
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TOBIAS ACHTERBERG

MARTIN GRÖTSCHEL

THORSTENKOCH

Software for Teaching Modeling of Integer
Programming Problems

ZIB-Report 06-23 (May 2006)

Software for Teaching Modeling of

Integer Programming Problems∗

Tobias Achterberg† Martin Grötschel† Thorsten Koch†

June 1, 2006

Abstract

Modern applications of mathematical programming must take into account a multitude
of technical details, business demands, and legal requirements. Teaching the mathematical
modeling of such issues and their interrelations requires real-world examples that are well
beyond the toy sizes that can be tackled with the student editions of most commercial
software packages.

We present a new tool, which is freely available for academic use including complete
source code. It consists of an algebraic modeling language and a linear mixed integer
programming solver. The performance and features of the tool are in the range of current
state-of-the-art commercial tools, though not in all aspects as good as the best ones. Our
tool does allow the execution and analysis of large real-world instances in the classroom
and can therefore enhance the teaching of problem solving issues.

Teaching experience has been gathered and practical usability was tested in classes at
several universities and a two week intensive block course at TU Berlin. The feedback
from students and teachers has been very positive.

MSC 97U70 97-04 90-04 90C11 68N99

1 Introduction

In almost all courses where problem solving is addressed an implicit assumption is made
that every problem investigated is “given”. Most mathematical theorems are of the form “If
the following is given, then something else holds”. The execution of algorithms also requires
that data are given. In the “real world” it is not so clear what really is given. In fact, one
is usually aware that there is some problem but it is often not completely clear what the
problem exactly is. Such issues are rarely taught, and students do not necessarily learn how
to handle situations of this type.

A way to teach real-world problem solving is to provide software that helps students (and
practitioners as well) to model the problem at hand fast and make codes available that solve
the mathematical models quickly. They may realize from the initial shot at the problem that
the model they came up with does not deliver proper solutions. They find out that certain
constraints have been forgotten, others may have been incorrectly stated, etc. Problem solving
requires the execution of three basic steps: modeling, solver run, solution analysis. And these

∗Work supported by the DFG Research Center Matheon in Berlin
†Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, eMail: koch@zib.de

1

koch@zib.de

three steps have to be iterated (often many times) until all important side constraints are
adequately modeled, some irrelevant side conditions are neglected, and the solution appears
satisfactory. In complex cases, the solution software may have to be modified as well so that
that production runs terminate in an acceptable time frame. How existing software can be
adapted to run faster on particular models is another topic that needs to be taught.

Since large scale is a common attribute of real-world operations research, one difficulty
from the teaching perspective is that modeling pitfalls and puzzling observations (e. g., run-
ning time abnormalities, strange model behaviors) can rarely be made when toy models are
employed. In fact, the issues raised above are abound in practice, and do not only arise in
teaching. Modern applications of mathematical programming must take into account a mul-
titude of technical details, business demands, and legal requirements. In order to show how
to design algorithms that solve practical problems, suitable data sets and application specific
software from industry projects are needed. Otherwise the students will not be adequately
prepared for practical work and do not acquire a feeling for the instance sizes that can be
successfully tackled.

That is why there is a basic need to have both, large-scale real-world instances and flexible
software that can handle such instances, available in the classroom and on the students’
laptops. In this paper we describe a freely available software tool that closes this gap for the
area of mixed integer programming, and we indicate where large-scale data sets can be found
(at present and in the future). Of course there exists a large set of commercial products which
are suitable for the task, see, for example, [7, 12] and especially [8] for surveys. But using
commercial systems for teaching has several drawbacks:

◮ None of the systems is free to use and the price for a class license may not be affordable
for many institutions, in particular outside Europe and North America. Often free or
at least cheap student editions are available, but they are usually restricted to only very
small problem sizes.

◮ Using a commercial tool makes it difficult for the students to use the software at home,
not only because of the price, but also because they are usually only available on specific
platforms. This conflicts with the current trend away from using computer labs towards
the use of individual laptops.

◮ All of the systems come as black boxes. There is no possibility for the students to look
behind the scenes and learn how the tools are working.

◮ Since no source code is available it is not possible to change or extend the tools either
as an exercise or to facilitate teaching of techniques to deal with problems of special
structure.

◮ Finally, using black box software is not helpful in teaching students scientific method-
ology. Just believing the result of some unknown software without even the possibility
to check what actually happened will not qualify for a scientific experiment.

Over the years high performance codes in the area of linear programming (lp) and mixed
integer programming (mip) have been developed by several researchers at the Zuse Institute
Berlin (ZIB). To improve the usability of this software, we have spent some effort to combine
the codes. Now we provide a complete tool consisting of the algebraic modeling language

2

Zimpl1, the linear programming solver SoPlex2, and the mixed integer programming frame-
work Scip3.

This combination of software allows to easily build and solve linear mixed integer program-
ming models. Models written in the Zimpl language can be directly read by the mip-solver
Scip, which automatically calls SoPlex as a subroutine to solve the resulting lp subprob-
lems. The software is highly portable, free for academic use, and the complete source code
as well as ready-to-run binaries for several platforms are available for download.

As recent benchmarks show4 the performance is at least on par with the best other freely
available tools and, depending on the instance, even comparable to the top commercial tools.
Two other initiatives that provide free tools with source code should be mentioned: The GNU
Linear Programming Toolkit GLPK5 and the Computational Infrastructure for Operations
Research COIN-OR6. For an overview, see also [11] and [12].

In October 2005, a two week block course consisting of over 80 hours of lectures and exer-
cises was held at the Zuse Institute Berlin with more than 100 participants from 10 countries.
One aim of the course was to test the ideas and concepts of the the Matheon7 project Com-
binatorial Optimization at Work8, which starts out to provide a digital textbook describing
case studies from practice, commenting on difficulties encountered, discussing the mathemat-
ical models and theories, and explaining the algorithmic approaches successfully employed
in practice. When finished, the textbook together with data sets, programs, pictures, and
visualizations will be made available on the Internet. The software we describe in this article
was used on most of the exercises in the course.

In the next three sections we will shortly present the programs. In Section 5 a small
example on what students can experience when working with our tool will be given.

2 The modeling language: Zimpl

Algebraic modeling languages allow to describe a mathematical model in terms of sets de-
pending on parameters. This description is translated automatically into a mixed integer
program, which can be fed into any out-of-the-box mip-solver. Zimpl [9] is a newly developed
algebraic modeling language, which is similar in concept to well-known languages such as
gams [4] or ampl [6]. While Zimpl implements only (the most important) 20 percent of the
functionality of ampl, this proved to be sufficient for many real-world projects [9].

What Zimpl distinguishes from other modeling languages is the use of rational arithmetic.
With a few exceptions, all computations in Zimpl are done with infinite precision rational
arithmetic. This ensures that no rounding errors can occur. One might think that the
use of rational arithmetic results in a huge increase of computation time and memory. But
experience shows that this seems not to be relevant with current hardware. Zimpl has been
successfully used to generate integer programs with more than 30 million non zero coefficients.

An introduction into modeling with Zimpl together with a complete description of the

1http://www.zib.de/koch/zimpl
2http://www.zib.de/Optimization/Software/Soplex
3http://scip.zib.de
4http://plato.asu.edu/bench.html
5http://www.gnu.org/software/glpk
6http://www.coin-or.org
7http://www.matheon.de
8http://co-at-work.zib.de

3

language can be found in [9]. The reference discusses both theoretical and practical considera-
tions of the implementation. Aspects of software engineering, error prevention, and detection
are also addressed. Zimpl is under active development and the standalone version is available
from the web site at http://www.zib.de/koch/zimpl.

3 The mixed integer programming framework: SCIP

Scip is a framework for constraint integer programming that aims at integrating constraint
programming and mixed integer programming into a single solver [1]. It is designed to support
the implementation of cp and mip solver components like branching rules, primal heuristics,
cutting plane separators, or domain propagators. It allows for a very flexible integration of
user-defined non-linear constraints, and it is a fully-fledged branch-cut-and-price framework.

Scip comes with a large number of components that suffice to turn the basic framework
into a sophisticated mixed integer programming solver. It is able to directly read Zimpl files.
Preprocessors transform the problem instance into an equivalent instance that is easier to
solve, constraint handlers provide specialized algorithms and data structures to handle specific
constraint classes, separators add cutting planes to tighten the lp relaxation, primal heuristics
search for feasible solutions, branching rules define the search tree, and node selectors define
the way the search tree is processed. To solve the lp relaxations, Scip calls an externally
linked lp solver through a basic lp solver interface.

In a course on mixed integer programming, Scip can be used to demonstrate and compare
the usefulness of certain components, e. g., node selection strategies, branching rules, cut
separation algorithms, or primal heuristics. In particular, the search tree can be visualized
by using VbcTool [10] which helps to analyze the impact of the employed branching rule
and node selection. An example is given in Figure 7, which shows two mip-instances from the
miplib [3] solved with the same parameter settings, but producing vastly different branching
trees.

With the source code at hand, a focus can be set on specific implementation issues,
e. g., how one can quickly generate violated clique cuts, or what can be done to ensure
numerical stability of Gomory mixed integer cuts. In a more advanced course, students can
even implement their own components like a specialized primal heuristic for a given problem
class such as the traveling salesman problem.

In a course that is primarily focused on modeling, like our workshop Combinatorial Op-
timization at Work, Scip can be used in conjunction with Zimpl and SoPlex to evaluate
ones own mixed integer programming models. Scip as a stand-alone mip solver is easy to
use, provides lots of parameters to adjust the solver components, and reports a large number
of statistics that show the impact of the different components on the given problem instance.

4 The linear programming solver: SoPlex

SoPlex [14] is an implementation of the revised simplex algorithm for the solution of linear
programs. It features primal and dual solving routines and is implemented as a C++ class
library that can be used within other programs. SoPlex is under continuous development and
the current version as of March 2006 is 1.3.0.

An example program to solve standalone linear programs given in mps or lp format files is
included. But other than to experiment with parameter settings or for programming exercises

4

there is not much need to use SoPlex as a standalone lp-Solver if Scip is available. Its main
use in this context is to act as a solver engine for lp-based mixed integer programming.

5 A puzzling puzzle model

In the following, we use the popular puzzle game named Sudoku [5] to give an impression of
how to use Zimpl and Scip to model and solve a problem. The aim of the puzzle is to enter
an integer from 1 through 9 in each cell of a 9 × 9 grid made up of 3 × 3 subgrids. At the
beginning several cells are already given preset integers. At the end, each row, column and
subgrid must contain each of the nine integers exactly once. Figure 1 shows an example. For
details see, e. g., http://en.wikipedia.org/wiki/Sudoku.

5 3
4 6

7 2

1 3 6 9
4 6 9 5

9 8 2 7

2 9
8 1

6 4

4 6 5 7 2 8 1 9 3
1 2 9 3 4 6 7 8 5
8 3 7 1 9 5 6 4 2

5 1 2 4 7 3 8 6 9
7 4 3 6 8 9 2 5 1
9 8 6 2 5 1 3 7 4

2 7 1 5 6 4 9 3 8
3 9 4 8 1 7 5 2 6
6 5 8 9 3 2 4 1 7

Figure 1: Sudoku puzzle and solution

There are several possibilities to model this puzzle. A popular choice is to state the
problem as a constraint program using a collection of alldifferent constraints [13]. But how
can this be formulated as an integer program? Zimpl can automatically generate ips for
certain constructs such as the absolute value of the difference of two variables (vabs). Using
81 integer variables in the range {1, . . . , 9} the alldifferent constraint can be formulated by
demanding that the absolute difference of all pairs of relevant variables is greater than or
equal to one. This leads to the Zimpl program shown in Figure 2. Note that lines beginning
with set define sets, lines with param define parameters, i. e., data, lines starting with var
declare variables and lines starting with subto define constraints.

Figure 3 shows a Scip session solving the Sudoku instance shown in Figure 1, which is
modeled by the Zimpl program of Figure 2. We stripped or slightly relocated parts of the
output such that it fits to the size of the paper. As one can see in line 4, parameters can
easily be changed with the “set” command. In this case, we impose a time limit of 600
seconds on the solution process. The Zimpl model is read in line 6, generating a mip instance
with 3969 variables and 4884 constraints. The large size of the instance arises from auxiliary
variables and constraints produced by Zimpl’s automatic modeling of the vabs function. The
command “optimize” in line 8 lets Scip solve the instance. Between lines 9 and 29 one
can see the solving progress. Presolving is conducted in consecutive rounds, in this case
terminating after 66 rounds. The presolving modifications can be seen in lines 13 and 14.
After presolving is finished, Scip tries to solve the remaining problem with 1424 variables
and 2291 constraints, but the process is interrupted due to the time limit and stops without
finding a feasible solution9.

9 We checked this result with Cplex 9.03, one of the top-of-the-line commercial mip-solvers. After six hours

5

1 param p := 3 ;
2 s e t J := { 1 . . p∗p } ;
3 s e t KK := { 1 . . p } ∗ { 1 . . p } ;
4 s e t F := { read ” f i x e d . dat ” as ”<1n , 2 n>” } ;
5 param f i x e d [F] := read ” f i x e d . dat ” as ”<1n , 2 n>3n” ;
6 var x [J ∗ J] i n t e g e r >= 1 <= 9 ;
7

8 subto rows : f o r a l l <i , j , k> i n J∗J∗J with j < k do
9 vabs (x [i , j]−x [i , k]) >= 1 ;

10 subto c o l s : f o r a l l <i , j , k> i n J∗J∗J with j < k do
11 vabs (x [j , i]−x [k , i]) >= 1 ;
12 subto s q u a r e s : f o r a l l <m, n> i n KK do
13 f o r a l l <i , j , k , l> i n KK∗KK with p∗ i+j < p∗k+l do
14 vabs (x [(m−1)∗p+i , (n−1)∗p+j] − x [(m−1)∗p+k , (n−1)∗p+l]) >= 1 ;
15 subto f i x e d : f o r a l l <i , j> i n F do x [i , j] == f i x e d [i , j] ;

Figure 2: A Zimpl model to solve Sudoku using integer variables

The command “display statistics” at line 31 causes the output of a large table with
statistical data on the different components and solving steps. One can see that most of the
solving time is spent to solve lp relaxations.

Two reasons to solve the lp relaxation in a branch-and-bound algorithm are to compute
a lower bound for the objective function and to detect infeasibility early. Since Sudoku is
a pure feasibility problem it is not possible to compute a bound for the objective function.
Also detecting infeasibility seems not to work very effective either, given the huge amount of
unprocessed nodes left to compute. Therefore, an idea to improve the performance would be
to find better parameter settings for the solver.

Figure 4 shows a solving run on the same instance as before, but with different parameter
settings. This time we set Scip to perform more like a pure constraint programming solver.
In line 4 we select depth-first-search node selection, in line 6 we enable conflict analysis [2]
on propagation conflicts, and in line 8 we disable the solving of the lp relaxations. Since
we no longer solve the lp relaxations, the branching nodes are processed much faster. The
previous run of Figure 3 needed three minutes to process the first 10000 nodes, while this
quantity is now processed in 7.4 seconds, as one can see in line 20 of Figure 3 and line 21
of Figure 4. Additionally, mainly due to conflict analysis, a solution is found in 8.2 seconds
and 11534 nodes. After displaying the statistics at line 28, the command “display solution”
is issued at line 59 to report the optimal solution. The objective value of the solution and
all non-zero elements in the solution vector are displayed. In the listing, we only show the
output for the first and last model variable. One can see that the Zimpl model generated
variable names “x#i#j” with (i, j) being the position in the Sudoku grid. The solution states
to use numeral 4 in cell (1, 1) and numeral 7 in cell (9, 9).

Choosing the right model is often more important (and more effective) than having the best
solver implementation. Especially with real-world problems, having the ability to experiment
swiftly with different formulations is essential. Conveying this idea to the students has been
a major point in our workshop. Zimpl has proven to be a valuable tool in this regard by
letting the students experiment which model works best. For practical work it is important to
experience the fact that mathematical equivalent formulations might behave totally different

and a million nodes there was still no feasible solution available.

6

1 SCIP v e r s i o n 0 . 81 f [p r e c i s i o n : 8 by te] [mode : op t im i z ed] [LP s o l v e r : SOPLEX 1 . 3 . 0]
2 Copy r i ght (c) 2002−2006 Konrad−Zuse−Zentrum f u e r I n f o rma t i o n s t e c h n i k B e r l i n (ZIB)
3

4 SCIP> s e t l i m i t s t ime 600
5 parameter < l i m i t s / time> s e t to 600
6 SCIP> r ead sudoku i n t . z p l
7 o r i g i n a l problem has 3969 v a r i a b l e s (972 bin , 2997 i n t , 0 cont) and 4884 c o n s t r a i n t s
8 SCIP> op t im i z e
9 p r e s o l v i n g :

10 (round 1) 24 d e l v a r s , 996 d e l conss , 1014 chg bounds , 0 chg s i d e s , 0 chg c o e f f s
11 (round 65) 2543 d e l v a r s , 2593 d e l conss , 3311 chg bounds , 20 chg s i d e s , 40 chg c o e f f s
12 p r e s o l v i n g (66 rounds) :
13 2543 d e l e t e d va r s , 2593 d e l e t e d c o n s t r a i n t s , 3311 t i g h t e n e d bounds , 20 changed s i d e s ,
14 40 changed c o e f f i c i e n t s , 23285 i m p l i c a t i o n s
15 p r e s o l v e d problem has 1424 v a r i a b l e s (392 bin , 1032 i n t , 0 cont) and 2291 c o n s t r a i n t s
16

17 t ime | node | l e f t |LP i t e r | f r a c | rows | cu t s | dua lbound | pr ima lbound | gap
18 2 .9 s | 1 | 0 | 1101 | 518 |2123 | 0 | 0.000000 e+00 | −− | I n f
19 11 .7 s | 1 | 2 | 13077 | 764 |3036 | 913 | 0.000000 e+00 | −− | I n f
20 176 s | 10000 | 4013 |119005 | 413 |2644 | 913 | 0.000000 e+00 | −− | I n f
21 272 s | 20000 | 7523 |231183 | 588 |2644 | 913 | 0.000000 e+00 | −− | I n f
22 352 s | 30000 | 9779 |320146 | 498 |2644 | 913 | 0.000000 e+00 | −− | I n f
23 426 s | 40000 | 12171 |402351 | 327 |2644 | 913 | 0.000000 e+00 | −− | I n f
24 513 s | 50000 | 14549 |504125 | 141 |2644 | 913 | 0.000000 e+00 | −− | I n f
25 596 s | 60000 | 17171 |600208 | − |2644 | 913 | 0.000000 e+00 | −− | I n f
26

27 SCIP Sta tus : s o l v i n g was i n t e r r u p t e d [t ime l i m i t r eached]
28 So l v i ng Time (sec) : 600.00
29 So l v i ng Nodes : 60572
30

31 SCIP> d i s p l a y s t a t i s t i c s
32

33 O r i g i n a l Problem :
34 Va r i a b l e s : 3969 (972 b ina ry , 2997 i n t e g e r , 0 con t i nuou s)
35 Con s t r a i n t s : 4884 i n i t i a l , 4884 maximal
36 Pr e s o l v ed Problem :
37 Va r i a b l e s : 1424 (392 b ina ry , 1032 i n t e g e r , 0 con t i nuou s)
38 Con s t r a i n t s : 2291 i n i t i a l , 2291 maximal
39 P r e s o l v e r s : Time F i x ed Aggr ChgBds DelCons
40 t r i v i a l : 0 . 01 38 0 0 0
41 d u a l f i x : 0 . 00 35 0 0 0
42 i m p l i c s : 0 . 06 0 402 0 0
43 prob ing : 1 . 77 444 114 1726 0
44 varbound : 0 . 00 0 0 83 989
45 l i n e a r : 0 . 85 215 1295 1502 1604
46 Con s t r a i n t s : Time Number Cu to f f s DomReds Cuts
47 i n t e g r a l : 171.60 0 1400 5675 0
48 varbound : 14.68 1723 2619 507022 0
49 l i n e a r : 9 . 23 568 3770 1221137 0
50 Sepa r a to r s : Time C a l l s Cu to f f s DomReds Cuts
51 cut poo l : 0 . 00 6 − − 3
52 imp l i edbound s : 0 . 03 7 0 0 950
53 cmi r : 0 . 92 7 0 0 3
54 c l i q u e : 0 . 00 7 0 0 2
55 Branching Ru l e s : Time C a l l s Cu to f f s DomReds Cuts
56 r e l p s c o s t : 171.40 43452 1400 5675 0
57 LP : Time C a l l s I t e r s I t / c a l l I t / s ec
58 dua l LP : 248.57 57531 554595 9 .64 2231.14
59 d i v i n g / prob ing LP : 16.67 3126 50303 16.09 3017.58
60 s t r ong branch ing : 160.34 17903 202879 11.33 1265.30
61 B&B Tree :
62 nodes : 60572
63 max depth : 107
64 ba ck t r a ck s : 10778 (17.8%)

maximal depth
of search tree

reliable pseudo
cost branching
was applied

time spent in
dual simplex to
solve relaxations

number of
generated

cutting planes
implied bound

number of
unprocessed
subproblems
in search tree

Figure 3: A Scip session solving a Sudoku instance modeled by Figure 2

7

1 SCIP v e r s i o n 0 . 81 f [p r e c i s i o n : 8 by te] [mode : op t im i z ed] [LP s o l v e r : SOPLEX 1 . 3 . 0]
2 Copy r i ght (c) 2002−2006 Konrad−Zuse−Zentrum f u e r I n f o rma t i o n s t e c h n i k B e r l i n (ZIB)
3

4 SCIP> s e t n o d e s e l e c t i o n d f s s t d p r i o r i t y 1000000
5 parameter <n o d e s e l e c t i o n / d f s / s t d p r i o r i t y > s e t to 1000000
6 SCIP> s e t c o n f l i c t useprop TRUE
7 parameter <c o n f l i c t / useprop> s e t to TRUE
8 SCIP> s e t l p s o l v e f r e q −1
9 parameter < l p / s o l v e f r e q > s e t to −1

10 SCIP> r ead sudoku i n t . z p l
11 o r i g i n a l problem has 3969 v a r i a b l e s (972 bin , 2997 i n t , 0 cont) and 4884 c o n s t r a i n t s
12 SCIP> op t im i z e
13 p r e s o l v i n g :
14 . . .
15 t ime | node | l e f t | v a r s | cons | ccons | con f s | dua lbound | pr ima lbound | gap
16 2 .0 s | 1 | 2 |1424 |2291 |2291 | 0 | 0.000000 e+00 | −− | I n f
17 3 .2 s | 2000 | 51 |1424 |2484 | 965 | 288 | 0.000000 e+00 | −− | I n f
18 4 .4 s | 4000 | 41 |1424 |2607 | 457 | 642 | 0.000000 e+00 | −− | I n f
19 5 .4 s | 6000 | 50 |1424 |2549 | 210 | 959 | 0.000000 e+00 | −− | I n f
20 6 .4 s | 8000 | 22 |1424 |2547 | 928 |1313 | 0.000000 e+00 | −− | I n f
21 7 .4 s | 10000 | 11 |1424 |2569 | 942 |1663 | 0.000000 e+00 | −− | I n f
22 ∗ 8 .2 s | 11534 | 0 |1424 |2598 | 157 |1955 | 0.000000 e+00 | 0.000000 e+00 | 0.00%
23

24 SCIP Sta tus : problem i s s o l v e d [opt ima l s o l u t i o n found]
25 So l v i ng Time (sec) : 8 . 17
26 So l v i ng Nodes : 11534
27

28 SCIP> d i s p l a y s t a t i s t i c s
29

30 O r i g i n a l Problem :
31 Va r i a b l e s : 3969 (972 b ina ry , 2997 i n t e g e r , 0 con t i nuou s)
32 Con s t r a i n t s : 4884 i n i t i a l , 4884 maximal
33 Pr e s o l v ed Problem :
34 Va r i a b l e s : 1424 (392 b ina ry , 1032 i n t e g e r , 0 con t i nuou s)
35 Con s t r a i n t s : 2291 i n i t i a l , 2615 maximal
36 P r e s o l v e r s : Time F i x ed Aggr ChgBds DelCons
37 t r i v i a l : 0 . 02 38 0 0 0
38 d u a l f i x : 0 . 00 35 0 0 0
39 i m p l i c s : 0 . 01 0 402 0 0
40 prob ing : 1 . 28 444 114 1726 0
41 varbound : 0 . 00 0 0 83 989
42 l i n e a r : 0 . 64 215 1295 1502 1604
43 Con s t r a i n t s : Time Number Cu to f f s DomReds Cuts
44 varbound : 1 . 57 1723 393 119198 0
45 l i n e a r : 1 . 64 568 1959 285006 0
46 l o g i c o r : 0 . 00 0+ 0 8 0
47 boundd i s j u n c t i o n : 0 . 17 0+ 61 17496 0
48 C o n f l i c t A n a l y s i s : Time C a l l s Succes s Con f l s L i t s
49 p r opaga t i on : 0 . 01 1880 1781 2011 3 .0
50 Branching Ru l e s : Time C a l l s Cu to f f s DomReds Cuts
51 i n f e r e n c e : 1 . 50 9560 0 0 0
52 B&B Tree :
53 nodes : 11534
54 max depth : 100
55 ba ck t r a ck s : 1634 (14.2%)
56 de l a y ed c u t o f f s : 7567
57 r e p r o p a g a t i o n s : 11380 (45088 domain r educ t i on s , 298 c u t o f f s)
58

59 SCIP> d i s p l a y s o l u t i o n
60

61 o b j e c t i v e v a l u e : 0
62 x#1#1 4 (ob j : 0)
63 . . .
64 x#9#9 7 (ob j : 0)

number of
generated
conflict constraints

constraints added
by conflict analysis

number of
domain reductions
found by linear
constraints

used inference
branching

Figure 4: Solving the Sudoku model of Figure 2 with CP/SAT techniques

8

in practice.
As an alternative we modeled the Sudoku problem using 729 binary variables as shown in

Figure 5, instead of 81 integer variables. Figure 6 shows a Scip session for this model on the
same data set as before. In this case, presolving managed to fix all variables and to remove
all constraints after six rounds. In fact after solving several thousand instances we never
encountered a Sudoku instance that could not be solved in preprocessing or in the root node
with this model. After presolving has been finished, the remaining trivial empty problem is
solved.

During the workshop, a new problem area was usually presented each morning in a lecture.
In the afternoon, we provided the students with data and a description of the problem setting
and let them work out and solve the mathematical modeling on their own. In a course
taking place at the University of Bayreuth, we set out a competition for the best performing
formulation for the n-Queens problem. And even though the students had only few hours
experience with modeling and solving integer programs, they were able to model the problem
on their own and beat the formulation of the lecturer.

6 Conclusion

We tested the combination of Scip, Zimpl and SoPlex as the main software environment for
the exercises in our two week block course. The problems we posed to the students covered
a wide range of applications, including computing the tour of a wielding robot, modeling
Sudoku puzzles, solving Steiner tree problems, optimize pizza production, computing OSPF
routing weights, modeling telecom network design problems, chip verification, bus routing,
driver scheduling, line planning, and repairman tour scheduling problems.

The first exercise was to find the minimal number of students that have to change their
seats such that everybody without a laptop has a neighbor with a laptop. For the real topology
of the lecture hall, this turned out to be much more difficult than initially anticipated.

Having the students directly sit down and practically address problems by building a
mathematical model and trying to solve it was a great experience. The students developed
practical skills and advanced their knowledge both in theory and practice. We received
enthusiastic responses within the evaluation after the course.

For the course the students had to bring their own laptops. This was very successful
for two reasons: first, everybody could work in a familiar environment since the software
presented is available for Linux, Windows and Mac-OS alike. And second, after the course
the students took home not only their newly acquired knowledge but also their working
environment, keeping the ability to actually model and solve problems.

All available files from the course including most of the slides and exercises can be found
at http://co-at-work.zib.de/download/CD. Further material on using Zimpl and Scip in a course
was prepared by Jörg Rambau at the University of Bayreuth and is available at http://www.uni-

bayreuth.de/departments/wirtschaftsmathematik/rambau/Teaching/Uni Bayreuth/WS 2004/Diskrete Op-

timierung Anwendungen.
Today, companies are forced to rethink their planning methods due to the high innovation

pressure. Knowledge in the practical application of mathematical modeling is becoming a
key skill in industry, since the solution of mixed integer programs is one of the very few areas
which can provide globally optimal answers to discrete (yes or no, choose an option) questions.
To teach this knowledge state-of-the-art software as described in this article is required.

9

References

[1] Tobias Achterberg. SCIP - a framework to integrate constraint and mixed integer pro-
gramming. Technical Report 04-19, Zuse Institute Berlin, 2004.

[2] Tobias Achterberg. Conflict analysis in mixed integer programming. Technical Report
05-19, Zuse Institute Berlin, 2005.

[3] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):1–12, 2006.

[4] J. Bisschop and A. Meeraus. On the development of a general algebraic modeling system
in a strategic planning environment. Mathematical Programming Study, 20:1–29, 1982.

[5] David Eppstein. Nonrepetitive paths and cycles in graphs with application to Sudoku.
ACM Computing Research Repository, 2005.

[6] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language for Mathe-
matical Programming. Brooks/Cole, 2nd edition, 2003.

[7] Robert Fourer. Software survey: Linear programming. MS/OR Today, 32, jun 2005.

[8] Josef Kallrath, editor. Modeling Languages in Mathematical Optimization. Kluwer, 2004.

[9] Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische Universität
Berlin, 2004.

[10] Sebastian Leipert. The tree interface – version 1.0 user manual. Technical Report 96.242,
Institut für Informatik, Universität zu Köln, 1996.

[11] J. Linderoth and T. Ralphs. Noncommercial software for mixed-integer linear program-
ming. Optimization Online, 2005. http://www.optimization-online.org/DB FILE/2004/12/1028.pdf.

[12] H. D. Mittelmann and P. Spellucci. Decision tree for optimization software, 2006. See
http://plato.asu.edu/guide.html.

[13] W.J. van Hoeve. The alldifferent constraint: A survey. In 6th Annual Workshop of the
ERCIM Working Group on Constraints. Prague, June 2001.

[14] R. Wunderling. Paralleler und objektorientierter Simplex. Technical Report TR 96-09,
Konrad-Zuse-Zentrum Berlin, 1996.

10

1 param p := 3 ;
2 s e t J := { 1 . . p∗p } ;
3 s e t KK := { 1 . . p } ∗ { 1 . . p } ;
4 s e t F := { read ” f i x e d . dat ” as ”<1n , 2 n , 3 n>” } ;
5 var x [J∗J∗J] b i n a r y ;
6

7 subto nums : f o r a l l <i , j> i n J∗J do sum <k> i n J : x [i , j , k] == 1 ;
8 subto c o l s : f o r a l l <j , k> i n J∗J do sum <i> i n J : x [i , j , k] == 1 ;
9 subto rows : f o r a l l <i , k> i n J∗J do sum <j> i n J : x [i , j , k] == 1 ;

10 subto f i x e d : f o r a l l <i , j , k> i n F do x [i , j , k] == 1 ;
11 subto s q u a r e s : f o r a l l <m, n , k> i n KK∗J do
12 sum <i , j> i n KK : x [(m−1)∗p+i , (n−1)∗p+j , k] == 1 ;

Figure 5: A Zimpl model to solve Sudoku using binary variables

1 SCIP v e r s i o n 0 . 81 f [p r e c i s i o n : 8 by te] [mode : op t im i z ed] [LP s o l v e r : SOPLEX 1 . 3 . 0]
2 Copy r i ght (c) 2002−2006 Konrad−Zuse−Zentrum f u e r I n f o rma t i o n s t e c h n i k B e r l i n (ZIB)
3

4 SCIP> r ead sudoku b in . z p l
5 o r i g i n a l problem has 729 v a r i a b l e s (729 bin , 0 i n t , 0 cont) and 348 c o n s t r a i n t s
6 SCIP> op t im i z e
7 p r e s o l v i n g :
8 (round 1) 24 d e l v a r s , 24 d e l conss , 24 chg bounds , 0 impls , 324 c l q s
9 (round 5) 723 d e l v a r s , 324 d e l conss , 614 chg bounds , 236 impl s , 0 c l q s

10 p r e s o l v i n g (6 rounds) :
11 729 d e l e t e d va r s , 348 d e l e t e d c o n s t r a i n t s , 619 t i g h t e n e d bounds , 238 i m p l i c a t i o n s
12 p r e s o l v e d problem has 0 v a r i a b l e s (0 bin , 0 i n t , 0 cont) and 0 c o n s t r a i n t s
13

14 t ime | node | l e f t |LP i t e r | f r a c | rows | cu t s | dua lbound | pr ima lbound | gap
15 0 .0 s | 1 | 0 | 0 | 0 | 0 | 0 | 0.000000 e+00 | −− | I n f
16 ∗ 0 .0 s | 1 | 0 | 0 | − | 0 | 0 | 0.000000 e+00 | 0.000000 e+00 | 0.00%
17

18 SCIP Sta tus : problem i s s o l v e d [opt ima l s o l u t i o n found]
19 So l v i ng Time (sec) : 0 . 03
20 So l v i ng Nodes : 1
21

22 SCIP> d i s p l a y s t a t i s t i c s
23

24 O r i g i n a l Problem :
25 Va r i a b l e s : 729 (729 b ina ry , 0 i n t e g e r , 0 con t i nuou s)
26 Con s t r a i n t s : 348 i n i t i a l , 348 maximal
27 Pr e s o l v ed Problem :
28 Va r i a b l e s : 0 (0 b ina ry , 0 i n t e g e r , 0 con t i nuou s)
29 Con s t r a i n t s : 0 i n i t i a l , 0 maximal
30 P r e s o l v e r s : Time F i x edVar s AggrVars ChgBounds DelCons
31 t r i v i a l : 0 . 00 9 0 0 0
32 l i n e a r : 0 . 01 646 74 619 348
33 B&B Tree :
34 nodes : 1
35

36 SCIP> d i s p l a y s o l u t i o n
37

38 o b j e c t i v e v a l u e : 0
39 x#1#1#4 1 (ob j : 0)
40 . . .
41 x#9#9#7 1 (ob j : 0)
42

43 SCIP> qu i t

number of
variables that
were fixed by
linear constraints

number of variable

to linear constraints
aggregations due

number of deleted
linear constraints

Figure 6: A Scip session solving a Sudoku instance modeled by Figure 5

11

Figure 7: Comparison of node trees resulting vpm2 and neos3.

12

	Introduction
	The modeling language: Zimpl
	The mixed integer programming framework: SCIP
	The linear programming solver: SoPlex
	A puzzling puzzle model
	Conclusion

