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1 PROBLEM DEFINITION

A point lattice is the set of all integer linear combinations

L(b1, . . . ,bn) =

{

n
∑

i=1

xibi : x1, . . . , xn ∈ Z

}

of n linearly independent vectors b1, . . . ,bn ∈ R
m in m-dimensional Euclidean space. For com-

putational purposes, the lattice vectors b1, . . . ,bn are often assumed to have integer (or rational)
entries, so that the lattice can be represented by an integer matrix B = [b1, . . . ,bn] ∈ Z

m×n (called
basis) having the generating vectors as columns. Using matrix notation, lattice points in L(B) can
be conveniently represented as Bx where x is an integer vector. The integers m and n are called
the dimension and rank of the lattice respectively. Notice that any lattice admits multiple bases,
but they all have the same rank and dimension.

The main computational problems on lattices are the Shortest Vector Problem, which asks to
find the shortest nonzero vector in a given lattice, and the Closest Vector Problem, which asks to
find the lattice point closest to a given target. Both problems can be defined with respect to any

norm, but the Euclidean norm ‖v‖ =
√

∑

i v
2
i is the most common. Other norms typically found in

computer science applications are the ℓ1 norm ‖v‖1 =
∑

i |vi| and the max norm ‖v‖∞ = maxi |vi|.
This entry focuses on the Euclidean norm.

Since no efficient algorithm is known to solve SVP and CVP exactly in arbitrary high dimension,
the problems are usually defined in their approximation version, where the approximation factor
γ ≥ 1 can be a function of the dimension or rank of the lattice.

Definition 1 (Shortest Vector Problem, SVPγ). Given a lattice L(B), find a nonzero lattice vector
Bx (where x ∈ Z

n \ {0}) such that ‖Bx‖ ≤ γ · ‖By‖ for any y ∈ Z
n \ {0}.

Definition 2 (Closest Vector Problem, CVPγ). Given a lattice L(B) and a target point t, find a
lattice vector Bx (where x ∈ Z

n) such that ‖Bx − t‖ ≤ γ · ‖By − t‖ for any y ∈ Z
n.

Lattices have been investigated by mathematicians for centuries in the equivalent language of
quadratic forms, and are the main object of study in the geometry of numbers, a field initiated by
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Minkowski as a bridge between geometry and number theory. For a mathematical introduction to
lattices see [3]. The reader is referred to [5, 11] for an introduction to lattices with an emphasis on
computational and algorithmic issues.

2 KEY RESULTS

The problem of finding an efficient (polynomial time) solution to SVPγ for lattices in arbitrary
dimension was first solved by the celebrated lattice reduction algorithm of Lenstra, Lenstra and
Lovász [10], commonly known as the LLL algorithm.

Theorem 1. There is a polynomial time algorithm to solve SVPγ for γ = (2/
√

3)n, where n is the
rank of the input lattice.

The LLL algorithm achieves more than just finding a relatively short lattice vector: it finds a
so-called reduced basis for the input lattice, i.e., an entire basis of relatively short lattice vectors.
Shortly after the discovery of the LLL algorithm, Babai [2] showed that reduced bases can be used
to efficiently solve CVPγ as well within similar approximation factors.

Corollary 1. There is a polynomial time algorithm to solve CVPγ for γ = O(2/
√

3)n, where n is
the rank of the input lattice.

The reader is referred to the original papers [2, 10] and [11, Chapter 2] for details. Introductory
presentations of the LLL algorithm can also be found in many other texts, e.g., [15, Chapter 16] and
[14, Chapter 27]. It is interesting to note that CVP is at least as hard as SVP (see [11, Chapter 2])
in the sense that any algorithm that solves CVPγ can be efficiently adapted to solve SVPγ within
the same approximation factor.

Both SVPγ and CVPγ are known to be NP-hard in their exact (γ = 1) or even approximate
versions for small values of γ, e.g., constant γ independent of the dimension. (See [11, Chapters 3
and 4] and [4, 9] for the most recent results.) So, no efficient algorithm is likely to exist to solve
the problems exactly in arbitrary dimension. For any fixed dimension n, both SVP and CVP can
be solved exactly in polynomial time using an algorithm of Kannan [8]. However, the dependency
of the running time on the lattice dimension is nO(n). Using randomization, exact SVP can be
solved probabilistically in 2O(n) time and space using the sieving algorithm of Ajtai, Kumar and
Sivakumar [1].

As for approximate solutions, the LLL lattice reduction algorithm has been improved both in
terms of running time and approximation guarantee. (See [13] and references therein.) Currently,
the best (randomized) polynomial time approximation algorithm achieves approximation factor
γ = 2O(n log log n/ log n).

3 APPLICATIONS

Despite the large (exponential in n) approximation factor, the LLL algorithm has found numerous
applications and lead to the solution of many algorithmic problems in computer science. The
number and variety of applications is too large to give a comprehensive list. Some of the most
representative applications in different areas of computer science are mentioned below.

The first motivating applications of lattice basis reduction were the solution of integer programs
with a fixed number of variables and the factorization of polynomials with rationals coefficients. (See
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[10], [7] and [15, Chapter 16].) Other classic applications are the solution of random instances of low-
density subset-sum problems, breaking (truncated) linear congruential pseudorandom generators,
simultaneous Diophantine approximation, and the disproof of Mertens’ conjecture. (See [7] and
[15, Chapter 17].)

More recently, lattice basis reduction has been extensively used to solve many problems in
cryptanalysis and coding theory, including breaking several variants of the RSA cryptosystem and
the DSA digital signature algorithm, finding small solutions to modular equations, and list decoding
of CRT (Chinese Reminder Theorem) codes. The reader is referred to [6, 12] for a survey of recent
applications, mostly in the area of cryptanalysis.

One last class of applications of lattice problems is the design of cryptographic functions (e.g.,
collision resistant hash functions, public key encryption schemes, etc.) based on the apparent
intractability of solving SVPγ within small approximation factors. The reader is referred to [11,
Chapter 8] and [12] for a survey of such applications, and further pointers to relevant literature.
One distinguishing feature of many such lattice based cryptographic functions is that they can be
proved to be hard to break on the average, based on a worst-case intractability assumption about
the underlying lattice problem.

4 OPEN PROBLEMS

The main open problems in the computational study of lattices is to determine the complexity of
approximate SVPγ and CVPγ for approximation factors γ = nc polynomial in the rank of the
lattice. Specifically,

• Are there polynomial time algorithm that solve SVPγ or CVPγ for polynomial factors γ = nc?
(Finding such algorithms even for very large exponent c would be a major breakthrough in
computer science.)

• Is there an ǫ > 0 such that approximating SVPγ or CVPγ to within γ = nǫ is NP-hard?
(The strongest known inapproximability results [4] are for factors of the form nO(1/ log n) which
grow faster than any poly-logarithmic function, but slower than any polynomial.)

There is theoretical evidence that for large polynomials factors γ = nc, SVPγ and CVPγ are
not NP-hard. Specifically, both problems belong to complexity class coAM for approximation factor
γ = O(

√

n/ log n). (See [11, Chapter 9].) So, the problems cannot be NP-hard within such factors
unless the polynomial hierarchy PH collapses.

5 URL to CODE

The LLL lattice reduction algorithm is implemented in most library and packages for computational
algebra, e.g.,

• GAP (http://www.gap-system.org)

• LiDIA (http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/)

• Magma (http://magma.maths.usyd.edu.au/magma/)

• Maple (http://www.maplesoft.com/)
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• Mathematica (http://www.wolfram.com/products/mathematica/index.html)

• NTL (http://shoup.net/ntl/).

NTL also includes an implementation of Block Korkine-Zolotarev reduction that has been exten-
sively used for cryptanalysis applications.

6 CROSS REFERENCES

Knapsack. Sphere packing problem. Cryptographic hardness of learning. Discrete logarithm.
Factoring. Learning heavy Fourier coefficients over ZN .
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