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Abstract

This paper reviews George Dantzig’s contributions to integer programming, especially his seminal work with Fulkerson and
Johnson on the traveling salesman problem.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

George Dantzig wrote only a few papers on integer programming, including two on integer programming
modeling [4,5]; specifically, how a variety of nonlinear and nonconvex optimization problems could be formulated as
mixed-integer programs with 0–1 variables. For example, he presented the use of 0–1 variables to model fixed charges
and variable upper bound constraints, semi-continuous variables, and nonconvex piecewise linear functions.

In [5] he also proposed a very simple cutting plane for separating a fractional basic optimal solution from the
convex hull of integer solutions in a pure integer program with nonnegative variables. The cut simply says that at least
one of the nonbasic variables must be a positive integer, i.e., the sum of the nonbasic variables is at least one. While
this is not a very strong cut, since it does not yield a finitely convergent algorithm [10], a slightly tightened version of
it does yield a finite cutting plane algorithm [2].

However, Dantzig’s impact on integer programming is huge. His work in the 1950s with D. Ray Fulkerson and
Selmer Johnson [6–8] on the traveling salesman problem was the precursor of the branch-and-cut algorithms that
form the basis of modern mixed-integer computational systems that are widely used in practice to solve optimization
models in supply chains, telecommunications, manufacturing, transportation, and many other areas.

The NP-hard traveling salesman problem (TSP) has provided a remarkable source of ideas for solving hard
combinatorial optimization problems including cutting planes, branch-and-bound, and Lagrangian duality. Dantzig,
Fulkerson, and Johnson (DFJ from now on) pioneered the idea of employing linear programming relaxation and valid
inequalities to solve integer programs by solving (including a proof of optimality) a 49-city TSP. Their paper also has
ideas about implicit enumeration. Moreover, the DFJ paper constitutes one of the first serious computational studies
of a hard combinatorial optimization problem. It is absolutely astonishing that the three authors were able to find an
optimal solution of such a large TSP instance and to prove its optimality by manual computation.
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Although DFJ’s seminal contribution of more than 50 years ago is acknowledged in books and survey papers on
integer programming and combinatorial optimization, it has not been presented with any detail in recent literature
except in a very recent book [1]. Therefore it seems appropriate in this issue devoted to the contributions of George
Dantzig to review the work of DFJ, and to honor Ray Fulkerson (1924–1976) and Selmer Johnson as well. DFJ
were all at the Rand corporation through the 1950s as part of what may have been the most remarkable group of
mathematicians working on optimization ever assembled.

2. The TSP and linear programming

Given a set of n cities and the n(n − 1)/2 distances d(i j) between all unordered pairs i, j of cities, the (symmetric)
TSP is to find a shortest tour for a salesman starting from his home city, then visiting all of the other cities, and finally
returning to the home city. In graph theory terms, we are given a complete undirected graph G = (V, E), where the
node set V corresponds to the set of cities, the edge set E corresponds to all pairs of cities, and where the edge e = i j
has length d(e) which is a number representing the “distance” (measured in minutes, miles, or whatever is appropriate
for the particular instance) between the nodes i and j . The problem is to find a cycle C that contains all n nodes
(i.e., a Hamiltonian cycle) and whose total distance is minimum. It is well known that the TSP is NP-hard although,
of course, DFJ were unlikely to be thinking about complexity then.

DFJ studied an instance consisting of the road distances between 49 cities, the then 48 state capitals in the U.S. and
Washington DC. The data DFJ used came from a distance table that was prepared by the Rand Corporation. Table 1
shows a copy of the table of distances between the cities, hand written by Ray Fulkerson (we are indebted to Bob
Bland for making the original available). If d ′

i j denotes the original distance between the cities i and j in miles then

the entry di j of the DFJ table was obtained using di j :=

[
1

17 (d ′

i j − 11)
]
. where the brackets [.] denote rounding to

the next integer. This looks somewhat strange. The authors remark that they wanted to obtain distances smaller than
256 to permit compact storage in binary representation. However, it turned out that they made no use of it. DFJ’s
formulation of the TSP contains the variables x(e) = 1 or 0 to indicate whether edge e is in the tour or not and the
obvious constraints that each node has degree 2 in a cycle. They realized, of course, that this was not enough because
the resulting solution might contain subtours, i.e., cycles on subsets S ⊂ V . However, DFJ knew that subtours could
be removed using the subtour elimination constraints, which they stated in the following two forms:∑

e∈E(S)

x(e) ≤ |S| − 1,
∑

e∈δ(S)

x(e) ≥ 2,

where E(S) denotes the set of edges in G with both ends in the node set S, and δ(S) denotes the set of edges with one
end in S. DFJ observed that the two versions of the subtour elimination constraints are equivalent because they can be
transformed into each other utilizing the degree constraints.

Still, this would not be enough for solving TSPs by linear programming for any but the smallest values of n. There
are two reasons for this observation:

1. The number of subtour elimination constraints grows exponentially with n, and therefore, all of them could not be
considered explicitly.

2. Even if a linear programming formulation of the form

min
∑
e∈E

d(e)x(e) (1)

x(e) ≥ 0 e ∈ E (2)

x(e) ≤ 1 e ∈ E (3)∑
e∈δ(v)

x(e) = 2, v ∈ V (4)

∑
e∈δ(S)

x(e) ≥ 2 S ⊂ V, 2 ≤ |S| ≤ |V | − 2 (5)

could be solved, the solution would not necessarily correspond to a tour since the LP solution might be fractional.
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Table 1
Road distances between cities in adjusted units

Despite these difficulties, DFJ demonstrated that a linear programming approach to the TSP was viable, and in the
process gave the first steps towards a theory that we now call polyhedral combinatorics that provides one of the main
ingredients of successful modern integer programming software. Given a tour T of an n-city TSP, n ≥ 3, let us define
the vector χT

∈ RE by setting χT (e) = 1, if e ∈ T , and χT (e) = 0, if e 6∈ T . Call χT the incidence vector of tour
T . The convex hull of the incidence vectors of all tours, i.e.,

Qn
T := conv{χT

∈ RE
|T a n-city tour}

is called the (symmetric) traveling salesman polytope. The study of Qn
T (and its asymmetric companion) began in the

mid-fifties and is still thriving today; see [1,17].
In a Rand preprint [6] to the published paper [7], DFJ indicate that although Heller [14] had shown that the

constraints (2)–(5) are sufficient for describing Q5
T completely, the polytope that they define has fractional extreme

point solutions for n ≥ 6. Just to formulate the TSP as an integer program requires an exponential number of
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inequalities, and it was clear from the work of Heller [14] and Kuhn [16] that a huge number of linear inequalities are
needed to characterize Qn

T for even modest values of n. The tremendous sizes of the LPs that may have to be solved
might lead one to give up on the linear programming approach to the TSP.

But rather than giving up, at this point DFJ made some key observations that have had a big impact on the
development of modern integer programming.

• To solve an LP with a huge number of constraints, you don’t need to begin with all of them. It suffices to start with
a relatively small subset as long as you have a way of telling whether the solution to the relaxed problem satisfies
all of the omitted constraints, and if not, of finding one that is violated by the current solution. Of course, for the
TSP, if the current LP solution is a tour, by definition it satisfies all of the unknown inequalities that define Qn

T and
therefore is an optimal solution to the TSP. Hence the stopping rule for this approach to solving the TSP is obvious.
Terminate with an optimal tour if and only if the LP solution represents a tour. Otherwise tighten the LP by adding
another constraint that cuts off the current solution.

This observation is probably the earliest appearance of what we now call separation or cutting plane recognition.
Given a polyhedron P and a point y in Rn , decide whether y ∈ P , and if not, find a hyperplane separating y from P .
About twenty-five years later [12] it was discovered that “separation” and “optimization” are equivalent with respect
to polynomial time solvability. More precisely, one can solve linear programs over a class of polyhedra (such as the
traveling salesman polytopes Qn

T ) in polynomial time if and only if the separation problem for this class of polyhedra
can be solved in polynomial time. Specifically, because the TSP is known to be NP-hard, the separation problem for
Qn

T is also NP-hard. In other words, given a point y ∈ RE , checking whether y ∈ Qn
T and if not finding an inequality

that is satisfied by all incidence vectors of tours but not by y is NP-hard. We can assume that DFJ didn’t understand
all of the formalities of separation, but they used their ingenuity to take advantage of some properties of the TSP.

• For the TSP all the incidence vectors of tours are extreme points of a relaxation that contains the nonnegativity
constraints (2) and the degree constraints (4), and they give a polytope all of whose extreme points correspond to
tours, subtours, or isolated edges of value 2. So if we begin with only constraints (2) and (4), it is trivial to recognize
whether the optimal LP solution contains subtours or isolated edges, and it is also simple to find an inequality (3) or
(5) that separates the solution from Qn

T . Moreover, since there are only a small number of upper bound constraints
(3), we could add all of them to begin with. DFJ didn’t do that, but remember that all of their computations were
done by hand. Once we begin to add subtour elimination constraints or upper bound constraints, the polytope is no
longer integral. Since any fractional extreme point solution cannot be in Qn

T , whenever an optimal LP solution is
fractional or is integral and contains subtours, we know that we have to continue adding constraints. But how do
we find the right ones?

Before exploring DFJ’s use of valid inequalities further, we present some of their other innovations that have
become important in computational integer programming. DFJ used what is now called warm start. That is, since the
incidence vector of a tour is an extreme point of the initial LP relaxation, it is possible to begin the simplex algorithm
with a basic solution corresponding to a good tour. For the given US instance, DFJ simply guessed what they thought
might be an optimal tour and then, setting the constraints x(e) ≤ 1 to equality for all edges in the tour to form a basis,
obtained a basic solution corresponding to that tour.

For a TSP on a complete graph with Euclidean distances, many long edges can be excluded from an optimal tour
in a straightforward way. For example in the 49-city instance, one can easily argue by bounds that it would not be
optimal to go directly from an east coast state capital to a west coast state capital, and therefore, such edges can be
eliminated from the instance. However, much more fixing of this type can be done using linear programming in a
more advanced manner. DFJ introduced the idea of what is now called reduced cost fixing. Suppose we have solved
an LP relaxation and an edge is currently nonbasic at value zero with reduced cost r(e). Let z(L P) be the value of the
LP solution and z(T ) be the value of the best known tour. Then if

z(L P) + r(e) > z(T ), (6)

edge e is not in any optimal tour. Similarly, for a nonbasic edge at value 1, if (6) holds, then edge e is in every optimal
tour. DFJ observed that reduced cost fixing is a powerful tool for reducing the size of a TSP and when the problem
became small enough in the number of remaining edges, they could use “combinatorial arguments” to establish an
optimal solution. They were not very specific on how this was done, but it wouldn’t be surprising if their combinatorial
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arguments were a type of tree search enumeration suggestive of implicit enumeration or branch-and-bound. Finally,
DFJ began the solution of the 49-city instance by reducing it to a 42-city instance by observing that the shortest path
between Washington and Boston passed through seven other state capitals, and therefore, these seven cities could be
eliminated and replaced by a single edge. (That is why Table 1 shows only 42 cities.) Here they were using a form of
what we now call preprocessing.

DFJ do not give all of the iterative details on their solution to the 42-city capitals instance. They luckily guessed the
optimal solution at the outset. This tour provided their initial basis for the LP relaxation. To solve the LP relaxation to
obtain the provably optimal tour as a basic feasible solution, they needed nonnegativity, the 42 degree constraints, 16
upper bound constraints, 7 subtour elimination constraints and 2 other valid inequalities.

We mentioned that solving the separation problem for Qn
T is hard. However, that does not exclude that, for some

subclasses of the class of all facets of Qn
T , polynomial time separation routines exist. Finding such algorithms is still

an active research area, and the progress in this respect is, to a large extent, responsible for the enormous success of the
cutting plane approach to the TSP; see [1]. The fact that one can solve the separation problem for subtour elimination
constraints by viewing it as a min-cut problem [11] was first observed in [15,18]. DFJ did not know that, of course,
and finding violated subtour elimination constraints for fractional solutions by hand is not as straightforward as it may
look nowadays. Finally, the remaining two constraints, whose validity was proved using neat combinatorial arguments
given to DFJ by I. Glicksberg, a colleague at Rand, are essentially what is known today as comb inequalities [3,13].
See [1] for a detailed discussion of these two inequalities.

3. Conclusions

Although DFJ were not the first to develop a connection between linear programming and combinatorial
optimization, see, e.g., the work of Heller and Kuhn cited earlier, they were the first to demonstrate that linear
programming could be used to attack large-scale combinatorial optimization problems by actually solving such an
instance. Let us recall from the discussion above the concepts (in modern terminology) that were employed by DFJ in
their 1954 study:

• preprocessing,
• warm start,
• variable fixing,
• reduced cost exploitation,
• cutting plane recognition,
• elements of branch-and-bound.

The authors were certainly not aware of the full power of their contribution. They close their paper with the
following remark:
“It is clear that we have left unanswered practically any question one might pose of a theoretical nature concerning
the traveling-salesman problem; however, we hope that the feasibility of attacking problems involving a moderate
number of points has been successfully demonstrated, and that perhaps some of the ideas can be used in problems of
similar nature.”
which – compared to the marketing jargon one often reads today, even in the scientific literature – appears to be a
very modest self-assessment of their own work. Nevertheless, the DFJ paper caught the interest of the public press.
Newsweek Magazine published an article on this “ingenious application of linear programming” on July 26, 1954.

Reviewing the development of integer programming in the last fifty years, the DFJ paper of 1954 was a really
remarkable contribution that considerably extended, among other things, the “computational IP tool box”. It is even
more remarkable that this has been done without the help of computers. It seems that DFJ’s ideas were too advanced
for their contemporaries since, five years later, see [8], they were asked by the editor of Operations Research to revisit
their 1954 paper and explain its findings again, which they did in a somewhat simplified form on a 10-city example.
This was in the days when Ralph Gomory’s pioneering work [9] showed how linear programming could be used in
a finite algorithm to solve any pure integer program. But in a certain sense, the work of DFJ is closer to the current
branch-and-cut systems.
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