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One summer in the mid 1980s, Jack Edmonds stopped
by the Research Institute for Discrete Mathematics
in Bonn for an extended visit. As usual, the institute
administrator asked Professor Edmonds for a curric-
ulum vitae to complete the university paperwork. The
conversation took place in the library, so Edmonds
pulled from a nearby shelf a text in combinatorial opti-
mization: “Here is my CV.”

And he was right! This year marks the 50th anniver-
sary of the publication of two papers by Edmonds that,
together with his own follow-up work, have come to
define much of the field, including theory, complexity,
and application. We thought it fitting to write a few
modest words on the profound impact of these papers.
This short article will not go into the subject in any
detail, but, for that, you can check out any book with
“combinatorial optimization” in the title — Edmonds’s
work will fill the pages from cover to cover.

Linear Programming (LP)

Although our focus is Edmonds, to put his contribu-
tions into context we have to first go back to the 1940s
and the introduction of the linear-programming model
by George Dantzig. Indeed, in the first of the two big
manuscripts in 1965, Edmonds [5] writes the following.

This paper is based on investigations begun with G. B.
Dantzig while at the RAND Combinatorial Symposium
during the summer of 1961.

For a brief time, the two great mathematicians worked
side by side, and their discussions set Edmonds on the
course towards developing one of the most important
settings for Dantzig’s optimization theory.

Much has been written about linear programming,
including several hundred texts bearing the title. Dan-
tzig’s creation of the model and the simplex algorithm
for its solution is rightly viewed as one of the greatest
contributions of applied mathematics in the past cen-
tury. For our purposes, it will suffice to give the briefest
of descriptions.

Every LP problem can be formulated as the task to min-
imize (or maximize) a linear function subject to linear
equality or inequality constraints and non-negative
values for the variables. That is, a model with n variables
and m constraints can have the form

minimize ¢,x, +¢,x, +...+¢,x,
subject to
a,x,+apx,+...+a,x, b

Ay X, +a,%, +...4+a,,%, 2b,

Ay +a,,%, +..+a, X, 2b

mn'n = “m

x,20,x,20,...,x, 20.

Here, the x; values are the unknowns, while the ¢
a;, and b; values are given as part of the problem. In
brief matrix notation, the LP model stated above reads

min cTxs.t. Ax>b, x> 0.

The economic interpretation of the general model is
that the x; variables represent decisions, such as the
quantity of certain items to purchase; the c; values are
the costs of one unit of each item; and the constraints
capture requirements on the portfolio of items that are
purchased. The canonical textbook example, and one
that Dantzig himself considered in early tests of the
simplex algorithm, is the diet problem, where there are
n food items that can be purchased and m nutritional




requirements, such as the minimum number of calories,
grams of protein, etc., that must be included in the daily
selection of food. The LP solution provides the cheapest
way to keep a person on his or her feet for a day.

The general model is a simple one, and that is one of the
reasons for its success: pretty much any industry you
can name makes use of linear-programming software
to guide their decision making.

The mathematical elegance of linear programming is
tied to the fact that to each LP problem we can associate
another problem called its dual. The dual LP problem
is obtained by turning the model on its side, having a
dual variable y, for each original constraint and a dual
constraint for each of the original variables:

maximize by, +b,y,+...+b,y,,
subject to

allyl +a21y2 +.. '+amlym S Cl
ap)tany, +...+a,,y, <¢,

alnyl +a2ny2 +.. '+amnyn = Cn
y,20,y,20,...,y, 20.

In matrix notation, the meaning of “turning the model
on its side” becomes even more visible: max b7y s.t.
ATy<c,y20.

To keep the names straight, Dantzig’s father, Tobias,
proposed the original LP problem be called the primal
problem. So primal and dual.

A simple result is that for any xy, ...
the primal LP constraints and any y1, ..

isfying the dual LP constraints, we have cix: +... +¢,x,

, x, values satisfying
.»¥,, values sat-

cannot be less than biy:1 + ... +b,,y,,. Indeed, ¢Tx =
xT¢ 2 xTATy = (Ax)"y 2 bTy. So any candidate solution
to the dual gives a bound on how small we can make the
primal objective, and, vice versa, any candidate solution
to the primal gives a bound on how large we can make
the dual objective. A deeper result, called the LP Dual-
ity Theorem, is that an optimal solution x;,...,x, to the
primal problem and an optimal solution y; ,..., y,, to the
dual problem will have equal objective values, that is,

* * * *
X+ +ex =by +...+b,y,.

If youlike mathematics, then you have to love the Dual-
ity Theorem. The equation gives a concise way to prove
to any sceptic that you have in hand an optimal solution
to a given LP model: you simply display a dual solution
that gives the same objective value. Dantzig’s simplex
method proceeds by simultaneously solving the primal
and dual LP problems, each solution providing an opti-
mality certificate for the other.

Combinatorial Min-Max
Theorems

It didn’t take long for mathematicians to realize that LP
duality was too pretty to just sit on a shelf. In an incred-
ibly active span of years in the mid-1950s, researchers
rapidly expanded the reach of LP theory and Dantzig’s
algorithm.

Alan Hoffman, the long-time master of combinatorics
and linear algebra wrote the following in a memoir [10].

It dawned on me (and on Gale, Kuhn, Heller, Tucker,
Dantzig, Ford, Fulkerson, Kruskal, Tompkins and others)
that you could prove combinatorial theorems by using the
theory of linear inequalities! And you could try to discover
and understand the machinery that ensured integrality of
optimal solutions, because integrality was needed to make
the theorems combinatorial. This was incredible. I cannot
overstate how this discovery boosted my morale.

Typical of the morale boosters was the LP-based proof of
Konig’s Theorem in graph theory, stating that in a bipar-
tite graph, the minimum number of nodes that together
meet all edges is equal to the maximum number edges,
no two of which meet at a node." The theorem is illus-
trated in Figure 2, where there are three highlighted
nodes and three highlighted edges.

To put Konig’s Theorem into the LP setting, we have
primal variables x;, ..., x,, one for each of the #n nodes
in the graph, and a constraint for each of the m edges,
stating that the sum of the variables for the two ends of
the edge must be at least one.
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Figure 1 Jack Edmonds,
September 2014

1 Agraph is called bipartite if
its nodes can be colored red
and blue so that every edge
has one red end and one
blue end.
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Figure 2 Kénig's Theorem

example

Figure 3 Red edges carry the
value 1/2 in the LP solution.
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minimize x, +x, +...+x,
subject to
x,+x; 21, for each edge (i,5)

%, 20,%, 20;...,%,20.

The dual LP model flips this around; we have variables
Y1, ..0>¥,» Ot for each edge, and a constraint for each
node, stating that the sum of the variables for the edges
meeting that node can be at most one.

maximize y, +y, +...+y,,

subject to
2(}’1‘ :edge j meets node z') <1, foreachnodei
$,20,9,20,...,y, 20.

Although LP models will in general have fractional-val-
ued solutions, Hoffman and company found direct
arguments showing that, for any bipartite graph, this
primal and dual pair have optimal solutions where all
variables have value either zero or one. These zero-one
solutions pick out sets of nodes and edges, correspond-
ing to the variables that carry the value one. Now, for
these sets, the LP constraints are precisely the condi-
tions we imposed on the selection of nodes and edges in
Konig’s Theorem. Thus, the result of Kénig follows from
the Duality Theorem.

The “1950s gang” set out to apply this LP-duality scheme
to every combinatorial problem they could find. And
they had success upon success. But some models
resisted, such as the traveling salesman problem (TSP)
and the matching problem in general graphs. The dif-
ficulty was that there are instances of these problems
where the LP models have optimal solutions only with
some or all variables taking on fractional values.

Paths, Trees, and Flowers

The LP scheme was powerful, but it could not be coaxed
into a general theory for combinatorial problems. Not,
that is, until Edmonds’s big year.

The model Edmonds attacked in 1965 was the perfect
matching problem. A perfect matchingin a graph isa set
of edges that meet every node exactly once. Given a cost

¢; associated with each edge 7, the problem is to find a
perfect matching of minimum total cost. Thus, we need
a zero-one valued solution to the model

minimize ¢, x, +...+c, X,

subject to
Z(xj :edge j meets node i) =1, for each node i

x,20,x,20, ...,x,20

m

where the variables x;, ..., x,, correspond to the 1 edges

in the graph.

The perfect matching problem includes, as a special
case, the geometric challenge of pairing up points in the
plane, so that the sum of the lengths of the lines joining
the pairs is as small as possible. In this geometric setting,
we can see easily what goes wrong with the LP approach.
Consider an example consisting of two clusters, each
with three points. Any perfect matching must include
an edge joining a point in one cluster to a point in the
other cluster, but the LP solution to the above model
will instead create two triangles of edges, each carrying
the value of 1/2, as we illustrate in Figure 3. And there is
no way to avoid such a non-matching solution: for that
particular set of points, the 1/2-values form the unique
optimal solution to the LP model.

These bad LP solutions can be described in geometric
terms; not in the 2-dimensional space of the points we
want to match, but rather in the space where we have a
dimension for every edge of the graph. Indeed, the set
of candidate solutions to a LP model together form a
geometric object called a polyhedron. Think of a Platonic
solid, like a dodecahedron, but in high-dimensional
space. The linear inequality constraints in the LP model
form the sides, or faces, of the polyhedron. A polyhe-
dron is a convex set, that is, if you take any two points
u and v in a polyhedron, then the entire line segment
joining u and v is also in the polyhedron. The vertices of
apolyhedron are the corner points, that is, those points
p in the polyhedron for which there do not exist distinct
points u and v in the polyhedron such that p is on the
(u, v) line segment. The vertices are special: an optimal
solution to an LP model can always be found among
its vertices, and, for any vertex, there is a way to set the




costs c; of the variables so that the vertex is the unique
optimal solution.

In our LP model, every perfect matching determines a
vertex, by setting x; = 1 if edge 7 is in the matching and
otherwise setting x; = 0. That is good. But 1/2-valued
solutions, like in our 6-node example, are also vertices.

That is bad.

What we want is a polyhedron where every perfect
matching is a vertex, and these are the only vertices.
Such a polyhedron always exists. Indeed, at the turn
of the 20th century, Hermann Minkowski showed that
for any finite set of points X, if we let P be the smallest
convex set containing X, then P is a polyhedron. Min-
kowski’s set Pis called the convex hull of X.

Minkowski’s theorem is well known to students of lin-
ear programming, but it says only that an LP model for
perfect matchings exists. It does not say how we should
find the inequalities to use as LP constraints. And if even
if we can find them, the form of the inequalities might
make them too complex or too numerous to use in any
nice theory for matchings. These are the difficulties
Edmonds handled. In so doing, he created a road map
for the potential solution to any problem in combinato-
rial optimization.

The matching problem is one of the oldest in graph the-
ory,and Edmonds had at his disposal results dating back
to the late 1800s. Much of the theory points towards
a central role for odd-cardinality subsets of nodes.
Indeed, if a subset S contains an odd number of nodes,
then a perfect matching of the graph must include at
least one edge joining a node in S to a node notin S. In
other words, every perfect matching satisfies the linear
inequality

Y (x,:e hasoneendin §)>1

Edmonds calls these constraints blossom inequalities.
His theorem is that adding these inequalities, for every
odd set S, gives the convex hull of perfect matchings.
That is, not only do the inequalities cut off all half-inte-
ger solutions, such as our two red triangles, theyalso do
not introduce any new vertices. Remarkable!

Edmonds’s proof is via an efficient algorithm that con-
structs a perfect matching and a corresponding dual
solution that together satisfy the LP-duality equation.
For geometric instances, the dual solution can be viewed
as a set of nested regions trapping in odd sets of points,
as we illustrate in Figure 4 with an optimal matching of
50 points.” Note that although there are an impossibly
large number of blossom inequalities on 50 points, the
dual solution has only a modest number of variables that
take on positive values. This is a direct consequence of

Edmonds’s algorithm, showing that we need not fear
convex hulls having many faces, as long as we under-
stand well the inequalities that produce those faces.

“It was my first glimpse of heaven” as Edmonds would
later state [7].

The field that has grown up around Edmonds’s approach
is called polyhedral combinatorics, where one takes a
combinatorial problem and aims to create both effi-
cient solution algorithms and pretty theorems, such as
Ko6nig’s min-max equation. Alan Hoffman [10] writes
the following.

A classic mathematician’s joke is that the first time you use
a new technique it is a trick, the second time it’s a method,
the third time a topic. Clearly, polyhedral combinatorics
has become a subject, which engages some of the worlds
outstanding combinatorial mathematicians in a big frac-
tion of their research.

Edmonds’s work has certainly had a unifying effect on
the optimization side of combinatorics. Va§ek Chvétal’s
[1] slogan

combinatorics = number theory + linear programming

sums up nicely the overall approach.

Figure 4 Optimal matching
and Edmonds dual solution.

2 This visualization technique
is due to Michael Jinger and
William Pulleyblank [11].
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Figure 5 The Complexity
Rock at Jack Edmonds's house

in Ontario, Canada.
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Good Complexity,
Bad Complexity

We used above the word “efficient” to distinguish
Edmonds’s algorithm from the brute-force approach of
listing each perfect matching and selecting the cheapest.
This is a point Edmonds made clear in his paper [5],
when describing another of his matching algorithms.

I am claiming, as a mathematical result, the existence of
“a good” algorithm for finding a maximum cardinality
matching in a graph. There is an obvious finite algorithm,
but that algorithm increases in difficulty exponentially
with the size of the graph. It is by no means obvious
whether “or not” there exists an algorithm whose difficulty
increases only algebraically with the size of the graph.

The algorithms Edmonds calls “good” are now called
polynomial-time algorithms, or the class P for short. A
lengthy discussion in his paper—often overlooked in
computer science articles on the subject— became the
basis for the development of much of modern compu-
tational complexity theory, including the fundamental
P versus NP question that is one of the million-dollar
Clay Prize problems.

ApplicationsWant Solutions

Several years after his success with matchings, Edmonds
became convinced that the TSP was beyond the reach
of a polynomial-time solution [6]: “T conjecture that
there is no good algorithm for the traveling salesman
problem” With the development of complexity theory
by Stephen Cook and Richard Karp, many researchers
would today also make this conjecture. It is equivalent to
the statement that 7 # A/P, since the TSP is in the class

of N’P-hard problems, like many other combinatorial
models.

It is important to note, however, that the notion of NP
hardness refers to the possibility of bad asymptotic
behavior of a problem class. When an A/P-hard prob-
lem arises in an application, what we need to solve are
specific, finitely-sized examples; complexity theory
should not deter us from attacking the problem with the
mathematical tools at our disposal. Edmonds himself
[5] wrote the following when he introduced the notion
of good algorithms.

It would be unfortunate for any rigid criterion to inhibit
the practical development of algorithms which are either
not known or known not to conform nicely to the criterion.

Indeed, it was Edmonds’s matching work that prompted
a broad study of practical LP-based methods for
NP-hard problems such as the TSP.

In this line of work, partial descriptions of the convex
hulls are utilized to obtain, via LP duality, strong bounds
on the value of the cost of a best-possible solution. For
example, although we do not know all of the inequali-
ties needed to obtain the convex hull of TSP solutions,
we know enough of them to be able to produce strong
statements of the form: “No tour through these points
can have length less than X kilometers.” This mechanism
can then be utilized in an enumerative process to locate
the optimal tour and to prove it is the shortest possible,
allowing computer implementations to solve routinely
TSP examples with 1,000 or more cities.

The overall procedure, known as the cutting-plane
method or branch-and-cut, is a powerful tool for the
solution of a wide range of models arising in industry
and commerce. It has its roots in work by Dantzig and
colleagues in the early 1950s [3], but the rapid advance-
ments began only in the years following Edmonds’s
papers. In fact, today the LP-based branch-and-cut
procedure is the corner stone of almost all commercial
optimization software packages, and there is almost no
product or service in the world where this methodol-
ogy has not contributed to its design, manufacturing
or delivery.

Optimization = Separation

After his work on matchings, Edmonds knew that he
had a powerful general framework on his hands. Here
is a remark he made in 1964 [8].

For the traveling salesman problem, the vertices of the
associated polyhedron have a simple characterization
despite their number—so might the bounding inequalities
have a simple characterization despite their number. At



least we should hope they have, because finding a really
good traveling salesman algorithm is undoubtedly equiv-
alent to finding such a characterization.

The thesis of Edmonds was clear: the existence of
polynomial-time algorithms goes hand-in-hand with
polyhedral characterizations.

An awkward point in the study of the complexity of
algorithms, however, was that the simplex method
itself, that stalwart of efficiency and practicality, was not
known to be a good algorithm in the sense of Edmonds.

It remains an open problem to find a good simplex algo-
rithm, but linear programming itself did eventually fall
under Edmonds’s umbrella. Indeed, the most widely
circulated news event in the history of mathematical
optimization occurred in the summer of 1979, when
Leonid Khachiyan published a polynomial-time algo-
rithm for solving LP problems. The story was covered
on the front page of the New York Times and in other
newspapers around the world. Part of the excitement,
in that Cold War era, was that Khachiyan’s work did not
make use of the simplex algorithm, adopting instead the
ellipsoid method for convex programming developed
by Naum Shor, David Yudin and Arkadi Nemirovski in
the Soviet Union.

Claims in the media that Khachiyan had laid to rest the
venerable algorithm of Dantzig, as well as solving the
TSP along the way, were wildly off base. The ellipsoid
LP method did not prove to be viable in practice for the
solution of large-scale models.

Ellipsoids did, however, have a great impact on the
theory of algorithms. The precise result, known as opti-
mization = separation, is technical, but it says, roughly,
that Edmonds was right again. If we can solve a combi-
natorial problem in polynomial time, then we have an
implicit description of the corresponding convex hull,
and, vice versa, if we understand the convex hull then
we have a polynomial-time algorithm for the combina-
torial problem. This nicely ties together the polyhedral,
algorithmic, and complexity components of Edmonds’s
work.

Suggested Reading

The book [12] is a comprehensive survey of the theory
and methods of polyhedral combinatorics and covers, in
particular, the contributions of Jack Edmonds to match-
ing theory and beyond in great detail. Several chapters
of the part “Discrete Optimization Stories” of the book
[9] give accounts of some of the historical developments
in combinatorial optimization. The article by William
R. Pulleyblank in this book discusses Edmonds’s work
on matching and polyhedral combinatorics. The book

[2], readable for the nonspecialist, outlines the mod-
ern solution approach to combinatorial optimization
problems using the traveling salesman problem as an

example.

The Next Fifty Years

Polyhedral combinatorics and complexity theory are
thriving fields, with ever more connections being made
to classical areas of mathematics. And on the applied
side, techniques based on polyhedra and cutting planes
continue to expand their reach into new problem
domains and increasingly complex models. The next
fifty years should be an exciting time, as the mathematics
world continues to digest Edmonds’s glimpse of heaven.

References
[1] Chvatal, V. 1973. Edmonds polytopes and a hierarchy of
combinatorial problems. Discrete Mathematics 4, 305-337.

[2] Cook, W. 2012. In Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation. Princeton
University Press, Princeton, New Jersey.

[3] Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a
large-scale traveling-salesman problem. Operations
Research 2,393-410.

[4] Edmonds, J. 1965. Maximum matching and a polyhe-
dron with 0,1-vertices. Journal of Research of the National
Bureau of Standards 69B, 125-130.

[5] Edmonds, J. 1965. Paths, trees, and flowers. Canadian
Journal of Mathematics 17, 449-467.

[6] Edmonds, J. 1967. Optimum branchings. J. Res. Nat. Bur.
Stand.Sec.B 71, 233-240.

[71Edmonds, J. 1991. A glimpse of heaven. J.K. Lenstra et al.,
eds. History of Mathematical Programming—A Collection of
Personal Reminiscences. North-Holland, Amsterdam. 32-54.

[81 Gomory, R.E. 1966.The traveling salesman problem.
Proceedings of the IBM Scientific Computing Symposium on
Combinatorial Problems. |BM, White Plains, New York, USA.
93-121.

[9] Grotschel, M. 2012, Optimization Stories. Documenta
Mathematica, Bielefeld, Germany.

[10] Hoffman, A. 2007. What the transportation problem did
for me. Annals of Operations Research 149, 117-120.

[11]1Jinger, M., W.R. Pulleyblank. 1993. Geometric duality
and combinatorial optimization. S.D. Chatterji, B. Fuchs-
steiner, U. Kulisch, R. Liedl, eds. Jahrbuch Uberblicke
Mathematik.Vieweg, Braunschweig/Wiesbaden, Germany.
1-24.

[12] Schrijver, A. 2003. Combinatorial Optimization:
Polyhedra and Efficiency. Springer, Berlin, Germany.

Cook- Grotschel - Schrijver
The Year Combinatorics
Blossomed

43



