, and take the Gaussian distribution as the nominal distribu-
tion. Let Br(x) denote the ball of radius r lying in the tangent space TxM. Mo-

13

2. Intrinsic Dimension Estimation

reover, set pu ∶= pux,d,σ = 1Br(x)px,d,σ defined on the tangent space TxM, that is
supp(1Br(x)px,d,σ) ⊂ TxM. Let Cr ∈ R be the corresponding normalizing constant
so that Cr ∫TxM 1Br(x)(y)p

u
x,d,σ(y)dy = 1. Let p ∶= Crp

u = Cr1Br(x)px,d,σ be the nor-
malized Gaussian distribution on TxM with cutoff for simplicity of notation. Then
the following corollary from theorem A.1 shows convergence of the corresponding self-
normalized importance sampling estimate to our quantity of interest.

Corollary 2.4.1: Let Yi
i.i.d
∼ U(Br(x)) be uniformly distributed in the d-dimensional

unit ball centered at x so that Br(x) ⊂ TxM and let X ∼ p be Gaussian distributed
with cutoff on the tangent space TxM. Then

P(
∑
nx
i=1 px,d,σ(Yi)∥x − Yi∥

2
2

∑
nx
i=1 px,d,σ(Yi)

nx→∞
Ð→ Ep [∥x −X∥2

2]) = 1.

Proof. Additional to the previous notation pu = pux,d,σ = px,d,σ1Br(x) and p = Crp
u, set

qu(⋅) ∶= 1

q(⋅) ∶= vol(Br(x))
−1

f(⋅) ∶= ∥x − ⋅∥2
2

n ∶= nx

µ ∶= Ep [∥x −X∥2
2] ,

in accordance to the notation in the general theorem A.1. Then we have

∑
nx
i=1 px,d,σ(Yi)∥x − Yi∥

2
2

∑
nx
i=1 px,d,σ(Yi)

=
∑ni=1 p

u(Yi)f(Yi)

∑ni=1 p
u(Yi)

=
∑ni=1 p

u(Yi)f(Yi)/q
u(Yi)

∑ni=1 p
u(Yi)/qu(Yi)

=
∑ni=1w

u(Yi)f(Yi)

∑ni=1w
u(Yi)

= µ̃
n→∞
Ð→ µ

by theorem A.1 with probability 1.

It is easy to see that

p = Cr1Br(x)px,d,σ
r→∞
Ð→ px,d,σ,

which gives

Ep [∥x −X∥2
2]

r→∞
Ð→ Epx,d,σ [∥x −X∥2

2]
(2.6)
= σ2d.

14

2. Intrinsic Dimension Estimation

In other words, if we increase the radius of the ball in which we are measuring, we
approach the expectation of a real Gaussian distribution in the limit for the data
points.

Therefore, obtaining an ID estimate d̂ for a large enough radius and sufficiently many
data points is straightforward: Choose σ, compute the weights wuσ(i) = px,d,σ(yi) =

exp (−∥x − yi∥
2
2/σ) and wσ(i) = wuσ(i)/∑

nx
j=1w

u
σ(j) like above. Let y be a randomly

sampled neighbor of x, then

Epx,d,σ [∥x − y∥2
2] = σ

2d ⇒ d̂ =
∑
nx
i=1w

u
σ(i)∥x − yi∥

2
2

σ2∑
nx
i=1w

u
σ(i)

=
1

σ2

nx

∑
i=1

wσ(i)∥x − yi∥
2
2 (2.7)

Again, x is not taken as a neighbor of itself, since it would not be randomly drawn
from some distribution after fixing the center as x.

How large does r have to be for a good approximation? Intuitively, the ball Br(x)
has to be large enough to “contain” the Gaussian annulus, i.e. r > σ

√
d − 1 by equation

(2.4). Exact integration (assisted by Mathematica [WRI]) shows that

Ep [∥x −X∥2
2] = Cr ∫

Br(x)
px,d,σ(y)∥x − y∥

2
2 dy

=
1

∫
r

0 ξd,σ(s) ds
∫

r

0
ξd,σ(s)s

2 ds

=
σ2 (dΓ (d

2
) − 2Γ (d2 + 1, r

2

2σ2))

Γ (d
2
) − Γ (d2 ,

r2

2σ2)
,

where Γ (a, x) denotes the upper incomplete gamma function Γ (a, x) = ∫
∞
x ta−1e−tdt.

Figure 2.2 shows a plot of Ep [∥x −X∥2
2] for different r and exemplary choices σ =

2, d = 10.
One indeed observes that Ep [∥x −X∥2

2] converges quickly to Epx,d,σ [∥x −X∥2
2] =

σ2d = 22 ⋅ 10 = 40 in this example, as soon as r is large enough so that Br(x) “fully
contains” the annulus, which has its peak at σ

√
d − 1 = 2

√
10 − 1 = 6.

2.3.3. Heuristics for the Scale Parameters

All formulas derived above for ID estimation depend on the scale parameter σ. Mo-
reover, we would like to use the ε-nearest-neighbor method (see appendix A for more
details) to avoid the computation of all distances between the data points in order
to save computation time. This subsection describes the heuristics used in order to
compute a good choice of these parameters σ and ε.

A Heuristic for the Kernel Scale σ

In an ideal scenario, the choice of the scale of reweighting does not matter, since the
influence σ is considered in the formulas for the Strategy 1 and 2 ID estimates d̂.
The fact that the radius of the Gaussian annulus depends on σ is compensated for in

15

2. Intrinsic Dimension Estimation

0 2 4 6 8 10 12 14
r

0.0

0.2

0.4

0.6

0.8

1.0
pr

op
or

tio
n

of
 w

ho
le

p x

,d
,

[x
X

2 2]

Figure 2.2.: Plot of Ep [∥x −X∥2
2] /Epx,d,σ [∥x −X∥2

2] for exemplary choices of σ =

2, d = 10. The density peak of the importance sampled Gaussian lies
at σ

√
d − 1 = 2

√
10 − 1 = 6.

equations (2.5) and (2.7). In practice, however, the data lies on the curved and noisy
manifold M and the reweighting or importance sampling does not resemble perfect
Gaussian distributions independent of the scale.

Consequently, we try to choose σ using some optimality criterion. In this case,
on the one hand we want a σ that is not too small, so that enough data points are
included (regarding the “effective sample size”, which we will not define here) and the
noise is not dominant. On the other hand, σ shall also not be too large, in order to
still produce a distribution that looks “a lot like” a Gaussian distribution, despite the
curvature ofM. More precisely, we choose to minimize the deviation of the “empirical
center” Z = ∑

nx
i=1wσ(i)yi (estimation of expected value) of the importance sampled

Gaussian (where we again define x not to be a neighbor of itself). That is, we want
∥x −Z∥2 to be small.

For small choices σ, however, we also expect small deviations, for instance. There-
fore, we normalize by the standard deviation of a random weighted arithmetic mean
A = ∑aiyi, which is

√
V[A] =

√
∑a2

iV(yi) = σ
√
∑a2

i , since the standard deviation of
every “importance sampled” yi is σ. We obtain the normalized deviation function

∆x(σ) ∶=
∥x −∑

nx
i=1wσ(i)yi∥

σ
√
∑
nx
i=1wσ(i)

2
.

Let us analyze the limiting behavior of ∆x for varying σ. Since yi ∈ Nx, we will have

wuσ(i)
σ→∞
Ð→ 1 and consequently wσ(i)

σ→∞
Ð→ 1

nx
= const. Moreover,

√
∑
nx
i=1wσ(i)

2 σ→∞
Ð→

√
nx ⋅

1
n2
x
= 1√

nx
= const.On the other hand, with probability 1 there is a unique nearest

neighbor y⋆ of x, so for σ → 0, we get wσ(⋆)
σ→0
Ð→ 1 = const., wσ(i ≠ ⋆)

σ→0
Ð→ 0 = const.

and
√
∑
nx
i=1wσ(i)

2 σ→0
Ð→ 1 = const. Therefore, the σ in the denominator of ∆x controls

16

2. Intrinsic Dimension Estimation

the limiting behavior for both σ → 0 and σ →∞, so that we always have ∆x(σ)
σ→0
Ð→∞

and ∆x(σ)
σ→∞
Ð→ 0. Hence, the part in between is the interesting part.

Figure 2.3 shows some typical graphs of ∆x. We observe a local minimum, which
we interpret as a good compromise between making use of enough information about
the neighbors (not having too unbalanced weights) and minimizing the deviation from
the center (relative to σ). We therefore choose

σ⋆ ∶= argument of first local min of ∆x(σ)

as our kernel scale for the data point x (if such a minimum exists). Figure 2.3 illustrates
this.

0.0 0.5 1.0 1.5 2.00

10

20

30

40

(
)

* = 0.237
0.0 0.5 1.0 1.5 2.00

10

20

30

40

(
)

* = 0.188
0.0 0.5 1.0 1.5 2.00

10

20

30

40

(
)

* = 0.2

Figure 2.3.: Deviation function ∆x(σ) for three examplary data points x of a dataset
consisting of 1000 points uniformly drawn from a unit hypersphere with
d = 10 embedded randomly in R15. We choose the argument of the local
minimum of this function as the kernel scale (indicated in red).

We will see in section 2.4 that the heuristic works well at least for noise-free data.
Unfortunately, this is currently not justified by theoretical results. For instance, the
motivation with the standard deviation σ

√
∑a2

i of random weighted arithmetic means
A = ∑aiyi cannot serve as an explanation, because in this situation, the weights ai
must be fixed. We deal with random weights wσ(i), however, so using ∑

nx
i=1wσ(i)

2 in
the calculation of the standard deviation of Z = ∑

nx
i=1wσ(i)yi, which does not make

sense. (A vague conjecture is that we are normalizing by some approximation of the
true standard deviation of ∥x−Z∥2, but this would need to be shown.) It can also not
be explained, why a typical graph of ∆x qualitatively looks like the ones in figure 2.3, in
particular why the function almost always has a local minimum. Interestingly, leaving
out any of the normalization factors in the denominator of ∆x leads to functions that
generally do not possess these good local minima.

A Heuristic for the Cutoff Radius ε

In practical applications of manifold learning, one often chooses not to compute the
kernel values k(xi, xj) for all xi, xj ∈ X, because this is computationally inefficient.
It would require to compute O(n2) kernel values, although most of the distances
between the data points are not very meaningful or cannot be trusted anyway because

17

2. Intrinsic Dimension Estimation

of the curvature of the underlying manifoldM. Therefore, one uses nearest-neighbor-
methods (for more details, see appendix A). We choose an ε-nearest-neighbor-approach
here, not computing all distances, but just the ones to the neighbors inside a ball of
neighboring radius ε.

The radius ε is also a parameter to choose, however. We want to use ideas from
a heuristic first described in [CSSS08] and refined in [BH16]. However, they use this
heuristic for determining an appropriate scale for the kernel (which is σ in our case),
and not as a cutoff radius, so we introduce some changes here. The basic principle is
to compute the sum of all Gaussian kernel values kε(xi, xj) = exp (−∥xi − xj∥

2
2/ε):

T (ε) ∶=
1

n2

n

∑
i,j=1

kε(xi, xj) ≈
∫M ∫TxM kε(x, y) dy dV (x)

vol(M)2
=

(4πε)d/2

vol(M)
(2.8)

where the approximations are obtained by replacing the sum ∑ni,j=1 kε(xi, xj) with the

mean value integral n2

vol(M)2 ∫M ∫M kε(x, y)dxdy and locally approximating the ma-

nifold M by the tangent space TxM. Hence, T (ε) approximates a term related to
the growing volumes for growing ε of the small balls around the data points. Conse-
quently, it should be well approximated by a power law T (ε)∝ εa with (a = d

2 in this

case). Rearranging yields a =
logT (ε)

log ε . Because of our finite data situation, one instead

observes T (ε)
ε→0
Ð→ 1

n and T (ε)
ε→∞
Ð→ 1. So for ε very small or very large, T (ε) becomes

flat and is monotonically increasing with higher slopes in between. This suggests to
take the ε maximizing the slope of a, i.e. to maximize

d logT (ε)

d log ε
≈

logT (ε + h) − logT (ε)

log(ε + h) − log(ε)
(2.9)

in order to choose the bandwidth so that the kernel has “maximum resolution”. Note
that this also yields a strategy for ID estimation using a = d

2 , since (2.8) depends on
d. This is somewhat related to the Hein estimator. Empirically, this simple approach
does not seem to work very well, however.

Maximizing (2.9) is equivalent to maximize the slope of T (ε) in a “loglog-plot”.
Since we want to use ε as a cutoff distance and not a bandwidth, we decide to choose
it a bit larger, since computing more distances should not hamper the heuristics, but
rather give a bit more information. For an appropriate choice of σ, these distances
might not have a large influence anyways, if they are not needed. We just pay a
slightly higher price regarding the computation time. To obtain qualitatively similar
results, however, we maximize the slope of a similar function, namely of

dT (ε)

d log ε
≈

T (ε + h) − T (ε)

log(ε + h) − log(ε)

(with respect to ε). That is, we do not maximize the slope of T in the “loglog-plot”,
but in the “semilogx-plot” instead. This “stretches out” regions of higher function
values in the y-direction and therefore increases the slope there. Empirically, this

18

2. Intrinsic Dimension Estimation

results in an ε, which is a factor of about 3 higher, and achieves more precise results
in the overall ID estimation algorithm.

One more important subtlety still needs to be resolved, however. To compute (2.8)
one needs to know all distances between the data points (since we use the Gaussian
kernel here), which we wanted to avoid in the first place. Hence, in the algorithm, we
first perform a (k = 100)-nearest-neighbor search (or some other k, which is appropri-
ate in the specific setting), compute the kernel values for all pairs of neighbors and
then perform the ε-heuristic described above for just these kernel values in the sum
(2.8). The hope is that despite the arbitrary choice of k, using the ε-heuristic still
yields a more sensible choice of the cutoff parameter then just fixing an arbitrary k or
ε.

2.3.4. Towards an Algorithm

In this subsection, after introducing a possible optimization step for the two strategies
designed for obtaining a global ID estimate for all data points (if the ID is constant
on M), we will finally present the algorithm and its computational complexity.

Kullback-Leibler-Divergence Optimization

Both strategies presented in this chapter measure some statistics of an importance
sampled Gaussian distribution. Sometimes, however, this does not succeed as well as
desired, e.g. because a data point has few neighbors. Since for a good ID estimate we
expect the manually assembled annulus bump function (used in the Strategy 1) to look
similar to its corresponding analytical distribution, we want to compare them. We
borrow a similarity measure between two probability distributions from information
theory called Kullback-Leibler-divergence, which is defined as

KL(p, q) ∶= ∫
∞

−∞
p(x) log

p(x)

q(x)
dx

for two probability measures p and q on R, which is not symmetric. We always
have KL(p, q) ≥ 0. High KL-divergences mean very dissimilar distributions, while
KL(p, q) = 0⇔ p = q almost everywhere.

Our strategy is the following: After having computed d̂x for all x ∈X, we compute
for every x the Kullback-Leibler-divergences KL(δx, ξx,d̂x,σ∗x

) between the analytical

annulus bump function ξx,d̂x,σ∗x
corresponding to the estimate d̂x and σ∗ and the

annulus bump function δx, which is obtained by a weighed kernel density estimation
like in Strategy 1. Figure 2.4 illustrates the result of this procedure for two 10-
dimensional exemplary datasets.

If we want to produce one global ID estimate for the whole manifold (if we can
assume constant ID at all data points), then we therefore aim to improve our estimate
by not taking into account the α ⋅100% of the points with highest KL-divergence. α is

19

2. Intrinsic Dimension Estimation

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Kullback-Leibler divergence

10

20

30

40

50

60

70

Di
m

en
sio

n
es

tim
at

io
n

(a) KL-divergences against ID estimates for the
sphere dataset.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Kullback-Leibler divergence

10

20

30

40

Di
m

en
sio

n
es

tim
at

io
n

(b) KL-divergences against ID estimates for the
cube dataset.

Figure 2.4.: Scatter plots of the Kullback-Leibler-divergences (of the manually assem-
bled annulus bump functions compared to the analytical distribution),
plotted against the corresponding Strategy 2 ID estimates d̂x, for a sp-
here and a cube dataset. The sphere dataset consists of 300 data points,
uniformly sampled from a 10-dimensional unit sphere randomly embed-
ded in R15. The cube dataset was created in the same way. We see
that the heuristic indeed tends to overestimate ID at points with high
KL-divergence.

a choice made by the user. Empirically, α = 0.5 yields good results, that is, discarding
the worse half of the local estimators for the global ID estimate.

Algorithm

As a first note, consider that often the intrinsic dimension is constant throughout the
entire manifold M. Therefore, we will compute a single number by either taking the
mean value of all estimates d̂x, which will be denoted with a subscript mean, or by
choosing a value that most estimates agree on, denoted by a subscript vote. In the
latter case, since the estimates are real-valued, we perform an ordinary (unweighted)
kernel density estimation with the estimates d̂x of all points x ∈ X and choose d̂ so
that the density of the estimators d̂x is maximal there.

The algorithm with a Strategy 1 estimate shall be denoted by GAP (Gaussian annulus
peak), and the second one with GAV (Gaussian annulus variance, since we compute a
second moment of the importance sampled Gaussian kernel). All in all, we have the
four different algorithms GAVmean, GAVvote, GAPmean and GAPvote.

Moreover, let α denote the fraction of the data points, which is kept after the KL-
optimization (e.g. for α = 0.7, the 30% of the points with highest KL-divergence are
discarded). Let perc(A,α) denote the α-quantile of a set A ⊂ R of real values. Then
algorithm 1 is the pseudocode of the Gaussian annulus ID heuristics.

20

2. Intrinsic Dimension Estimation

Algorithm 1 Gaussian Annulus Heuristic

procedure Gaussian Annulus(X,k, r,α,m1,m2, h)
Compute k-nearest-neighbor distances ∀x ∈X

ε← arg max
εl

T (εl+1)−T (εl)
log(εl+1)−log(εl) for εl = h

l with l = −m1,−m1 + 1, . . . ,m1 − 1,m1

rcut ←
√
ε ⋅ r

Compute ε-nearest-neighbor distances ∀x ∈X
for all x ∈X do

for all σl = ε ⋅ h
l, l = −m2,−m2 + 1, . . . ,m2 − 1,m2 do ▷ σ-heuristic

wuσl
(i)← exp(−∥x − yi∥

2
2/σ

2
l) for all neighbors yi ∈ Nx

wσl
(i)← wuσl

(i)/∑
nx

j=1w
u
σl
(j) for all neighbors yi ∈ Nx

end for
σ∗ ← first local arg min over σl of ∥x −∑

nx

i=1wσl
(i)yi∥2/ (σl

√
∑
nx

j=1wσl
(j)) (if exists)

if σ∗ does not exist then
Do not compute d̂(x), continue with next x ∈X

end if
δx(r)← weighted KDE on {∥x − yi∥2 ∶ i = 1, . . . , nx} with weights wσ∗(i)
if GAV then

d̂x ←
1
σ∗ ∑

nx

i=1wσ∗(i)∥x − yi∥2
else if GAP then

rmax ← arg max
r

δx(r)

d̂x ← (rmax/σ
∗)2 + 1

end if
γx ← KL(δx, ξx,d̂x,σ∗) ▷ For KL-optimization

end for
D ← {d̂x ∶ γx ≤ perc({γx ∶ x ∈X}, α)} ▷ Discard estimations with high KL-divergence
if mean then ▷ Compute one estimator for whole M

d̂← 1
#D ∑x∈D d̂x

else if vote then
ν(d)← KDE of D with equal weights

d̂← arg max
d

ν(d)

end if
return d̂

end procedure

Computational Complexity

We do a näıve computational complexity analysis by tracking every costly step in the
algorithm. Recall that the number of data points is denoted by n, the number of
pairs of neighbors by N and the (extrinsic) dimension of the data by D. The number
of different ε tried in the ε-heuristic is O(m1) and there are O(m2) different σ tried
for every point. Moreover, we will denote the typical number of evaluations of kernel
density functions with b (e.g. for the peak estimators or the KL-optimizations).

First, a k-nearest-neighbor-search is performed, which is O(n logn ⋅D). Performing
the ε-heuristic is O(n ⋅ k ⋅m1), since there are k distances computed for every data
point, which are used in O(m1) summations of corresponding kernel values. With the

21

2. Intrinsic Dimension Estimation

chosen ε, an ε-nearest-neighbor-search is performed, which is also O(n logn ⋅D).
From here on, all computations just rely on the real-valued distances (or kernel

values computed from these) between the data points, which are already computed
and stored at this point. Hence, D does not play a role anymore from here on.
Performing the σ-heuristic for all data points described above all in all uses the N
computed distances for kernel evaluations O(m2) times. Computing the actual ID
estimates costs O(b ⋅ N) kernel evaluations for kernel density estimations in GAP or
just summing O(N) weighted distances for GAV . The same is true for computing the
weighted KDEs δx(r) and the KL-optimizations. Finally, sorting the KL-divergences
of all data points costs O(n logn).

Therefore, the overall computational complexity is O(Dn logn+nkm1+m2N+bN) =

O(n(D logn + km1) +N(m2 + b)).

2.4. Numerical Experiments

Let us now apply GAP and GAV to datasets with known ID and evaluate their perfor-
mance in terms of precision. This section is divided into two subsections. We will
first approach the presented algorithms from its qualitative behavior with regard to
increasing ID and noise of the datasets in subsection 2.4.1. In the following subsection
2.4.2 we will test the presented heuristics on a large set of synthetic datasets and one
real dataset and compare its performance to a variety of other ID heuristics mentioned
in the review section 2.2.

For the implementation of the algorithm [vL18], Python and its NumPy and SciPy
packages [JOP+01] were used, as well as scikit-learn [PVG+11] (mainly for nearest-
neighbors-computations) and Matplotlib [Hun07] for all plots and visualizations. The
weighted kernel density estimation was performed with the code at [Hof14]. Sparse
data structures were employed whenever possible.

2.4.1. Increasing ID and Noise

We conduct two experiments to learn about the qualitative behavior of GAP and GAV

for different intrinsic dimensions d and noise levels ρ of the datasets.
For the first experiment, we create datasets with 1000 data points uniformly sampled

from the d-dimensional unit hyperspheres and -cubes for d = 1, . . . ,20, embed them in
R50 and rotate them randomly around the origin. We choose the sphere for the reason
that it poses a difficulty for an ID heuristic because of its curvature, and the cube
because of its boundaries and the fact that its mass is concentrated in the corners. We
perform the ID estimations with GAVmean (the results of GAV and GAP are very similar
in practice, while the mean variants perform better than the majority vote variants,
which we will observe in subsection 2.4.2). The results are depicted in figure 2.5.

One observes a good fit with the identity line, which would be ideal estimates. The
ID estimate of the sphere is always about 2 dimensions too high, which is an acceptable
error in higher dimensions. Interestingly however, the heuristic fails to estimate the
ID correctly just for the case d = 2, which is an outlier (which high statistical error)

22

2. Intrinsic Dimension Estimation

3 6 9 12 15 18
Dimension

0

5

10

15

20

Es
tim

at
io

n
of

 d
im

en
sio

n
Identity
Sphere
Cube

Figure 2.5.: Mean value of GAVmean ID estimates of the d-dimensional cube and sphere
embedded in R50 respectively, for d = 1, . . . ,20. The datasets consist of
1000 data points and no noise was added. Error bars are indicated (the
datasets were sampled multiple times), as well as the identity line in black,
on which perfect estimates would lie on.

for the low dimensions. The ID estimate of the cube on the other hand is relatively
accurate. One may therefore conclude that datasets with intrinsic dimensions in the
order of magnitude 101 can in principle be well handled by the Gaussian annulus
approach.

As a second experiment, we choose the same unit sphere- and cube-datasets again,
but with fixed d = 10. Additionally, we add Gaussian noise with standard deviation
ρ = 0,0.05,0.1 and 0.2 to the datasets. Figure 2.6 shows the results.

Apparently, the ID estimation quickly tends to the extrinsic dimension D = 50 for
increasing noise. A possible explanation is that the (full-dimensional) noise is inter-
preted as part of the manifold. Since the noise is full-dimensional, i.e. there is 50 times
one-dimensional Gaussian noise with variance ρ, these distances quickly accumulate.
One may therefore conclude that the Gaussian annulus approach (qualitatively) fails
to estimate ID correctly for noisy datasets.

2.4.2. Benchmark Comparison

In this subsection, we want to evaluate the precision of all Gaussian annulus variants
GAVmean, GAVvote, GAPmean and GAPvote in more detail. Moreover, we want to compare
it to ID heuristics from the literature.

23

2. Intrinsic Dimension Estimation

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Standard deviation of noise

10

15

20

25

30

35

40
Es

tim
at

io
n

of
 d

im
en

sio
n

Sphere
Cube

Figure 2.6.: Mean value of GAVmean ID estimates of the 10-dimensional cube and sphere
embedded in R50 respectively, for different noise levels ρ = 0,0.05,0.1,0.2.
The datasets consist of 1000 data points. Error bars are indicated (the
datasets were sampled multiple times).

Datasets

As a benchmark test set, we use all 21 synthetic datasets and one real-world dataset
from the benchmark proposal of [CCCR15]. The synthetic datasets all consist of
n = 2500 data points and are generated by randomly sampling from some manifold
of known ID and embedding it linearly or non-linearly into some higher dimensional
space. They do not contain any noise. See table 2.1 for an overview.

The datasets M1 up to M13, which are proposed by [HA05], are generated with a
publicly available MATLAB tool [HA] of these authors. Moreover, six other datasets
were generated with a tool also available as MATLAB code at [Lom] provided by the
authors of [CCCR15]. This overall benchmark set also contains datasets with data
sampled from a non-uniform probability density function. For more details on the
datasets, see [CCCR15].

Moreover, a real-world dataset, namely the ISOMAP face database [TDSL00], was
tested. It is denoted byMfaces in table 2.1. It consists of 698 gray-level images of size
64 × 64 depicting the face of a sculpture. This dataset has three degrees of freedom:
two for the pose and one for the lighting direction. Therefore d = 3,D = 64 ⋅ 64 = 4096.
The ISOMAP face database is also used in the numerical experiments of chapter 3;
the reader is referred to figure 3.16 for some exemplary images from this dataset.

Algorithms

On the datasets described above, additionally to the presented algorithms GAVmean,
GAVvote, GAPmean and GAVvote, we apply the following heuristics for a comparison: Hein,

24

2. Intrinsic Dimension Estimation

Name d D Description

M1 10 11 Uniformly sampled sphere linearly embedded.
M2 3 5 Affine space.
M3 4 6 Concentrated figure, confusable with a 3d one.
M4 4 8 Nonlinear manifold.
M5 2 3 2d-helix.
M6 6 36 Nonlinear manifold.
M7 2 3 Swiss roll.
M9 20 20 Affine space.
M10a 10 11 Unformly sampled hypercube.
M10b 17 18 Unformly sampled hypercube.
M10c 24 25 Unformly sampled hypercube.
M10d 70 71 Unformly sampled hypercube.
M11 2 3 Möbius band 10 times twisted.
M12 20 20 Isotropic multivariate Gaussian.
M13 1 13 1d-helix.
M13 24 96 Nonlinear manifold.
MN1 18 72 Nonlinear manifold.
MN2 24 96 Nonlinear manifold.
Mbeta 10 40 Beta distribution nonlinearly embedded.
MP3 3 12 Paraboloid, nonlinearly embedded.
MP6 6 21 Paraboloid, nonlinearly embedded.
MP9 9 30 Paraboloid, nonlinearly embedded.

Mfaces 3 4096 64 × 64-pixel grayscale sculpture images.

Table 2.1.: Descriptions of the manifolds of the datasets tested in this benchmark
comparison. Up to M13, the table is copied from [CBR+14], table 2.

25

2. Intrinsic Dimension Estimation

CD, Takens, MLSVD, MLE, MiNDMLi, MiNDKL, DANCo and DANCoFit.
In order to perform the tests, MATLAB code provided by the groups of the authors

was used, which is provided at [HA] (Hein, CD, Takens), [Mag] (MLSVD) and [Lom]
(MLE, MiNDMLi, MiNDKL, DANCo and DANCoFit).

Note that DANCoFit was not mentioned in the literature review section 2.2. DANCoFit
is the name chosen in the package [Lom]. However, the author of this thesis as-
sumes that this heuristic is the heuristic called FastDANCo in the literature, since
FastDANCo is in fact DANCo with fitted functions to speed up the computation. The
name DANCoFit suggests this and in fact, training DANCoFit first is necessary in the
implementation. Moreover, it achieves much lower runtimes as reported in the des-
cription of the package available at [Lom] (which was the aim of FastDANCo).

See table 2.2 for the parameters used, which are always the default parameters
provided in the code of the other authors. Note that we do not term an input variable
as a “parameter”, if it is clearly always favorable to choose a higher (or lower) value
at the price of a higher computation time (like increasing m2 just means trying more
different σ-candidates). k always is the number of nearest neighbors of each data
point used in the computations. For the GAV and GAP heuristics, however, k stands for
the number of neighbor distances computed for each data point that were fed into the
ε-nearest-neighbor-routine. For DANCoFit, the pre-trained parameters were used that
are provided with the code. Finally, the minCorrectionDim-parameter for DANCo and
DANCoFit is the minimum dimension, for which these heuristics are actually used. For
lower dimensions, the output of the algorithm is just a pre-computed estimate with
some other heuristic (which is otherwise used later in the algorithm). The default pre-
computation is done with MiNDMLk. It is indeed observed that DANCo and DANCoFit

always agree with MiNDMLi (the integer variant of MiNDMLk), whenever the estimated
dimension is (minCorrectionDim − 1) = 4 or lower.

Results

The results of all ID heuristics applied to all described datasets can be read off table
2.3.

Regarding the heuristics presented in this thesis, GAV and GAP seem to produce
about equal results, but the way d̂ is calculated from all single point estimators is
important. Namely, the vote approach estimates ID lower than the mean approach.
This indicates a skew in the distribution of the estimators, i.e. the distribution seems
to have its density peak lower than its expected value.

One also notes that the heuristic is not naturally bounded by the extrinsic dimension
D: E.g. forM1, i.e. the 10-dimensional sphere in 11-dimensional space, the estimates
are higher than D. When this happens, this could easily be corrected, however.

Moreover, Mfaces is an interesting case. Though under noise GAV and GAP are
expected to perform badly and we have D = 4096, the rounded estimate is still 4
instead of 3 or 3 for GAPvote. This observation can be made for all heuristics, however.
Interestingly, the bad heuristics according to the error metrics (see below) perform
better than all good heuristics for this real-world dataset.

26

2. Intrinsic Dimension Estimation

Heuristic Parameters

GAVmean k = 100, r = 3.0, α = 0.5
GAVvote k = 100, r = 3.0, α = 0.5
GAPmean k = 100, r = 3.0, α = 0.5
GAPvote k = 100, r = 3.0, α = 0.5
Hein None
CD None
Takens None
MLSVD #trails = 5
MLE k = 10
MiNDML k = 10
MiNDKL k = 10
DANCo k = 10, minCorrectionDim = 5
DANCoFit k = 10, minCorrectionDim = 5, provided train-file

Table 2.2.: Parameters of all used ID heuristics in the benchmark comparison. The
parameters are further explained in the text.

We observe that the DANCo-heuristics achieve very promising results, even for high
ID. We group them together in the following, because DANCoFit just tries to approx-
imate DANCo to achieve a better runtime and we indeed just observe three datasets,
where DANCoFit produces a different result, which is only one dimension off in these
cases.
MLSVD also has an interesting behavior. If it does not fail completely as observed in

a few cases, most often it is just exact. This is also the case for the high dimensional
datasets, though MLSVD is not expected to work in these regimes, as it fails to estimate
the dimension of a sphere incorrectly already for d = 13 as reported in [LLJM09].
Moreover, despite the original idea is looking for a “spectral gap” and hence this is
not a fractal estimator (at least locally), the algorithm outputs a fractional number
in exactly one case (the one with highest ID).

We also employ several error metrics to combine the results over the range of data-
sets into a single number for every algorithm. Let dMi be the ID of the dataset Mi

and d̂Mi its estimation of some algorithm. Frequently used is the mean percentage
error MeanPE, defined as

MeanPE ∶=
100

#{Mi}

#{Mi}
∑
i=1

∣d̂Mi − dMi ∣

dMi

measuring the average difference of estimation and the true ID relative to the true
ID. However, often it is more important to get the order of magnitude right. As
an example, take a manifold M with dM = 30 and two estimations d̂M,1 = 60 and

d̂M,2 = 1.0. While d̂M,1 is a somewhat mediocre estimation (wrong by a factor of 2),

27

2. Intrinsic Dimension Estimation
n

am
e

N
d

D
G
A
V
m
e
a
n

G
A
V
v
o
t
e

G
A
P
m
e
a
n

G
A
P
v
o
t
e

H
e
i
n

C
D

T
a
k
e
n
s

M
L
S
V
D

M
L
E

M
i
N
D
M
L

M
i
N
D
K
L

D
A
N
C
o

D
A
N
C
o
F
i
t

M
1

25
00

10
11

11
.1

5
9.

96
11

.5
2

9.
90

9
9
.2

3
9.

46
1
0
.0

9
.2

4
9

1
1

1
1

1
1

M
2

25
00

3
5

2.
85

2.
64

2.
86

2.
28

3
2.

9
9

2.
97

3
.0

2
.8

6
3

3
3

3
M

3
25

00
4

6
4.

19
3.

53
3
.9

9
2.

91
4

3.
8
2

3
.8

1
2.

4
3.

8
5

4
4

4
4

M
4

25
00

4
8

4.
48

3.
87

4.
36

3.
19

4
3.

8
2

3.
83

8.
0

3
.9

1
4

4
4

4
M

5
25

00
2

3
2.

21
2
.0

0
2.

27
1.

67
2

1.
9
8

2.
03

2
.0

1
.9

9
2

2
2

2
M

6
25

00
6

36
7.

89
6.

76
7.

82
7.

07
6

5
.7

3
5.

7
0

12
.0

6
.2

8
6

7
7

7
M

7
25

00
2

3
1.

97
2
.0

0
2.

01
1.

63
2

1.
93

1.
9
1

2
.0

1.
9
4

2
2

2
2

M
9

25
00

20
20

19
.7

6
17

.9
8

20
.7

4
15

.6
2

16
1
5.

1
3

15
.2

3
2
0
.0

1
4.

6
6

1
5

2
0

2
0

1
9

M
1
0
a

25
00

10
11

10
.1

6
8.

79
10

.3
4

8.
39

9
8.

78
8.

64
1
0
.0

8
.2

1
8

1
1

1
0

1
0

M
1
0
b

25
00

17
18

16
.7

9
14

.6
6

17
.5

7
13

.0
5

13
1
2.

3
6

13
.0

2
1
7
.0

1
2.

7
5

1
3

1
4

16
16

M
1
0
c

25
00

24
25

22
.8

7
21

.0
8

24
.0

1
17

.7
0

17
1
7.

0
6

17
.2

5
2
4
.0

1
6.

9
5

1
7

2
4

2
4

2
3

M
1
0
d

25
00

70
71

54
.6

5
52

.0
2

56
.2

5
42

.9
2

38
3
6.

8
9

37
.1

0
7
0
.2

36
.5

9
3
8

6
2

7
1

7
1

M
1
1

25
00

2
3

2.
04

1
.9

9
2.

04
1.

62
2

1.
91

1.
9
3

1.
0

1.
93

2
2

2
2

M
1
2

25
00

20
20

21
.7

9
19

.9
1

22
.6

4
16

.7
3

15
14

.4
4

14
.4

5
2
0
.0

1
6
.1

5
16

18
2
0

2
0

M
1
3

25
00

1
13

4.
32

1.
69

2.
45

1.
39

1
1
.0

2
1.

0
2

1
.0

1
.0

0
1

1
1

1
M

N
1

25
00

18
72

18
.3

4
17

.3
6

19
.0

3
13

.9
2

14
13

.6
6

1
3.

78
1
8
.0

1
3.

7
5

1
4

1
5

1
8

1
8

M
N

2
25

00
24

96
24

.0
5

22
.0

3
24

.8
2

18
.8

3
1
8

17
.1

2
1
7.

2
0

2
4
.0

1
7
.4

1
18

26
2
4

2
4

M
b

et
a

25
00

10
40

7.
64

6.
04

7.
77

5.
01

4
3.

51
3.

5
6

1
0
.0

6
.0

1
6

7
7

7

M
P

3
25

00
3

12
2.

81
2.

67
2
.9

3
2.

31
2

2.
04

2.
10

1.
0

2.
9
1

3
3

3
3

M
P

6
25

00
6

21
5
.7

8
4.

74
5.

70
4.

15
2

2.
31

2
.3

1
1.

0
4
.9

6
5

5
6

5
M

P
9

25
00

9
30

7
.9

5
6.

79
7.

84
5.

83
2

2.
33

2
.2

0
1.

0
6
.3

9
7

8
8

8
M

fa
ce

s
25

00
3

78
4

4.
46

4.
13

4.
31

2
.9

8
3

3.
37

3.
43

1.
0

3
.7

1
4

4
4

4

T
ab

le
2
.3

.:
ID

es
ti

m
a
ti

o
n

s
of

se
ve

ra
l

ID
h

eu
ri

st
ic

s
on

th
e

b
en

ch
m

ar
k

te
st

se
t

d
es

cr
ib

ed
ab

ov
e

(r
o
u

n
d

ed
to

tw
o

d
ec

im
al

p
la

ce
s

a
ft

er
co

m
m

a
).

In
ea

ch
ro

w
,
th

e
b

es
t

es
ti

m
at

e
is

in
d

ic
at

ed
in

b
ol

d
.

If
th

e
b

es
t

es
ti

m
a
te

w
as

p
ro

d
u

ce
d

b
y

an
a
lg

o
ri

th
m

o
n

ly
es

ti
m

at
in

g
w

h
o
le

n
u

m
b

er
s,

a
ls

o
th

e
b

es
t

co
n
ti

n
u

ou
s

es
ti

m
at

e
is

h
ig

h
li

gh
te

d
(s

in
ce

co
n
ti

n
u

o
u

s
h

eu
ri

st
ic

s
h

av
e

a
m

u
ch

lo
w

er
ch

a
n

g
e

o
f

at
ta

in
in

g
th

e
co

rr
ec

t
ID

ex
ac

tl
y
).

A
d

d
it

io
n

al
ly

,
th

e
b

es
t

h
eu

ri
st

ic
of

th
e

fo
u

r
h

eu
ri

st
ic

s
p

re
se

n
te

d
in

th
is

th
es

is
a
re

h
ig

h
li

gh
te

d
in

re
d
.

28

2. Intrinsic Dimension Estimation

GAVmean GAVvote GAPmean GAPvote Hein CD Takens MLSVD MLE MiNDML MiNDKL DANCo DANCoFit

MeanPE 24.85 14.97 16.31 23.13 20.38 22.62 22.40 27.08 16.37 15.13 8.72 4.93 6.10
MeanGE 1.17 1.16 1.14 1.30 1.34 1.36 1.36 1.49 1.21 1.19 1.09 1.05 1.06
MedPE 5.64 11.77 5.34 22.28 15.00 18.29 18.93 0.00 17.65 18.33 9.17 0.00 0.00
MedGE 1.07 1.13 1.06 1.29 1.25 1.32 1.31 1.00 1.22 1.25 1.10 1.00 1.00
Exact 13 9 10 6 9 9 9 14 9 9 10 15 12

Table 2.4.: Error metrics described above for algorithms and datasets in the bench-
mark comparison in table 2.3. The overall lowest error in each row is
printed in bold, the lowest error among the heuristics presented in this
thesis in red.

d̂M,2 gives a completely wrong impression of the dataset, hence failed here and is not
the preferred estimate in this case. Nevertheless, the percentage error would still favor
d̂M,2. Therefore, we introduce the mean geometric error MeanGE as

MeanGE ∶=
#{Mi}

¿
Á
Á
ÁÀ

#{Mi}
∏
i=1

max{
d̂Mi

dMi

,
dMi

d̂Mi

}

measuring the geometric mean of the ratio of true and estimated ID.
Another problem of the proposed error measures is the high sensitivity of these

measures to outliers. Obviously, MLSVD sometimes completely fails the estimation,
but when it is right, the estimation is often exact. To take this into account, we also
use median variants MedPE and MedGE of the metrics above:

MedPE ∶= mediani {100 ⋅
∣d̂Mi − dMi ∣

dMi

}

and

MedPE ∶= mediani {max{
d̂Mi

dMi

,
dMi

d̂Mi

}} .

Finally, let us also look at how many correct estimations the heuristics produced,
when rounding all estimations to the closest whole number, so we define

Exact ∶= #{i ∶ round (d̂Mi
) = dMi

} .

The error metrics for the benchmark datasets can be found in table 2.4.
We note that the mean-variants of GAV and GAP outperform most heuristics, except

for the DANCo-heuristics and MLSVD, in all metrics except for the mean percentage error
(which, as mentioned above, is sensitive to outliers and a geometric error is more
sensible in a lot of cases) and MiNDKL for the MeanGE-error. Further, the heuristics
provided at [HA] (Hein, CD and Takens) are very similar in precision, with Hein

slightly outperforming the other two, in particular its ball step function analog CD.
The group of heuristics contained in the code [Lom] comes out above that group,

29

2. Intrinsic Dimension Estimation

where one may approximately order them as MLE and MiNDMLi, then MiNDKL, then
DANCoFit, then DANCo (in descending order with respect to error). MLSVD makes up
an own category, being exact in the median – which is otherwise only achieved by the
DANCo-heuristics – but having bad mean errors, since several complete failures worsen
the average.

2.5. Discussion and Further Research

In this chapter, the problem of intrinsic dimension estimation was discussed. After
presenting different approaches to assign an intrinsic dimension to a dataset X or just
to single data points x ∈X, the Gaussian annulus approach was motivated, leading to
two concrete ID estimation strategies. Importance sampling served as the theoretical
justification for Strategy 2. New heuristics for choosing the scale parameters of the
strategies were presented, as well as a Kullback-Leibler-divergence-based optimization
of the estimate. This was all merged into implementable algorithms, of which the com-
putational complexity was analyzed. Moreover, experiments with qualitative as well
as quantitative results (in subsections 2.4.1 and 2.4.2, respectively) were conducted.

Several problems remain unsolved and questions unanswered, both for GAV and GAP,
as well as all other heuristics. Firstly, there is not one heuristic to this day fulfilling
all desired properties of an ideal ID estimator, as mentioned in the beginning of this
chapter. In the case of GAV and GAP, one could conclude that the presented estima-
tors are computationally feasible, accurate, and robust to high dimensionality, but not
robust to multiscaling and there was also no operative range established. More gene-
rally, there are multiple heuristics that are precise on noise-free data sets, especially
the DANCo-heuristics. However, these are not robust to multiscaling, as they fail on
noisy datasets, which is reported in subsection 2.4.1 or [CBR+14], respectively. At the
very least, they have an inferior performance compared to MLSVD, which is very robust
to multiscaling, since it is part of the construction of the algorithm (see [LLJM09]).
The DANCo-heuristics also do not provide an operative range, i.e. a range where these
estimators yield reliable results or concrete estimates on the errors. Using some re-
gularity assumptions of the data, it should be possible to establish such estimates for
GAV, however, possibly in a manner like the proof of 2.4.1. An analysis of the qualita-
tive behavior of the number of data points needed for increasing dimensionality would
also be of importance.

On the other hand, MLSVD has the problem that it is not robust to high intrinsic
dimensionality, which the authors report themselves in [LLJM09]. Moreover, MLSVD
fails on all real-world datasets in the benchmark test in [CCCR15].

Techniques on norm concentration alone will, however, most likely face overestima-
tion problems in the presence of noise, since the noise is accumulated for all directions.
Hence, trying to combine a multiscaling strategy like MLSVD, which is able to “split
up” the noise into its single directions (the corresponding sigular values) with such a
concentration technique would be interesting.

Another unsolved problem in this field is the ill-posedness of the problem with

30

2. Intrinsic Dimension Estimation

regard to the acceptable noise level and the multiscaling problem. More theoretical
and practical work would be required in order to be able to assign mathematically
justified ID values to datasets or classify the cases where this is not possible.

Additionally, there is a number of possibilities one could try to further work with
GAV and GAP. As mentioned in section 2.3.3, up to now there is no mathematically
sound justification for the heuristic of the kernel scale σ. One may also explore ot-
her ways to choose a good scale σ for the estimators, e.g. for the reason that this
heuristic is computationally demanding. A case where this choice would not even be
necessary, would be the existence of a plateau in the function d̂(σ) of the ID esti-
mation depending on the chosen scale. Something like this is observed in particular
cases in [FdRL17]. Another possibility would be to choose the kernel scale using the
Berry-Harlim-heuristic in the locally adaptive way described in [BH16] that we used as
an inspiration for the global ε-heuristic for the nearest-neighbors-cutoff in this thesis.
What would be necessary in terms of consistency would be to assume in the algorithm
that the cutoff radius ε is always large enough with respect to the choice of σ so that
the Gaussian annulus is “fully contained” in the ε-ball (see the analysis in subsection
2.3.2).

A promising try would be to combine the norm-based techniques in this thesis
with an angle-based technique like DANCo does, in order to achieve even more precise
results. Note that GAVmean and GAPmean had slightly better median error metrics in the
benchmark test in section 2.4 than MiNDKL, which is just the “norm-part” of DANCo.

Since the Gaussian annulus approach in some sense also exploits that the volume
of d-dimensional balls Br grows like rd, any equivalence statements with respect to
other fractal estimators would be of theoretical interest.

What was assumed in this thesis is that the sample density q on the manifoldM is
locally well approximated by a uniform distribution in a linear subspace. More work
would be required to be able to relax these conditions. For instance, one may try to
adaptively reduce the reliability of estimators, where the curvature of the manifold is
high. One would therefore need to employ curvature estimators of point clouds, for
which there exist several ideas in the literature like in [Tau95] or [LP05] or by using
pointwise distances to manifold approximation methods like the one in [Lev16]. To
compensate for rough sample densities q, one could try to use an approach used in
diffusion maps, where one divides out the density locally. This will be presented in
section 3.2.

One remark to be made is that the author also tried to estimate ID by minimizing
the KL-divergence of the importance sampled Gaussian distribution to the annulus
bump function ξ. This approach did not achieve superior results compared to GAV and
GAP, however.

Finally, one may view the presented method using importance sampling as a more
general framework. Importance sampling widens the range of statistics one may use on
a dataset tremendously. It would be interesting, if different importance distributions
could lead to new heuristics or yield improvements for other algorithms from the
literature.

31

3. The Higher Harmonics Problem of
Diffusion Maps

In this chapter, we will turn to manifold learning, i.e. the calculation of concrete
low-dimensional parametrizations of our data with a particular algorithm, diffusion
maps. We assume again that we are given data X = {x1, . . . , xn} ⊂ RD, which lies
on a compact d-dimensional manifold M and is sampled i.i.d. according to a density
q ∶ Rd → R with supp(q) ⊂M. Neither M, nor the density q, is known. Our task is
to find a feature map Φ ∶ RD → Rd (often d≪D), such that

� Φ parametrizes M

� ∥Φ(x) −Φ(y)∥Rd is an intrinsic distance of M.

The diffusion maps algorithm is well suited to achieve this task and widely used in
the literature. It approximates the Laplace-Beltrami-operator ∆M on the manifold
(the generalization of the Laplace operator ∆ in Euclidean space to general Rie-
mannian manifolds) and yields its eigenfunctions as embedding coordinates. But for
anisotropic data, i.e. data that extends more in some directions than others, we face a
problem, which we will call the higher harmonics problem in the following. It occurs,
because the eigenfunctions of the Laplace-Beltrami-operator are cosine-functions in
this case, plus its higher harmonics. The latter are redundant coordinates, since our
aim is to find a parametrization of our data of minimal dimension, termed as a mi-
nimal diffusion maps embedding in this thesis. An iterative approach to project out
previously found coordinates will be presented.

This chapter is organized as follows. First, previous works regarding this problem
are mentioned in section 3.1. In section 3.2 we will introduce the standard diffusion
maps algorithm. We will then investigate the higher harmonics problem in more
detail in section 3.3 where also a standard example case is shown. A novel approach
of solving the higher harmonics problem is presented in section 3.4. The algorithm
is tested and evaluated on synthetic as well as real world data in section 3.5. We
conclude this chapter with section 3.6 by investigating possible directions of further
research on the higher harmonics problem and its solutions.

Note the minor notation changes in this chapter: µ a probability measure now, p
is used for a probability transition kernel, which will be introduced, and the letter d
will be used for several distance metrics. Moreover, depending on the context, the
notation for D will be slightly abused, using it not only for the extrinsic dimension
of the data, but Dt or Dx will be either the diffusion distance with time parameter t
(Dt) or a matrix containing the difference vectors yi − x for all neighbors yi ∈ Nx row
by row (denoted by Dx).

32

3. The Higher Harmonics Problem of Diffusion Maps

3.1. Relevant Work

There is only very few work on the higher harmonics problem of diffusion maps, let
alone attempts to resolve that issue.

Firstly, although this does not directly address the higher harmonics problem, the
original diffusion maps paper [CL06a] describes a kernel that produces fast and slow
directions of the diffusion. The authors use this kernel in order to find a function
g which shall be constant on the level sets of a given empirical function f on the
manifold, but less oscillatory than f . (For more details, see the motivation in section
3.4.) If one puts this strategy in terms of the higher harmonics problem, they try to
fix it by transforming a higher harmonic to the lowest harmonic.

In [NLCK06], a paper from the same year, where the same authors also contribute,
a diffusion maps framework is set up to compute reaction coordinates of dynamical
systems. The higher harmonics problem is present in one of their synthetic examples
but is neither treated as a problem, nor is it tried to resolve.

In [CGD+14], the higher harmonics problem is mentioned in the theoretical part,
but not resolved. In the presented results of their application, the higher harmonics
problem does not seem to appear.

As an ad hoc solution, in a conference talk [Kev17] is was proposed to study the
set {(ψi(x), ψj(x)) ∶ x ∈ X} where ψi, ψj are diffusion maps coordinates on the data.
That is, one e.g. shall plot two potentially dependent coordinates against each other.
One should then check whether the graph is similar to the graph of a parabola like in
figure 3.2(a). This would indicate a pair of a coordinate and a higher harmonic with
twice the frequency, which we will see in section 3.3. If this is observed, the coordinate
with higher frequency is discarded. However, this approach has the problem that for
even higher harmonics than the ones with just twice the frequency, the graph looks
different again. Additionally, if the intrinsic dimension of the data is high, one has
to compare every new coordinate with all previously computed ones, which requires
a lot of computation time.

For these reasons, an iterative approach is presented in this thesis, trying to comple-
tely remove already computed coordinates from the given manifold learning problem
and computing a new coordinate.

3.2. Diffusion Maps

Diffusion maps is a manifold learning technique that aims to parametrize the data by
constructing an n×nMarkov chain transition matrix, which approximates a differential
operator on the manifold. One then tries to extract the geometric information about
M by studying the eigenfunctions of that operator.

Let dµ(y) = q(y)dy be our integration measure on M. Then the standard diffusion
maps construction works as follows.

1. Fix an isotropic, rotationally invariant kernel kσ(x, y) = g (∥x − y∥
2/σ). A com-

mon choice for g is g(z) ∝ exp(−z), such that kσ becomes the heat kernel. To

33

3. The Higher Harmonics Problem of Diffusion Maps

achieve compact support, e.g. for computational reasons (to obtain a sparse
kernel matrix), we might also choose g(z)∝ exp(−z)1{z≤ε}.

2. Fix α ∈ R, let

qσ(x) = ∫
M
kσ(x, y)dµ(y)

be a smoothed approximation of the density q(x). Assuming qσ(x), qσ(y) > 0,
form the density normalized kernel

k(α)σ (x, y) =
kσ(x, y)

qασ (x)q
α
σ (y)

.

3. Set

d(α)σ (x) = ∫
M
k(α)σ (x, y)dµ(y)

and normalize the kernel k
(α)
σ by defining the anisotropic transition kernel

pσ,α(x, y) =
k
(α)
σ (x, y)

d
(α)
σ (x)

such that ∫M pσ,α(x, y)dµ(y) = 1, i.e. pσ,α(x, y) is in fact a Markov transition
kernel. That is, we can define a sequence of random variables (Xl)l∈N that take
values in M with transition probabilities

P[Xl+1 ∈ A∣Xl = x] = ∫
A
pσ,α(x, y)dµ(y).

4. Define the transfer operator P = P (α) of the constructed Markov process to be

P (α)f(x) = E[f(Xl+1)∣Xl = x] = ∫
M
pσ,α(x, y)f(y)dµ(y).

Compute the first m + 1 eigenvalues λk (i.e. 1 = λ0 > λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λm) and
eigenfunctions φk of P = P (α) and study the diffusion maps embedding

Φ(x) = (λ1φ1(x), . . . , λmφm(x)).

Note that we use λ0 = 1 and φ0 as a notation for the first pair of eigenvalue and
eigenfunction of P here and discard them in the diffusion maps embedding. This is
because we will assume a choice of the kernel kσ so that pσ,α is the transition kernel of
a reversible and irreducible Markov process (Xl) (reversible follows from a symmetric

34

3. The Higher Harmonics Problem of Diffusion Maps

kernel kσ). This implies that we will always have φ0 ≡ 1 with eigenvalue λ0 = 1 since

Pφ0(x) = ∫
M
pσ,α(x, y) ⋅ 1 dy = 1 = 1 ⋅ 1(x) = λ0φ0(x) ∀x ∈M

and, most importantly, one can show that 1 = λ0 > λ1 ≥ λ2 ≥ . . . for the reversible and
irreducible Markov chain. In the following, we will therefore call φ1 or ψ1 respectively
the first eigenvector, eigenfunction, coordinate, etc. instead of φ0 or ψ0 and will ignore
φ0 and ψ0 for the most part.

Finite Data

The approximation with data is straightforward. To obtain a sparse kernel matrix
(corresponding to a kernel cutoff), one first performs an ε-nearest-neighbor search
(see appendix A for more details). Since

z =
∥x − y∥2

σ

!
≤ r ⇔ ∥x − y∥ ≤

√
σr,

one chooses ε ∶=
√
σr as cutoff radius. All non-neighbor kernel values are set to zero.

This corresponds to exchanging the ordinary Gaussian kernel for a Gaussian kernel
with cutoff by multiplying with the step function 1Bε(x), compare section 2.3.

Then the construction of the transition kernel p is slightly modified:

1. Form Kij = k(xi, xj) and compute the densities di = ∑
n
j=1Kij

2. Choose α ∈ [0,1] and compute the normalized kernel matrix

K
(α)
ij =

Kij

dαi d
α
j

3. Obtain a transition matrix P (α) by row-normalization:

P
(α)
ij =

K
(α)
ij

d
(α)
i

, where d
(α)
i =

n

∑
j=1

K
(α)
ij

4. Compute λ1, . . . , λm and corresponding eigenvectors ψ1, . . . , ψm of P = P (α) and
study the diffusion maps embedding

Ψ(x) = (λ1(ψ1)(x), . . . , λm(ψm)(x)) ∀x ∈X.

In other words, ψ1, . . . , ψm are the computed coordinates for the data points.
That is, they can be viewed as real-valued functions ψ ∶ X → R defined on the
data points that parametrize X.

35

3. The Higher Harmonics Problem of Diffusion Maps

Reasoning Behind the Diffusion Maps Construction

So far, we have established the diffusion maps procedure as the construction of a
Markov chain on the dataset, where we chose the transition probabilities somehow
related to the distances between data points. But does this Markov chain and its
eigenfunctions, i.e. the embedding coordinates, encode any structure about M?

Two answers can be given. The first one is that distances in the embedding corre-
spond to a distance metric in the original Euclidean space called diffusion distance.
From the construction one can show the existence of a stationary distribution π of
(Xl)l∈N, so that for l → ∞ the probability distribution of (Xl) converges to π. Then
we may define:

Definition 3.1: For x, y ∈M and t ∈ N, the diffusion distance Dt(x, y) is

D2
t (x, y) = ∥pt(x, ⋅) − pt(y, ⋅)∥

2
L2(M,π−1dµ) = ∫M

(pt(x, ⋅) − pt(y, ⋅))
2dµ(u)

π(u)

where pt(x, y) is the transition kernel of P t, i.e.

P tf(x) = ∫
M
pt(x, y)f(y)dµ(y).

The diffusion distance measures the difference between the probability distributions
pt(x, ⋅) and pt(y, ⋅). Essentially, this is the overlap of the probability distributions of x
and y when starting the Markov chain in x or in y respectively and running the chain
for time t.

If P has an orthonormal basis (ONB) {φk}
∞
k=0 of eigenfunctions with corresponding

eigenvalues {λk}
∞
k=0 (which can be already derived from square-integrability of k), by

some calculations (which can be found in [Ban17]), one finds

D2
t (x, y) =

∞
∑
k=1

λ2t
k (φk(x) − φk(y))

2.

We let D
(d)
t (x, y) be the approximation of the diffusion distance by cutting of the

infinite sum:

(D
(d)
t)2(x, y) ∶=

d

∑
k=1

λ2t
k (φk(x) − φk(y))

2.

Therefore, we come full circle and arrive at diffusion maps again, since this shows that
the algorithm is constructed in a way, so that

∥Φ(x) −Φ(y)∥Rd =D
(d)
t (x, y)

i.e. the distances in the embedding are the diffusion distances between the points on
the manifold.

Hence we have related the construction of the Markov transition kernel in the dif-

36

3. The Higher Harmonics Problem of Diffusion Maps

fusion maps procedure to the diffusion distance. However, there is another deep
connection between the coordinates of the diffusion maps embedding and the Laplace-
Beltrami-operator ∆M, which is the generalization of the standard Laplace operator
∆ in Euclidean space to manifolds.

We recall that the transition matrix P (α) is self-adjoint and the normalization con-
dition implies that P (α)1 = 1. We now form the graph Laplacian

L(α) = σ−1 (P (α) − I) .

Then one can show that the graph Laplacian indeed approximates the continuous
Laplace-Beltrami-operator:

Theorem 3.2: For an infinite amount of data and the kernel bandwidth σ going to
0, the graph Laplacian converges to the Laplace-Beltrami-operator, that is

lim
σ→0

lim
n→∞

L
(α)
ij f(xj) = ∆Mf + (2 − 2α)∇f ⋅

∇q

q
.

Note that if q is the uniform distribution or if we choose α = 1, the second term
vanishes (i.e. the density has no influence) and we get

lim
σ→0

lim
n→∞

L
(α)
ij f(xj) = ∆Mf.

Therefore, we can also state the convergence of the constructed Markov chain to
Brownian motion or heat diffusion on the manifold, since the infinitesimal generator
of Brownian motion is the Laplace operator. The infinitesimal generator of of a time-
homogeneous Markov process shall not be exactly defined here, but can be thought of
as the “expected time derivative” of that process, i.e. it describes the movement of the
stochastic process in an infinitesimal time interval. Let e−t∆M denote the Neumann
heat kernel, where ∆M has eigenfunctions φk. That is, φk verifies Neumann boundary
conditions ∂φk = 0 on the boundary ∂M of M. Then the following holds:

Proposition 3.3: For any t > 0, the Neumann heat kernel e−t∆M can be approximated

on L2(M) by P
t
σ
σ,1:

lim
σ→0

P
t
σ
σ,1 = e

−t∆M .

For the proof, which is beyond the scope of this thesis, we refer to [CL06a] and to
[HAVL05] for a more general treatment.

Therefore, intuitively, we study the structure of the manifold by constructing Brow-
nian motion on it and then studying the eigenfunctions of the generator of this process.
Furthermore, the Markov chain is constructed in a way such that no probability flows
away from the “boundary” of the dataset. In particular, the mentioned eigenfuncti-
ons are the solutions to the Laplace equation ∆Mφ = 0 with homogeneous Neumann
boundary conditions, since the normal derivative at the “boundary” must be zero.

37

3. The Higher Harmonics Problem of Diffusion Maps

An interpretation why this strategy works on nonlinear manifolds (e.g. compared to
linear methods like Principal Component Analysis or methods that use all distances
between the data points like Multidimensional Scaling) is that only local distances are
trusted and used in the algorithm because of the Gaussian kernel. Global (Euclidean)
distances may be inappropriate to use and can be very different from e.g. geodesic
distances which are more sensible, since the underlying manifold M of the data is
nonlinear or curved in general.

3.3. The Higher Harmonics Problem

Diffusion maps works well in a lot of situations and yields good coordinates for a
given dataset. However, if very anisotropic data is given, diffusion maps produces
redundant coordinates because of higher harmonics. An example of this phenomenon
is shown in figure 3.1, where the standard diffusion maps algorithm is applied to a
typical synthetic dataset in manifold learning called swiss roll. This is a rectangle,
winded up in space (so that two close points in Euclidean distance are not necessarily
close in geodesic distance).

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

1

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

2

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

3

Figure 3.1.: Standard diffusion maps applied to a swiss roll dataset with 2000 data
points, corrupted by Gaussian noise with standard deviation 0.1. The
depicted first three coordinates are found by the standard diffusion maps
algorithm with parameters σ = 6.0, r = 5.0, α = 1.0. The color map
indicates the function values of ψi, i = 1,2,3.

In this example, the first coordinate ψ1 found by diffusion maps (i.e. λ1 ≥ λ2 ≥ . . .)
nicely parametrizes the long direction of the rectangle, that is, the angular coordinate
of the swiss roll. However, although ψ1 is very different from ψ2, the second coordinate
ψ2 parametrizes the same direction as ψ1. This is because the wound-up rectangle is
more than twice as long as wide. Therefore, this coordinate is effectively redundant.

Figure 3.2(a) shows the embedding of the swiss roll for m = 2 obtained from ψ1 and
ψ2. Since these two coordinates parametrize the same direction, the embedded mani-
fold is effectively one-dimensional, although the original manifold is two-dimensional.
ψ3, however, parametrizes the z-direction orthogonal to the angular direction of the

38

3. The Higher Harmonics Problem of Diffusion Maps

swiss roll. As a result, the combination of ψ1 and ψ3 yields a two-dimensional mani-
fold, as shown in figure 3.2(b).

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
1

0.04

0.02

0.00

0.02

0.04

2

(a) ψ1 plotted against ψ2.

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
1

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

3

(b) ψ1 plotted against ψ3.

Figure 3.2.: Embeddings of the swiss roll with Gaussian noise (standard deviation 0.1)
in R2. In 3.2(a), ψ1 and ψ2 computed by diffusion maps with parame-
ters mentioned in figure 3.1 are chosen as embedding coordinates. Since
they parametrize the same direction on the manifold, one obtains a one-
dimensional manifold in R2. Choosing ψ3 instead of ψ2 as the second
embedding coordinate yields a two-dimensional manifold.

We term this the problem of higher harmonics. Let us understand this effect, which
also clarifies the choice of the name of this issue. As shown in theorem 3.2 and
proposition 3.3, the constructed Markov process approximates Brownian motion on
the manifold and the eigenfunctions computed by diffusion maps are the eigenfunctions
of the Laplace operator with homogeneous Neumann boundary conditions.

If the domain is a rectangle (which would be the “unrolled case” of figure 3.1),
these eigenfunctions φ of the Laplacian are well known (see e.g. [GN13]). Let Ω =

[0, ax] × [0, ay] ⊂ R2, lx,y > 0, then separation of variables yields

φk,l(zx, zy) = φ
(x)
k (zx)φ

(y)
l (zx), λk,l = λ

(x)
k (zx) + λ

(y)
l (zy)

where φ(x), φ(y) and λ(x), λ(y) correspond to the eigenfunctions in the one-dimensional
case. Since we have Neumann boundary conditions, the φ’s are cosine-functions:

φ
(z)
k (z) = cos(πkz/a(z)) (3.1)

This means that for very anisotropic data (without loss of generality, let the x-direction
be the long one), the few first eigenfunctions are the constant 1-function for k = 0, the
base cosine cos(πx/ax) for k = 1 in x-direction (multiplied by the constant 1-function
for the y-direction) and some higher harmonics of the x-cosine for a few higher k.

That is, the cosine has more oscillations for higher k. Only when λ
(x)
l < λ

(y)
1 for the

first time for some l, the first eigenfunction parametrizing the y-direction is found.

39

3. The Higher Harmonics Problem of Diffusion Maps

At this point we are also in shape to explain why the curve in figure 3.2(a) looks
like a quadratic parabola arc. We know from equation (3.1) that in our example
we are basically computing cos(x) and cos(2x) as the first two eigenfunctions. By
addition theorems of the trigonometric functions, cos(2x) = 2(cosx)2 − 1. Hence,
setting cos(x) =∶ y, an arc of a quadratic parabola is parametrized by the set

{(y,2y2 − 1) ∶ y ∈ [−1,1]} = {(cosx, cos(2x)) ∶ x ∈ R}.

Though we will not show this result for more general domains than the rectangle, we
will in fact encounter this parabola arc a few times again in the numerical experiments,
e.g. for a domain of an ellipsoid and even for a real-world dataset.

Summing up, this is an undesired effect. Ideally, the first k chosen coordinates
should yield a full-dimensional manifold in Rk. The higher harmonics problem, ho-
wever, produces redundant coordinates. This either unnecessarily blows up our em-
bedding, i.e. the the diffusion maps embedding is not minimal, or, if we choose to
just compute m = d coordinates, lets diffusion maps fail to parametrize the manifold.
Unfortunately, it is a priori not clear how to detect higher harmonics automatically
in all cases or even eliminate them completely.

Moreover, because of the different sampling densities in ψ1-direction, we get a dis-
torted embedding, when choosing the “right” coordinate ψ3. This is apparent in figure
3.2(b): If ψ1 and ψ3 would be independent, we would get a rectangle, but we receive a
trapezoid instead. This is because the data points are much more dense on the inside
than on the outside, since they were sampled so that equal angles get an equal amount
of data points, independent of the distance to the center axis. In theory, this should

be compensated by dividing out the densities in the kernel, i.e. by using K
(α)
ij =

Kij
dαi d

α
j

as entries of the kernel matrix. However, theorem 3.2 is a convergence result, i.e. the
Laplace-Beltrami-operator is only exactly recovered for an infinite dataset.

This is also undesired, since even when choosing ψ3 as the second diffusion maps
coordinate, it is not independent from the first one.

Last but not least, even though there are good ID heuristics, it would be nice to
have some stopping criterion intrinsic to the algorithm. Since diffusion maps is not
expected to work for all possible datasets, this could be used to check, whether the
whole dimension reduction procedure worked or not.

3.4. Minimal Diffusion Maps

In this section, a new approach for solving the higher harmonics problem is presented.
The idea lies in subtracting the parts of the data points’ difference vectors, which are
already parametrized by the currently already computed part of the embedding, and
then iteratively finding new parameters.

40

3. The Higher Harmonics Problem of Diffusion Maps

Motivation

Though with slightly different intentions, an anisotropic diffusion kernel already is
introduced in [CL06a], namely

kσ(x, y) = exp(−
∥x − y∥2

σ
−

⟨∇f, x − y⟩2

σ2
) ,

where f is some empirical function on X, which is more oscillatory than desired. This
kernel will favor points which are constant on the same level sets of f . It is shown in
[Laf04] that by normalizing this to a Markov kernel pσ, for σ → 0 one obtains a diffusion
which is constant along the level sets of f . Consequently, its first eigenfunction φ1 is
constant along the level sets and has few oscillations, since it is at the beginning of
the spectrum.

Let us use this idea in the context of the higher harmonics problem. Suppose we
already know the first nontrivial eigenfunction φ1. We could now want to speed up the
diffusion in the direction which is already parametrized by φ1 and thereby change the
spectrum of the Laplacian so that the first nontrivial eigenfunction of the old diffusion
is not the first in the new diffusion. Therefore, by just calculating the first nontrivial

eigenfunction φ
(1)
1 of the new diffusion, we can also not get any higher harmonic of

φ1, since the higher harmonics come later in the spectrum and therefore we obtain a
new non-redundant coordinate of the data.

Subtracting the Gradient Part

This speedup of the diffusion shall be achieved by updating the transition kernel
appropriately after we know φ1. In particular, we modify the distances between the
data points by diminishing the part of the difference vectors x − y, which is already
“explained” by φ1. That is, we set

d
(0)
subt(x, y) = ∥(x − y) − ⟨x − y,

∇xφ1

∥∇xφ1∥
⟩φ1∥

2

(3.2)

where ∇xφ1 denotes the gradient of φ1 evaluated at x. This corresponds to making the
diffusion in the direction parametrized by φ1 infinitely fast, i.e. in expectation it takes

no time to move in direction ∇φ1. If x and y are not neighbors, we set d
(0)
subt(x, y) =∞.

However, there is one more problem with this approach. In practice, we only have a
finite dataset and need to calculate the gradient ∇xψ1 where ψ1 is now just a pointwise
defined real-valued function (as a coordinate of the data points). That is, we would
like to compute infinitesimal changes of a function which is not defined on a continuous
set. To circumvent this problem, we use the Nytröm extension (see appendix A) to
extend the pointwise defined function ψ1 to a continuous one. Then we can estimate
the gradient ∇xψ1 by just using a standard finite difference scheme (see appendix A).

Because of the noise in the data, curvature etc., we do not always have parallel
gradients for neighboring points, i.e. for y ∈ Nx in general ∇xψ1 ∦ ∇yψ1. This

41

3. The Higher Harmonics Problem of Diffusion Maps

would cause d(x, y) ≠ d(y, x), which is undesirable (for example, symmetry is a useful
assumption in correctness proofs of diffusion maps). To resolve this issue, we just

symmetrize the distances by d
(0)
loc (x, y) = d

(0)
loc (y, x) ∶=

1
2(d

(0)
subt(x, y) + d

(0)
subt(y, x)).

Patching Together

After we have updated the local distances to take out the part already parametrized
by ψ1, we have one more issue to solve. Since we want to globally decrease distances
in ∇ψ1-direction, it is possible that two points that are not neighbors now should
have distance below the cutoff distance, i.e. we desire that d(1)(x, y) < ε (recall that
ε =

√
σr). But because we only compute and update the local distances, i.e. those of

neighbors, for now we would still end up with d(1)(x, y) =∞. That is, we could obtain
a new transition matrix Pα with e.g. Pαx,y = 0, i.e. x, y have transition probability
zero, although they may lie on the same parameter line given by ψ1.

A new distance metric that would not have this issue fulfills a triangle inequality in
the sense that if d(1)(x, y) ≤ ε and d(1)(y, z) ≤ ε, then d(1)(x, z) ≤ 2ε. This means that
we need to assign finite distances to pairs of points which are not neighbors. Therefore,
to glue the different neighborhoods together, we employ Dijkstra’s algorithm with a

cutoff. That is, we construct the weighted graph G from our local distance d
(0)
loc (x, y)

and compute all shortest paths between all pairs of points that have length ≤ ε where
the length of a path is meant to be the sum of the weights of its edges (see appendix
A for more details). Very useful is that it is possible to interrupt Dijkstra’s algorithm,
when the shortest paths emanating from one point x get longer than ε. This is because
Dijkstra’s algorithm computes the shortest paths to x’s neighbors in ascending order
(with respect to the lengths of the paths).

Since we are decreasing distances, the size of the neighborhoods will increase, as

more point-pairs fulfill d
(0)
loc (x, y) ≤ ε than d(0)(x, y) ≤ ε. This unnecessarily increases

the computational complexity, so we decrease ε to compensate for this in the following

way. For any pair x, y we compute the ratio d
(0)
loc (x, y)/d

(0)(x, y) ≤ 1, by which their

distance decreases. The old cutoff distance ε(0) is then multiplied by the mean ratio,

i.e. by the geometric mean: ε(1) = ε(0) ⋅
N
√

∏x∼y∈X d
(0)
loc (x, y)/d

(0)(x, y) (where ∼ is
the original neighbor relation of the data points). This accounts for the extent the
distances have been decreased.

Finally, we choose the shortest-path-distances computed by Dijkstra’s algorithm
as the new “global” distance metric d(1) for our data points and apply the standard
diffusion maps procedure again. In other words, to compute the next coordinate ψ2,
we form the kernel and transition matrix from the distance d(1), compute the first
non-trivial eigenfunction, and iterate.

Residuals

In the minimal diffusion maps algorithm, we are successively subtracting distances
between the points, which are parametrized by the computed diffusion maps coordi-
nates. These distances are already “explained” by the parametrization of the data

42

3. The Higher Harmonics Problem of Diffusion Maps

up to that point. Therefore, analogously to the idea of explained variation, we may
define the residual rk currently left “unexplained” by our parametrization, as

r0 ∶= ∑
x∼y∈X

∥x − y∥2

rk ∶= ∑
x∼y∈X

d
(k−1)
loc (x, y), k ≥ 1

where ∼ again denotes the original neighbor relation between the data points.
The hope is that if we choose to compute m ≥ d coordinates, we get rd ≈ 0 (having

explained all distances in the data) or at least “convergence” of rk for k ≥ d to some
constant value (having explained all distances in the data possible by the minimal
diffusion maps algorithm). We would then use these residuals as a natural stopping
criterion. In section 3.5, it is investigated, how well this criterion works in numerical
experiments.

Algorithm

Let us now summarize the derivation above and write down a concise algorithm.
Since we have finite data, we can store the distance metrics, difference vectors etc. in
matrices. We use the ± sign for a shorthand notation meaning both + and − (i.e. if
we write K± then there is a matrix K+ and a matrix K−). Let

� el denote the unit vector in dimension 1 ≤ l ≤D,

� the overline denote something related to a Nytröm extension (see appendix A
for more details). For instance, ψk(x±hel) denotes the extension of ψk to x±hel
(where x ∈X),

� ∇ψk(x) denote the estimated gradient using central difference,

� S denote the matrix storing the current distances between the points,

� K denote the kernel and Π the diagonal matrix of estimated densities of the
data points,

� Dx denote the matrix storing the difference vectors yi − x row-wise. As a pre-
paration, note that (Dx ⋅ ∇ψk(x))∇ψk(x)

T is an extrinsic vector product (a
matrix). For ∥∇ψk(x)∥ = 1, the rows of that matrix are exactly the gradient
parts to be subtracted from the rows of Dx in the update step, compare (3.2).
This vectorization speeds up the implementation.

We use g(z) = exp(−z)1{z≤ε} as our symmetric positive definite kernel function
again. Note that because of this choice, K,Π, S have few nonzero entries because of
the cutoff and can be implemented efficiently using sparse matrices.

After that preparation of notation, a full overview on the Minimal Diffusion Maps
algorithm MDM is given via the pseudocode below. Note that everything outside the

43

3. The Higher Harmonics Problem of Diffusion Maps

if-clause is just the vectorized version of the standard diffusion maps algorithm already
described in section 3.2. Moreover, we use the notation Ψ = (λ1ψ1, . . . , λmψm) for the
minimal diffusion maps embedding, which is in general not the same as the standard
diffusion map (m dominant eigenfunctions of the transition kernel).

Algorithm 2 Minimal Diffusion Maps (MDM)

procedure Minimal Diffusion Maps(X,h,m,α, σ, r)
Perform ε-nearest-neighbor-search to compute neighbors yi of each point x
∀x ∈X, initialize difference vector matrices Dx, distances ∥x − yi∥2
ε(0) ←

√
σr

for all k = 0, . . . ,m − 1 do
if k > 0 then ▷ Compute gradients, update distances

for all x ∈X do
K±
x ← (k(x ± hel, yj)/(dx±el)

α/(dyj)
α) l=1,...,D
j=1,...,nx

, with dz = ∑z′∈Nz
k(z, z′)

ψk(x ± hel)←K±
x ⋅ ψk ⋅ diag(λ−1k)

∇ψk(x)←
1
2h

(ψk(x + hel) − ψk(x − hel))
T
l=1,...,D ▷ Finite difference scheme

∇ψk(x)←
∇ψk(x)
∥∇ψk(x)∥2 ▷ Normalize gradient vector

Dx ←Dx − (Dx ⋅ ∇ψk−1(x))∇ψk−1(x)
T ▷ Update difference vectors

end for
S ← (d

(k−1)
subt (xi, xj))i,j=1,...,n with d

(k−1)
subt (xi, xj) = ∥(Dxi)j,∶ ∥2 ▷ Local distances

S ← (d
(k−1)
loc (xi, xj))i,j=1,...,n =

1
2
(S + ST) ▷ Symmetrize local distances

ε(k) ← ε(k−1) ⋅ N

√
∏xi∼xj∈X d

(k−1)
loc (xi, xj)/d(k−1)(xi, xj) ▷ New cutoff distance

S ← (d(k)(xi, xj))i,j = Dijkstra lengths from d
(k−1)
loc -weighted graph, cutoff ε(k)

end if
K ← (Kij)i,j with Kij = g(d

(k)(xi, xj)) ▷ Compute kernel
Π← diag(dαi) with di = ∑

ni

j=1Kij

K ← Π−1KΠ−1 ▷ Change influence of sample density
Kij ←Kij/∑

ni

j=1Kij ▷ Row-normalize
Solve Kv = λv for largest λ < 1
Store ψk+1 ← v, λk+1 ← λ

end for
return Ψ = (λ1ψ1, . . . , λmψm) ▷ Minimal diffusion maps embedding

end procedure

Computational Complexity

Let us again investigate the overall computational complexity of the MDM algorithm,
which is always meant in terms of the optimal implementation possible.

Recall that the number of data points is denoted by n, the number of pairs of
neighbors is N , the (extrinsic) dimension of the data is D and the number of coordi-
nates to compute is m. Nearest-neighbor-algorithms building on k-d-trees have time
complexity O(n logn) and initialization of the distances costs O(N ⋅D). Then the
same loop is iterated m times. For each point, we are extending the eigenvector to
2D points for the finite difference scheme, each requiring a kernel evaluation to the

44

3. The Higher Harmonics Problem of Diffusion Maps

neighbors, so there are 2DN = O(N ⋅D) evaluations to be done. Then we do some
matrix- and vector-multiplications, which is at most worth O(N ⋅D) when we use im-
plementations for sparse matrices, which is also the amount of operations to calculate
the distances from the updated difference vectors. Running Dijkstra’s algorithm once
using Fibonacci heaps [FT87] costs O(N + n logn) here, and in one loop, we do this
for each data point, which yields O(nN + n2 logn) operations (Dijkstra is done with
a cutoff, so picking the last point before cutoff as the target node attains this time,
all other neighbors are reached along the way). This is the most expensive part of
the whole algorithm. Calculating the first two eigenvectors of a sparse matrix using
matrix-vector-products can in principle be achieved in O(N) time. Therefore, the
overall time complexity of the algorithm is O(mNn +mn2 logn +mND), which, for
n ≥D simplifies to O(mNn +mn2 logn) = O(mn(N + n logn)).

The storage complexity, on the other hand, is O(N ⋅D), where the most expensive
part is storing N difference vectors of dimension D.

3.5. Numerical Experiments

We will now evaluate the proposed minimal diffusion maps algorithm MDM for some
synthetic and real-world datasets. We will always compare the results to the standard
diffusion maps algorithm.

Like in chapter 2, Python was used for the implementation [vL18], as well as the
NumPy and SciPy packages [JOP+01], scikit-learn [PVG+11] (mainly for nearest-
neighbors-computations), Matplotlib [Hun07] for all plots and visualizations and the
networkx package [HSSC08] for the implementation of Dijkstra’s algorithm. Sparse
data structures were used whenever possible.

3.5.1. Synthetic Data

The following synthetic datasets are constructed in a way to test the possibilities the
algorithm provides, as well as to explore its weaknesses.

Swiss roll

First, we come back to the swiss roll from example from section 3.3. This dataset has
become a standard benchmark dataset in the manifold learning community, since it is
constructed so that small Euclidean distances do not necessarily mean small geodesic
(i.e. intrinsic) distances because of the winding.

The results of the standard diffusion maps algorithm are depicted in figure 3.1,
whereas figure 3.3 now shows the first 6 computed coordinates of the same dataset
with MDM. The second coordinate ψ2 now nicely parametrizes the short direction of the
rectangle. Moreover, the embedding produced by MDM is not a trapezoid, but rather
something much closer to a rectangle (see figure 3.4). It is very slightly sheared, but
opposite sides have equal lengths.

45

3. The Higher Harmonics Problem of Diffusion Maps

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

1

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

2

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

3

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

4

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

5

10

5

0

5

10

15
10 5 0 5 10

0510152025303540

6

Figure 3.3.: The first six coordinates of the same swiss roll dataset with 2000 data
points from section 3.3 computed with MDM. The same hyperparameters
σ = 6.0, r = 5.0, α = 1.0 were used, as well as h = 0.05 as a step size for
the gradient computation. ψ2 now parametrizes a new direction on the
manifold with regard to ψ1.

1.5 1.0 0.5 0.0 0.5 1.0
1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

Figure 3.4.: Two-dimensional embedding of the swiss roll using the coordinates ψ1 and
ψ2 depicted in figure 3.3.

46

3. The Higher Harmonics Problem of Diffusion Maps

We also see that unlike diffusion maps, we have some convergence behavior: Except
from the different sign for ψ3, all coordinates (except ψ2) look completely the same.
This is because MDM locally uses linear projections

Pb ∶ RD → RD (3.3)

z ↦ z − ⟨b, z⟩b

projecting onto the hyperplane spanned by the normal vector b with ∥b∥2 = 1. In this
case, b is the normalized gradient vector b = ∇xψk

∥∇xψk∥2 . Once we have a distance d(k),
such that the first diffusion maps coordinate computed from this distance is equal
to some already existing coordinate, the situation will not change anymore, since
projections do nothing when applied again by definition.

Let us additionally take a deeper look, how the global distances d(k) and the neig-
hborhoods evolve during the steps of the algorithm. Figure 3.5 shows, how the neig-
hborhoods and the global distances d(k)(x, ⋅) of one exemplary point x change for
different k.

The neighborhoods behave as expected. In the (k = 1)-step of MDM, the distances
d(k)(x, ⋅) are obviously decreased in the direction of the computed gradient ∇xψ1,
which is the direction parametrized by the first coordinate, as one can see in figure
3.3. This results in an increase of the neighborhood into that direction.

Let us further look at the residuals rk (see figure 3.6). We see that they do not
decrease to zero but at least “converge”. They unfortunately still change a bit after
computation of the third coordinate ψ3, but not afterwards. Therefore, the residuals
may still serve as an indication for where to stop iterating MDM here.

A possible explanation, why the residuals fail to decrease to zero completely is
because of the curvature of the swiss roll. Since we use the linear projections (3.3)
locally, but the manifold has curvature, we do not resolve the local distances between
the points as well as we would by collapsing the parameter lines of ψk to a single point.
Once we compute a coordinate, which is already present in the current embedding,
the algorithm stays stationary for the reasons described above and we get convergence
of the residuals.

Narrow swiss roll

This dataset is basically the same as the previous one, except that the short direction
is even shorter (25 instead of 40 length units). Therefore, the swiss roll is very aniso-
tropic. We compare the standard diffusion maps algorithm and MDM.

The case of standard diffusion maps is handled by the algorithm as expected: The
second direction of the swiss roll is not found as the second coordinate ψ2, but only at
ψ6. Unfortunately, however, MDM completely fails to find another direction now. This
dataset is too anisotropic even for MDM.

A possible explanation is that the distances in direction of ψ1 can not be completely
removed. Take two points x ≁ y ∈ X that are not neighbors originally, i.e. that lie
on different charts in the beginning, but that have d(k)(x, y) < ε(k) for some k ≤ m.

47

3. The Higher Harmonics Problem of Diffusion Maps

10
5

0
5

10
15

10
5

0
5

10

0
5

10
15
20
25
30
35
40

1

10
5

0
5

10
15

10
5

0
5

10

0
5

10
15
20
25
30
35
40

2

10
5

0
5

10
15

10
5

0
5

10

0
5

10
15
20
25
30
35
40

3

10
5

0
5

10
15

10
5

0
5

10

0
5

10
15
20
25
30
35
40

4

10
5

0
5

10
15

10
5

0
5

10

0
5

10
15
20
25
30
35
40

5

10
5

0
5

10
15

10
5

0
5

10

0
5

10
15
20
25
30
35
40

6

Figure 3.5.: Global distances d(k), neighborhoods and gradient of a single point for
several steps of the MDM algorithm applied to the swiss roll dataset. The
exemplary point is plotted very thick in blue, neighbors are plotted in co-
lor and thick, and all other points are plotted thin and black transparent.
Small distances are indicated by dark colors, large distances by light co-
lors. The first diffusion maps coordinate is computed from the distances
in the first subplot etc. From the second plot on, the blue arrow indicates
the gradient in the blue point from that previously computed coordinate.
One clearly sees, how the neighborhoods extend into these gradient di-
rections in the first steps, since the corresponding distances are decreased
by MDM. They stay stationary after some steps.

48

3. The Higher Harmonics Problem of Diffusion Maps

0 1 2 3 4 5
Step

0

20

40

60

80

100

Re
sid

ua
l i

n
%

Figure 3.6.: Residuals of the MDM algorithm on the swiss roll in % of the sum of original
distances. The residuals converge to a constant value.

10

5

0

5

10

15
10 5 0 5 10

0510152025

1

10

5

0

5

10

15
10 5 0 5 10

0510152025

2

10

5

0

5

10

15
10 5 0 5 10

0510152025

3

10

5

0

5

10

15
10 5 0 5 10

0510152025

4

10

5

0

5

10

15
10 5 0 5 10

0510152025

5

10

5

0

5

10

15
10 5 0 5 10

0510152025

6

Figure 3.7.: Standard diffusion maps coordinates of the narrow swiss roll. The second
direction in the manifold is now found even later than before.

49

3. The Higher Harmonics Problem of Diffusion Maps

10

5

0

5

10

15
10 5 0 5 10

0510152025

1

10

5

0

5

10

15
10 5 0 5 10

0510152025

2

10

5

0

5

10

15
10 5 0 5 10

0510152025

3

10

5

0

5

10

15
10 5 0 5 10

0510152025

4

10

5

0

5

10

15
10 5 0 5 10

0510152025

5

10

5

0

5

10

15
10 5 0 5 10

0510152025

6

Figure 3.8.: MDM coordinates of the narrow swiss roll. MDM fails to find the second
direction in the manifold at all.

Their distance d(k)(x, y) is the length of their shortest connecting path (in terms of
weight). Since we only have finite data, the single segments of the path will, with
probability 1, not point exactly in the direction ∇xψk−1. Therefore, e.g. even if x and
y might have the exact same intrinsic second coordinate (z-coordinate in this case),
they are assigned a positive distance d(k)(x, y) > 0 by MDM, since their connecting
path also slightly extends into directions orthogonal to ∇xψk−1, even though the path
returns to the same parameter line. These extensions off the parameter lines count
as distances in MDM and are accumulated over the path segments into the distance
d(k)(x, y).

The longer these Dijkstra-paths get, the more of these “fake distances” are added.
At some point this happens to the extent that d(k)(x, y′) ≥ ε(k) for some y′ ∈ X.
Therefore, the neighborhood Nx of x is not extended along the whole parameter line
of x given by ψk but is rather just stretched along the parameter line – a lot, but
to some finite extent. This is already observed for the case of the first swiss roll in
figure 3.5, where the second neighborhood is not a stripe along the whole swiss roll,
but rather a long ellipse.

Therefore, the distance metric d(k) is not completely collapsed to zero in the gradient
direction, but rather shortened a lot. If the dataset is so anisotropic that in the
distance d(k) the shortened direction of the dataset is still longer than the others,
because of the “fake distances”, the first eigenvector ψk for this new distance will
still parametrize the same direction as in the last step. If this happens, MDM is stuck
and will compute the same coordinate again and again for the stationarity reasons

50

3. The Higher Harmonics Problem of Diffusion Maps

described above in the normal swiss roll case. This is why the stationarity described
in the previous paragraph of the algorithm can also be a disadvantage; the standard
diffusion maps algorithm at least finds the correct next coordinate for some k.

Note that, at least in the limit of a countably infinite number of data points or
a continuous manifold, this does not happen. For more and more data, the “fake
distances” will eventually decrease to zero, since there are points lying closer to the
parameter line along the manifold. In other words, for an increasing amount of data,
it should be possible to successfully compute a desired embedding with MDM for a more
and more anisotropic manifold M.

0 1 2 3 4 5
Step

0

20

40

60

80

100

Re
sid

ua
l i

n
%

Figure 3.9.: Residuals rk of MDM for the narrow swiss roll dataset. The convergence to
a high value of above 60% indicates that the algorithm could not resolve
a lot of distances in the dataset.

Moreover, we see in figure 3.9 that the residuals in this case converge only to a very
high value, at least indicating that a lot of distances are not explained and something
went wrong.

Ellipsoid

Next, we try a dataset with a different topology, namely a sphere with Gaussian noise
with standard deviation 0.1. Moreover, we scale the sphere by a factor of 4 into the
z-direction to get an anisotropic ellipsoid (note the scale on the z-axis compared to x
and y in figure 3.12). The coordinates diffusion maps should find are called spherical
harmonics.

Apparently, the standard diffusion maps algorithm again is unable to find a new
coordinate in the data with the second eigenvector ψ2, as shown in figure 3.10: ψ2 again
parametrizes the up-down-coordinate with twice the frequency, as expected. If we use
ψ1 and ψ2 for a two-dimensional embedding, we get the familiar one-dimensional
parabola arc (see figure 3.11) that we already encountered in section 3.3.

51

3. The Higher Harmonics Problem of Diffusion Maps

1.0
0.5

0.0
0.5

1.0

1.0
0.5

0.0
0.5

1.0

4

2

0

2

4

1

1.0
0.5

0.0
0.5

1.0

1.0
0.5

0.0
0.5

1.0

4

2

0

2

4

2

Figure 3.10.: First two diffusion maps coordinates ψ1, ψ2 for ellipsoid with α = 1.0,
r = 3.0, σ = 1.0. Note the scale of the z-axis. ψ2 parametrizes the same
coordinate like ψ1.

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
1

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

2

Figure 3.11.: Two-dimensional standard diffusion maps embedding of the ellipsoid.
A one-dimensional parabola arc is obtained instead of something two-
dimensional.

52

3. The Higher Harmonics Problem of Diffusion Maps

MDM instead produces coordinates like the spherical harmonics with the first three
coordinates ψ1, ψ2, ψ3, which parametrize orthogonal directions (see figure 3.12).

1.0
0.5

0.0
0.5

1.0

1.0 0.5 0.0 0.5
1.0

4

2

0

2

4

1

1.0
0.5

0.0
0.5

1.0

1.0 0.5 0.0 0.5
1.0

4

2

0

2

4

2

1.0
0.5

0.0
0.5

1.0

1.0 0.5 0.0 0.5
1.0

4

2

0

2

4

3

Figure 3.12.: First three coordinates of the ellipsoid produced by MDM. They parame-
trize the whole ellipsoid as desired.

As a result, the ellipsoid embedded in two dimensions is two-dimensional, and the
embedding using ψ1, ψ2 and ψ3 reproduces the topology of the original manifold (see
figure 3.13(b)).

Let us take a look at the residuals in figure 3.14. They converge to a low constant
value again. This time, the convergence is after the third step, although the ellipsoid
is a two-dimensional manifold. This is because there is no embedding of the two-
dimensional unit sphere in two dimensions, one needs at least three. Just using two
coordinates yields a plane (see subfigure 3.13(a)).

5-dimensional sphere

To see if the MDM-procedure still works as automatically as in the ellipsoid case in
slightly higher dimensions, we embed a 5-dimensional sphere in 10-dimensional space,
randomly rotate it and see, if MDM can cope with that. Since the resulting coordinates
are hard to visualize, we just investigate the residuals in figure 3.15.

As mentioned in the previous paragraph, since there is no embedding of the d-
dimensional sphere in Rd, there are 5 + 1 = 6 dimensions needed for a topology-
preserving embedding of the sphere. Indeed, the residuals converge after the sixth
step.

3.5.2. Real-World Data

In this subsection standard diffusion maps and MDM are applied to two real-world
datasets.

The ISOMAP face database

We again consider the ISOMAP face database [TDSL00] that was already used in
section 2.4. We recall that it has intrinsic dimension equal to three. Since every

53

3. The Higher Harmonics Problem of Diffusion Maps

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

(a) ψ1 plotted against ψ2.

1
0

1
2

2 1 0 1 2

1

0

1

(b) ψ1, ψ2, ψ3 plotted against each
other.

Figure 3.13.: Two- and three-dimensional embeddings of the ellipsoid. From subfigure
3.13(a) it is clear that ψ1 and ψ2 are independent. In subfigure 3.13(b),
the three coordinates of the ellipsoid are plotted against each other. The
topology of the ellipsoid is recovered. However, since the data points are
again more concentrated on the boundary, the embedding looks more like
a rounded cuboid than an ellipsoid. The colormap in 3.13(b) indicates
the first coordinate ψ1.

0 1 2 3 4 5
Step

0

20

40

60

80

100

Re
sid

ua
l i

n
%

Figure 3.14.: Residuals when applying MDM to the ellipsoid. MDM converges after the
third coordinate is computed.

54

3. The Higher Harmonics Problem of Diffusion Maps

0 1 2 3 4 5 6 7 8 9
Step

0

20

40

60

80

100
Re

sid
ua

l i
n

%

Figure 3.15.: Residuals when applying MDM to a 5-dimensional sphere embedded in
R10. MDM converges after the sixth coordinate is computed.

data point has a concrete meaning (the image associated to it), the results are hard
to visualize. Therefore, we just try to embed the datasets in two dimensions using
standard diffusion maps and MDM.

Moreover, since the Nyström extension and finite differences for the gradient com-
putation was computationally intractable in 64 × 64 = 4096 dimensions (extrinsic di-
mension D of the dataset), the images were downscaled to 32 × 32 = 1024 pixels by
averaging all distinct 2×2-blocks of them into one pixel each. The results of standard
diffusion maps and MDM are compared in figure 3.16.

We see that MDM is again able to produce a reasonable embedding, somewhat para-
metrizing the two different angles of rotation of the images. This is also achieved by
the standard diffusion maps algorithm.

Improvements over standard diffusion maps are only slightly made in terms of how
widely spread out into two dimensions the data points are. Both embeddings have
a bulk of data points concentrated on the bottom that seem to represent darker
pictures. But some error in the embedding is expected, since we cannot embed the
three-dimensional face dataset in two dimensions.

The digits dataset

As a second real-world example, we employ the digits dataset from [PVG+11], which is
the test set part of the NIST digits dataset from the UCI Machine Learning repository
[DKT17]. It consists of gray-scale images of handwritten digits with 8 × 8 = 64 pixels
each. The whole dataset contains 1797 images in total (≈ 180 for every digit), where
each pixel only attains values in {0, . . . ,16}.

We just use the two sets of fours and fives in our case, since they allow for a good
comparison of standard diffusion maps and MDM with respect to the higher harmonics

55

3. The Higher Harmonics Problem of Diffusion Maps

0.05 0.00 0.05 0.10
Right-Left Pose

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Up
-D

ow
n

Po
se

(a) Two-dimensional embedding computed with standard diffusion maps.

2 1 0 1 2 3 4
Right-Left Pose

2

1

0

1

2

3

Up
-D

ow
n

Po
se

(b) Two-dimensional embedding computed with MDM.

Figure 3.16.: Two-dimensional embeddings of the downscaled ISOMAP face database
using standard diffusion maps or MDM, respectively. Small thumbnails are
shown for some of the images in the corresponding area of the embedding.

56

3. The Higher Harmonics Problem of Diffusion Maps

problem. For each of these, we compute two coordinates using standard diffusion
maps and MDM, see figures 3.17 and 3.18, respectively.

In the case of the fours, we observe a more or less one-dimensional embedding for
the standard diffusion maps algorithm apart from some outliers. MDM produces an
embedding much more stretched out into two dimensions.

For the fives, we observe the parabola arc once again, which was observed a few
times before when standard diffusion maps produced a redundant second coordinate
ψ2. MDM instead produces an embedding with ID equal to 2 using two coordinates.

3.6. Discussion and Further Research

This chapter dealt with the higher harmonics problem of diffusion maps. After menti-
oning the few work on this subject, we first introduced the diffusion maps construction
and considered the ideas and theory behind it. We could then discuss the higher har-
monics problem in some more detail. Next, the Minimal Diffusion Maps algorithm
MDM was presented after motivating the chosen general approach. Numerical experi-
ments with both synthetic and real data yielded promising results. This was only with
respect to the higher harmonics problem, which could often be resolved, but it also
sometimes improved the quality of the embedding and the residuals.

There are several spots to improve upon and to extend the research to, however.
In the case of the narrow swiss roll, using Dijkstra’s algorithm like in MDM was pro-
blematic and the algorithm did not converge to a desired result. A closer theoretical
analysis with regard to the eigenfunctions of the Laplace-Beltrami-operator ∆M in a
similar manner like in section 3.3 could reveal more insights into the higher harmonics
problem. For instance, in the swiss roll case one can imagine that there are at least as
many harmonics of the long direction ψ1 as the ratio ax

ay
of the lenghts of the rectangle.

If something like this is true, there may also be results for more general domains.
Also interesting would be other ways to remove a coordinate from the manifold, like

performing a curvilinear projection along the parameter lines of the Nytröm extended
coordinate ψk. This would remove the “fake distances”, which Dijkstra is adding in
MDM and therefore increase overall precision, but also, most importantly, eliminate the
problems with highly anisotropic data. This might also be a spot to speed up the
algorithm, since the Dijkstra-part of MDM is computationally demanding.

Moreover, there may be better ways to compute gradients than using a Nyström
extension and a finite difference scheme. E.g. one could investigate, whether this is
possible by just using the values ψk(yi) of the neighbors yi ∈ Nx instead of extending
ψk to other points.

The author is also curious what would happen if the idea of just iteratively compu-
ting one coordinate and projecting it out instead of trying to obtain all at once would
be applied to other manifold learning algorithms. Possibly this strategy is advantage-
ous, since it may remove nonlinear dependencies between the coordinates and allows
for the presented way to measure residuals.

57

3. The Higher Harmonics Problem of Diffusion Maps

(a) Two-dimensional embedding of the fours computed with standard diffusion maps.

(b) Two-dimensional embedding of the fours computed with MDM.

Figure 3.17.: Two-dimensional embeddings of the fours in the digits dataset with stan-
dard diffusion maps and MDM. Small thumbnails are shown for some of
the digits in the corresponding area of the embedding.

58

3. The Higher Harmonics Problem of Diffusion Maps

(a) Two-dimensional embedding of the fives computed with standard diffusion maps.

(b) Two-dimensional embedding of the fives computed with MDM.

Figure 3.18.: Two-dimensional embeddings of the fives in the digits dataset with stan-
dard diffusion maps and MDM. Small thumbnails are shown for some of
the digits in the corresponding area of the embedding.

59

3. The Higher Harmonics Problem of Diffusion Maps

Finally, after having performed numerical experiments, one should prove a rigorous
convergence theorem of MDM for n→∞ (which should be possible in a similar manner
as for standard diffusion maps). Possibly, there is a theorem even for n < ∞ using
some assumptions on the regularity and the available amount of the data.

60

A. Preliminaries

Some prerequired mathematical methods that were used in this thesis are described
below.

Importance Sampling

Importance sampling can be seen as a way of studying one distribution while sampling
from another. In our special case, we want to study the Gaussian distribution and
assume that we (locally) have samples from a uniform distribution on a d-dimensional
ball of radius r.

Suppose we want to know µ = Ep[f(X)], where the index of E denotes the distribu-
tion of the random variable (i.e. in this case X ∼ p, but analytical integration is not
possible; we can only evaluate p at certain x in our sample space Ω. Even worse, we
might just be able to compute an unnormalized pu = cp for some unknown constant
c ∈ R. Therefore, a Monte Carlo approach to approximate our quantity of interest
µ = Ep[f(X)] using a finite set of samples will be used.

To do so, it might be advantageous to not sample Xi ∼ p directly and estimate
E[f(X)] ≈ 1

n ∑
n
i=1 p(Xi)f(Xi) but to sample Yi from some other distribution q. To

account for this change of density, we reweigh with weights w = p/q or, what we will
consider here, unnormalized weights wu = pu/qu in the case where we are also just
able to sample from an unnormalized density qu = bq. More precisely, we use the
self-normalized importance sampling estimate

µ̃ =
∑ni=1w

u(Yi)f(Yi)

∑ni=1w
u(Yi)

. (A.1)

A very frequent application of this procedure is for the case that p is close to zero in
the interesting or important regions with regard to the quantity of interest f , such that
one would need too many samples to make a Monte Carlo approach feasible. As an
intuitive example, trying to estimate the expected outcome in a lottery well by drawing
samples from the lottery numbers uniformly needs a lot of samples, because the jackpot
is very unlikely to hit, but important for the expected value. Sampling Yi ∼ q, one
increases the probabilities of sampling in the interesting regions and accounts for the
change of density function with the reweighting. This is why q is called importance
distribution and p is called nominal distribution in this context. In the lottery case, one
would try to draw more samples from all classes winning prize money and reweighting
accordingly later. In our case, it is even not possible to get samples from p (i.e. the
Gaussian distribution), since we are given a fixed set X of samples from the very
beginning (which we assume to be locally approximately uniformly distributed).

The following theorem from [Owe13], chapter 9, is a justification for this procedure.

Theorem A.1: Let p be a probability density function on Rd and let f ∶ Ω → R be
a function such that µ = Ep[f(X)] = ∫Ω p(x)f(x)dx exists. Suppose that q ∶ Rd → R
is a probability density function with q(x) > 0 for all x ∈ Ω. Let Y1, . . . , Yn

i.i.d
∼ q

61

A. Preliminaries

be independent and let µ̃ be the self-normalized importance sampling estimate (A.1).
Then

P(lim
n→∞

µ̃ = µ) = 1.

Proof. Substituting the definition of wu into (A.1), we get

µ̃ =
∑ni=1w

u(Yi)f(Yi)

∑ni=1w
u(Yi)

=
∑ni=1 cp(Yi)f(Yi)/(bq(Yi))

∑ni=1 cp(Yi)/(bq(Yi))

=
1
n ∑

n
i=1 p(Yi)f(Yi)/q(Yi)

1
n ∑

n
i=1 p(Yi)/q(Yi)

. (A.2)

This is why µ̃ is called self-normalized : The normalizing constants b, c cancel. Further
note that for Y ∼ q,

Eq [
p(Y)f(Y)

q(Y)
] = ∫

Rd
p(x)f(x)

q(x)
q(x)dx

= ∫
Rd
p(x)f(x)dx

= Ep[f(X)]

= µ.

The denominator of (A.2) approximates this expectation value Eq [p(Y)f(Y)q(Y)]. There-

fore, we can apply the strong law of large numbers, since the it exists and Y1, . . . , Yn
i.i.d
∼

q. This yields the convergence result

P(lim
n→∞

1

n

n

∑
i=1

p(Yi)f(Yi)

q(Yi)
= µ) = 1.

The numerator of (A.2) converges to 1, since the same argument also applies when

choosing f ≡ 1 so that E[f(X)] = 1. Since Xn
a.s.
Ð→ X, Yn

a.s.
Ð→ Y for general random

variables implies XnYn
a.s.
Ð→XY , we get

P(lim
n→∞

µ̃ = µ) = 1.

Note that the assumption q(x) > 0 for all x ∈ Rd can be weakened to q(x) > 0 for just
all x where p(x) > 0. Proving this just requires to split the expectation integral in
corresponding regions where the densities are equal to or greater than zero. This is
omitted for simplicity here.

62

A. Preliminaries

Nyström Extension

As an a priori remark, note that the following derivation is for finite data and matrices
in order to stick to the situation of MDM. It can, however, be generalized to continuous
eigenfunctions and kernels.

In this paragraph, we denote entries of matrices A defined on a particular set X or
X̄ of data points by Axy for the row of x and the column of y. That is, we do not
have an index for the data points in order to avoid double subscripts. The entry of a
vector ψ for the data point x is denoted by ψ(x), like in the main text.

The ordinary Nyström extension is an extension of eigenvectors (viewed as functi-
onals on the data points) ψ ∶ X → R on the dataset X to eigenvectors ψ̄ ∶ X̄ → R on
a bigger set of points X̄. It is defined for symmetric matrices, in our case symmetric
kernel matrices K. That is, we have a vector ψ with

λψ(x) = ∑
y∈X

Kxyψ(y) ∀x ∈X. (A.3)

We observe that if we can also define Kx̄y for x̄ ∈ X̄, y ∈ X in some natural way,
then in the manner of [CL06b] (Definition 2), after rearranging equation (A.3), it is
possible to define the Nyström extension ψ̄ ∶ X̄ → R of ψ ∶X → R by

ψ̄(x̄) ∶=
1

λ
∑
y∈X

Kx̄yψ(y) ∀x̄ ∈ X̄.

In our case, Kxy is the density normalized kernel

k(α)(x, y) =
k(x, y)

dαx d
α
y

with dx = ∑z∈X k(x, z), dy = ∑z∈X k(y, z). That we can indeed naturally extend to
points x̄ ∈ X̄ by

k(α)(x̄, y) =
k(x̄, y)

dαx̄ d
α
y

with dx̄ = ∑z∈X k(x̄, z), since k(x̄, y) is also computable for x̄ ∉ X with our Gaussian
kernel.

One more aspect has to be elucidated though: ψ is the eigenfunction of the transition
matrix P = P (α), which is not symmetric. Still, we would like to compute the Nyström
extension in the same way like above, more precisely as

ψ̄(x̄) ∶=
1

λ
∑
y∈X

Px̄yψ(y) (A.4)

63

A. Preliminaries

with

Px̄y = P
(α)
x̄y =

k(α)(x̄, y)

d
(α)
x̄

for d
(α)
x̄ ∶= ∑z∈X k

(α)(x̄, z).
Luckily, this is in fact not a problem, because P = P (α) is similar to another symme-

tric kernel matrix Gxy = g(x, y), so that P shares the eigenvectors with G (except for
a linear transformation related to the similarity transformation). This implies that
the extension in the manner of (A.4) can be translated into the ordinary Nyström
extension (for symmetric kernel matrices) of G. More precisely, we note that

P =D−1K(α) with D = diag(Dxx) for Dxx = d
(α)
x = ∑

z∈X
k(α)(x, z)

such that we can set

G ∶=D− 1
2K(α)D− 1

2 (which is a symmetric matrix)

= (D
1
2P)D− 1

2 ,

i.e. P is similar to G. Therefore, if ξ is an eigenvector of G, we have

Gξ = λξ⇔D
1
2PD− 1

2 ξ = λξ

⇔ P (D− 1
2 ξ) = λ (D− 1

2 ξ)

⇔D− 1
2 ξ =∶ ψ is eigenvector of P

and vice versa. Moreover, as claimed, the Nyström extension also translates this way:
Let x̄ ∈ X̄, then

ξ(x̄) =
1

λ
∑
x∈X

Gx̄xξ(x) (ordinary Nyström extension for symmetric matrices)

=
1

λ
∑

x,y,z∈X
D

1
2
x̄zPzy (D

− 1
2

yx ξ(x))

=
1

λ
∑

x,y∈X
D

1
2
x̄zPzyψ(y)

so by multiplying the equation ξ = 1
λD

1
2Pψ with D− 1

2 from the left and again recalling

that ψ =D− 1
2 ξ, we get that

ψ̄(x̄) =
1

λ
∑
z∈X

Px̄yψ(y).

In other words, the Nyström extension for our row-stochastic (non-symmetric) tran-

64

A. Preliminaries

sition matrix is the same as an ordinary Nyström extension for symmetric matrices.

Finite Differences

As an approximation of the first derivative (∇xψ)l in the l-th component at x, we use
the central difference

ψ(x + hel) − ψ(x − hel)

2h
=

(ψ)i(x + h) − (ψ)i(x − h)

2h
= (∇xψ)i +O(h2)

where el denotes the l-th unit vector. Using a Taylor expansion, this can be easily
shown to approximate the first derivative up to second order terms.

Kernel Density Estimation

Suppose we are given a finite number of points {x1, . . . , xn} ⊂ R
D randomly sampled

according to a probability density function p. Kernel density estimation (KDE) is a
way to approximate the shape of p. Its kernel density estimator is defined as

p̂σ(x) ∶=
1

n

n

∑
i=1

kσ(x,xi) =
1

nσ

n

∑
i=1

g (
∥x − xi∥

σ
)

for some kernel kσ(y, z) = g(∥y − z∥/σ) with bandwidth σ. The latter acts as a smoo-
thing parameter: Large σ will cause very smoothed out estimations. There is a range
of different choices for the kernel function k, a common choice is the Gaussian kernel
kσ(x, y) ∶∝ exp (∥x − y∥2

2/σ).
In section 2.3, a weighted variant of this is used, denoted by p̂wσ (x) here. We just

scale every entry in the sum by its corresponding weight wi and normalize by the sum
of the weights:

p̂wσ (x) ∶=
1

∑nj wi

n

∑
i=1

wikσ(x,xi) =
1

σ∑nj wi

n

∑
i=1

wig (
∥x − xi∥

σ
) .

Nearest-Neighbor-Search

If the computation of all distances between all data points is not necessary or useful,
one often reduces the number of distance computations by just calculating the dis-
tances ∥x− yi∥ of the neighbors yi of all points x in the finite dataset X. The number
of neighbors may e.g. be chosen to be a fixed integer k for all x ∈ X. Another way
is to choose a neighborhood radius ε and require that the distances to all neighbors
yi ∈ Bε(x) in the ball around x with radius ε are calculated.

Computing the nearest neighbors for all data points in the näıve brute force way,
however, requires to compute all n(n + 1)/2 = O(n2) distances between the n data
points in X. Since the goal is to avoid this, a variety of tree-based data indexing
structures have been invented, reducing the computational cost toO(n logn) or better.
Common choices are KD-trees [Ben75] and ball trees [Omo89], where the latter shall

65

A. Preliminaries

address the inefficiency of KD-trees in high dimensions. In essence, these methods
exploit some triangle inequality in the following sense: if x3 is very far from x1 but
x2 is very close to x1, then x3 must also be far from x2.

Dijkstra’s Algorithm

Dijkstra’s algorithm calculates the shortest path between two nodes s, t ∈ V in a
weighted undirected graph G = (V,E) with non-negative edge weights. It starts at
the source node s ∈ V and iteratively extends a shortest path tree by the node which
has minimal distance to s in the set of all currently unvisited nodes. It stops, when
all neighbors of the target node t ∈ S have been visited.

Hence, the algorithm is a greedy algorithm. The correctness proof of the Dijkstra’s
algorithm also uses fact: A possible shorter path from s to t would have been consi-
dered before termination of the algorithm, since it is always continued with the node
with minimal distance to s.

This is also what comes in handy, if we want to only compute paths emanating
from s, which have length shorter than some threshold ε, like in MDM. Dijkstra finds
all nodes with distance shorter than ε, since it stops when there is no node left, which
has distance shorter than ε to s.

For more details, see e.g. [CLRS01].

66

Bibliography

[AW10] Hervé Abdi and Lynne J Williams.
Principal component analysis.
Wiley interdisciplinary reviews: computational statistics, 2(4):433–459,

2010.

[Ban17] Ralf Banisch.
Mathematical aspects in machine learning.
https://github.com/ralfbanisch/ml_sandbox/blob/master/script.

pdf, 2017.

[Ben75] Jon Louis Bentley.
Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[BH16] Tyrus Berry and John Harlim.
Variable bandwidth diffusion kernels.
Applied and Computational Harmonic Analysis, 40(1):68–96, 2016.

[BHK16] Avrim Blum, John Hopcroft, and Ravindran Kannan.
Foundations of data science.
Vorabversion eines Lehrbuchs, 2016.

[CBR+14] Claudio Ceruti, Simone Bassis, Alessandro Rozza, Gabriele Lombardi,
Elena Casiraghi, and Paola Campadelli.

Danco: An intrinsic dimensionality estimator exploiting angle and norm
concentration.

Pattern recognition, 47(8):2569–2581, 2014.

[CCCR15] P Campadelli, E Casiraghi, C Ceruti, and A Rozza.
Intrinsic dimension estimation: Relevant techniques and a benchmark fra-

mework.
Mathematical Problems in Engineering, 2015, 2015.

[CGD+14] Eliodoro Chiavazzo, Charles W Gear, Carmeline J Dsilva, Neta Rabin, and
Ioannis G Kevrekidis.

Reduced models in chemical kinetics via nonlinear data-mining.
Processes, 2(1):112–140, 2014.

[CH06] Jose A Costa and Alfred O Hero.
Determining intrinsic dimension and entropy of high-dimensional shape

spaces.
In Statistics and Analysis of Shapes, pages 231–252. Springer, 2006.

[CL06a] Ronald R Coifman and Stéphane Lafon.
Diffusion maps.
Applied and computational harmonic analysis, 21(1):5–30, 2006.

67

https://github.com/ralfbanisch/ml_sandbox/blob/master/script.pdf
https://github.com/ralfbanisch/ml_sandbox/blob/master/script.pdf

Bibliography

[CL06b] Ronald R Coifman and Stéphane Lafon.
Geometric harmonics: a novel tool for multiscale out-of-sample extension

of empirical functions.
Applied and Computational Harmonic Analysis, 21(1):31–52, 2006.

[Clo16] IBM Marketing Cloud.
10 Key Marketing Trends for 2017.
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=

WRL12345USEN, 2016.
Accessed: 2018-04-20.

[CLRS01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein.

Introduction to Algorithms-Secund Edition.
McGraw-Hill, 2001.

[CS16] Francesco Camastra and Antonino Staiano.
Intrinsic dimension estimation: Advances and open problems.
Information Sciences, 328:26–41, 2016.

[CSSS08] Ronald R Coifman, Yoel Shkolnisky, Fred J Sigworth, and Amit Singer.
Graph laplacian tomography from unknown random projections.
IEEE Transactions on Image Processing, 17(10):1891–1899, 2008.

[DKT17] Dua Dheeru and Efi Karra Taniskidou.
UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2017.
Accessed: 2018-04-20.

[FdRL17] Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio.
Estimating the intrinsic dimension of datasets by a minimal neighborhood

information.
Scientific reports, 7(1):12140, 2017.

[FR83] Jerome H Friedman and Lawrence C Rafsky.
Graph-theoretic measures of multivariate association and prediction.
The Annals of Statistics, pages 377–391, 1983.

[FT87] Michael L Fredman and Robert Endre Tarjan.
Fibonacci heaps and their uses in improved network optimization algo-

rithms.
Journal of the ACM (JACM), 34(3):596–615, 1987.

[GC16] Daniele Granata and Vincenzo Carnevale.
Accurate estimation of the intrinsic dimension using graph distances: Un-

raveling the geometric complexity of datasets.
Scientific reports, 6:31377, 2016.

68

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN
http://archive.ics.uci.edu/ml

Bibliography

[GN13] Denis S Grebenkov and B-T Nguyen.
Geometrical structure of laplacian eigenfunctions.
SIAM Review, 55(4):601–667, 2013.

[GP83] Peter Grassberger and Itamar Procaccia.
Measuring the strangeness of strange attractors.
Physica D: Nonlinear Phenomena, 9(1-2):189–208, 1983.

[HA] Matthias Hein and Jean-Yves Audibert.
Intrinsic dimensionality estimation code.
http://www.ml.uni-saarland.de/code/IntDim/IntDim.htm.
Accessed: 2018-04-03.

[HA05] Matthias Hein and Jean-Yves Audibert.
Intrinsic dimensionality estimation of submanifolds in Rd.
In Proceedings of the 22nd international conference on Machine learning,

pages 289–296. ACM, 2005.

[Hau18] Felix Hausdorff.
Dimension und äußeres maß.
Mathematische Annalen, 79(1-2):157–179, 1918.

[HAVL05] Matthias Hein, Jean-Yves Audibert, and Ulrike Von Luxburg.
From graphs to manifolds–weak and strong pointwise consistency of graph

laplacians.
In International Conference on Computational Learning Theory, pages

470–485. Springer, 2005.

[Hof14] Till Hoffmann.
Weighted kernel density estimation.
https://gist.github.com/tillahoffmann/f844bce2ec264c1c8cb5,

2014.
Accessed: 2018-05-02.

[HSSC08] Aric Hagberg, Pieter Swart, and Daniel S Chult.
Exploring network structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM

(United States), 2008.

[Hun07] J. D. Hunter.
Matplotlib: A 2d graphics environment.
Computing In Science & Engineering, 9(3):90–95, 2007.

[Jam99] Ioan Mackenzie James.
History of topology.
Elsevier, 1999.

69

http://www.ml.uni-saarland.de/code/IntDim/IntDim.htm
https://gist.github.com/tillahoffmann/f844bce2ec264c1c8cb5

Bibliography

[JOP+01] Eric Jones, Travis Oliphant, Pearu Peterson, et al.
SciPy: Open source scientific tools for Python.
http://www.scipy.org/, 2001.
Accessed: 2018-04-20.

[Kev17] Ioannis Kevrekidis.
No equations, no parameters no variables - data and the reconstruction of

normal forms for parametrically dependent dynamical systems.
In SIAM conference on Applications of Dynamical Systems, May 21-25

2017.

[Kru64] Joseph B Kruskal.
Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis.
Psychometrika, 29(1):1–27, 1964.

[Laf04] Stéphane S Lafon.
Diffusion maps and geometric harmonics.
PhD thesis, Yale University PhD dissertation, 2004.

[LB05] Elizaveta Levina and Peter J Bickel.
Maximum likelihood estimation of intrinsic dimension.
In Advances in neural information processing systems, pages 777–784, 2005.

[LCC08] Gabriele Lombardi, Elena Casiraghi, and Paola Campadelli.
Curvature estimation and curve inference with tensor voting: a new ap-

proach.
In International Conference on Advanced Concepts for Intelligent Vision

Systems, pages 613–624. Springer, 2008.

[Lev16] Barak Sober David Levin.
Moving least-squares projective approximation of manifolds (mmls).
arXiv preprint arXiv:1606.07104, 2016.

[LLJM09] Anna V Little, Jason Lee, Yoon-Mo Jung, and Mauro Maggioni.
Estimation of intrinsic dimensionality of samples from noisy low-

dimensional manifolds in high dimensions with multiscale svd.
In Statistical Signal Processing, 2009. SSP’09. IEEE/SP 15th Workshop

on, pages 85–88. IEEE, 2009.

[Lom] Gabriele Lombardi.
Intrinsic dimensionality estimation techniques.
https://de.mathworks.com/matlabcentral/fileexchange/

40112-intrinsic-dimensionality-estimation-techniques.
Accessed: 2018-04-03.

70

http://www.scipy.org/
https://de.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques
https://de.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques

Bibliography

[LP05] Carsten Lange and Konrad Polthier.
Anisotropic smoothing of point sets.
Computer Aided Geometric Design, 22(7):680–692, 2005.

[Mag] Mauro Maggioni.
Multiscale svd code.
http://www.math.jhu.edu/~mauro/#tab_MSVD.
Accessed: 2018-04-09.

[MM04] Philippos Mordohai and Gérard Medioni.
Stereo using monocular cues within the tensor voting framework.
In European Conference on Computer Vision, pages 588–601. Springer,

2004.

[NLCK06] Boaz Nadler, Stéphane Lafon, Ronald R Coifman, and Ioannis G Kevre-
kidis.

Diffusion maps, spectral clustering and reaction coordinates of dynamical
systems.

Applied and Computational Harmonic Analysis, 21(1):113–127, 2006.

[Omo89] Stephen M Omohundro.
Five balltree construction algorithms.
International Computer Science Institute Berkeley, 1989.

[Owe13] Art B. Owen.
Monte Carlo theory, methods and examples.
2013.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[PY01] Mathew D Penrose and Joseph E Yukich.
Central limit theorems for some graphs in computational geometry.
Annals of Applied probability, pages 1005–1041, 2001.

[RLC+12] Alessandro Rozza, Gabriele Lombardi, Claudio Ceruti, Elena Casiraghi,
and Paola Campadelli.

Novel high intrinsic dimensionality estimators.
Machine learning, 89(1-2):37–65, 2012.

[RS00] Sam T Roweis and Lawrence K Saul.
Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

71

http://www.math.jhu.edu/~mauro/#tab_MSVD

Bibliography

[Tak85] Floris Takens.
On the numerical determination of the dimension of an attractor.
In Dynamical systems and bifurcations, pages 99–106. Springer, 1985.

[Tau95] Gabriel Taubin.
Estimating the tensor of curvature of a surface from a polyhedral approx-

imation.
In Computer Vision, 1995. Proceedings., Fifth International Conference

on, pages 902–907. IEEE, 1995.

[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford.
A global geometric framework for nonlinear dimensionality reduction.
science, 290(5500):2319–2323, 2000.

[vL18] Johannes von Lindheim.
Implementations and numerical experiments of the gaussian annulus id

heuristics and minimal diffusion maps.
http://www.zib.de/ext-data/manifold-learning/, 2018.
Accessed: 2018-05-09.

[WRI] Wolfram Research, Inc.
Mathematica, Version 10.4.
Champaign, IL, 2014.

[You82] Lai-Sang Young.
Dimension, entropy and lyapunov exponents.
Ergodic theory and dynamical systems, 2(1):109–124, 1982.

72

http://www.zib.de/ext-data/manifold-learning/

	Acknowledgments
	Introduction
	Intrinsic Dimension Estimation
	Background
	Relevant Work
	The Gaussian Annulus Approach
	Strategy 1: Norm Density Peak
	Strategy 2: Mean Squared Distance from the Center
	Heuristics for the Scale Parameters
	Towards an Algorithm

	Numerical Experiments
	Increasing ID and Noise
	Benchmark Comparison

	Discussion and Further Research

	The Higher Harmonics Problem of Diffusion Maps
	Relevant Work
	Diffusion Maps
	The Higher Harmonics Problem
	Minimal Diffusion Maps
	Numerical Experiments
	Synthetic Data
	Real-World Data

	Discussion and Further Research

	Preliminaries

