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Abstract. We address the issue of angular measure, which is a contested issue
for the International System of Units (SI), from a mathematical point of view.
Our construction, rooted in the traditional way of measuring a plane angle
subtended by a circular arc, shows that angles are intrinsically mathematical
objects, and so are the methods of assigning measures to them, a point that
has yet to be discussed in the metrology community. As such, angular measure
is a quantity of dimension number.

The paper by Quincey, Mohr, and Phillips (Metrologia 2019) argues for
the opposite viewpoint. In our comment, we counter these conclusions by
considering the problem from a mathematical viewpoint.

We distinguish between the angular magnitude, defined in terms of con-
gruent angles, and the (numerical) angular measure be assigned to congruent
angles. The mathematical approach is the traditional way of measuring a
plane angle subtended by a circular arc as the quotient of the lengths of the
arc and its radius, a pure number. We argue that angles mathematically are
intrinsically different from line segments, as there are angles of special sig-
nificance (such as the right angle, or the straight angle), while there is no
distinguished line segment. This is further underlined by the observation that,
while units such as the meter and kilogram have been refined over time due to
advances in metrology, no such refinement of the radian is conceivable, as it is
a mathematically constructed quantity, independent of the physical constants
employed when defining the units in SI. We conclude that the angular mea-
sure is a pure number and thus its unit is the number one, i.e., “radian” is just
an alias for the number one. Therefore, since the number one is the neutral
element of any multiplicative group, the “radian” cannot be a base unit in any
system of units.

1. Background

There has been a long discussion within the metrology community regarding
angular measures, see, e.g., [1, 3, 4, 6, 7, 9, 11, 5, 10, 8], and references therein.
Should they be considered as quantities of dimension number, or should the radian
even become another (eighth) base unit? Here we argue from a mathematical point
of view against adopting the radian as a base unit in the SI. In particular, we seek
to counter the arguments put forward by Quincey et al. in [11].

Our argument is based on insights from the study of classical Euclidean geome-
try, as rendered in modern axiomatic form by Hilbert. We provide a more detailed
account in [2]; here we take a somewhat different approach, glossing over all techni-
cal details. We concentrate on plane geometry, as that is all that is needed to make
the points we wish to make, while remaining technically much easier than working
in three dimensions.
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First thing to notice, is that Euclidean geometry has no concept of measuring
lengths, nor ways to measure angles. It does, however, have the concept of congru-
ence: Congruent line segments have by definition the same length, and, similarly,
congruent angles have the same angular measure.

As congruence is an equivalence relation, both in the case of line segments and
of angles, we can turn this observation into definitions: A linear magnitude is a
congruence class of line segments, while a angular magnitude is a congruence class
of angles.

Here we take a moment to discuss terminology. In everyday language, the term
angle is ambiguous. For the purpose of the present discussion, however, we need
to use different names for the different meanings of the word. We will reserve the
word angle itself for the concept defined in geometry, namely, the union of two
distinct, but non-opposite, rays with a common end point (the apex of the angle).
Since we often do not wish to distinguish between different but congruent angles,
we use angular magnitude as described in the previous paragraph. And finally, we
use angular measure to refer to the measure of an angle as a real number. Because
angular measure must be the same for congruent angles, it is really a function of
angular magnitude. All three concepts may be called “angle” when a higher level
of precision is not called for.

For mathematical quantities it is indispensable to define how one can operate
with them. By the simple expedient of placing line segments end to end, we define
addition of linear magnitudes. In particular, we define any positive integer multiple
of a given length by repeated addition, and we can also divide any length by a
positive integer. Thus we can define any positive rational multiple of a given length,
and finally, by a limit procedure, any positive real multiple of a given length. We
write tx when t is a positive real number and x is a linear magnitude. Given two
linear magnitudes x and y, there is a unique t so that x = ty, and we write t = x/y.
Thus we define the ratio of two linear magnitudes: We can use one to measure the
other.

If needed, we choose a particular line segment as unit length, and use it to mea-
sure all other lengths. This unit length is completely arbitrary however: Nothing
in the axioms of geometry favours any line segment over another.

Similarly, we can define the sum of angular magnitudes. Angles, as defined here,
are all smaller than a straight angle, so we cannot add angles if their sum is too
large. Or to put it more accurately: Two angles can be added if and only if either is
smaller than the supplement of the other. (Extending this to angles of arbitrary size
is fairly simple, but doing so is not necessary for our current purposes.) Again, we
can define integer multiples of any angle (with the constraint already mentioned),
and we can divide an angle by repeated bisection. Thus we can define tα, where
α is a angular magnitude and t is a (not too large) dyadic rational, and again, a
limiting procedure allows us to extend this to real t, i.e., to define the ratio of two
angular magnitudes as a real number.

Up to this point linear magnitudes and angles have been treated similarly. How-
ever, there exist special angles, while there are no special lengths. A prime example
is the right angle, defined as the unique angle that is congruent to its own supple-
ment.

Furthermore, consider scaling transformations: A homothety is a scaling trans-
formation such that a homothetic image of a geometric figure is similar to the
original, but with all lengths multiplied by the same constant. However, it is im-
possible to scale a triangle such that all angles become twice those of the original.

Since scaling changes lengths but not angular measures, to choose a unit is
mandatory for length measurement, but is not necessary for angular measurement.
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Moreover, since angular measures are pure numbers, their unit is the number one
in any system of units.

Despite the differences outlined above, angular magnitudes and linear magni-
tudes are closely interrelated. Two similar triangles have the same angles, which
can be characterized in terms of length ratios.

Given the above discussion about the nature of angles, we have to be more
precise: To each angular magnitude α we associate a number, called its angular
measure, ϑ(α) = s/r, with s being the linear magnitude of the arc and r the linear
magnitude of the radius of an arc subtended by a concrete representative of α.

The common conflation of identifying ϑ(α) and α is the main source of much
confusion regarding angular measure. In practical computations and measurements,
this does not cause any problems, but they are conceptually different. In the present
letter, we focus exclusively on the mathematical aspects of angular measures, and
not on the practical, accurate measurement of angles. Our goal is to participate
from a mathematical point of view in the ongoing discussion regarding a base unit
for angular measures. In light of our findings, we conclude that the angular measure
is a pure number and thus its unit is the number one, i.e. “radian” is just an alias
for the number one, as it is stated already in the SI. Therefore, since the number
one is the neutral element of any multiplicative group, the “radian” cannot be a
base unit in any system of units (for details see [4]).

2. The paper by Quincey et al.

The discussion of angular measure in the metrology community has been intense,
with more than 20 papers devoted to the issue in Metrologia only. In our opinion,
part of the reason for this extensive discussion is the mixing of physical and math-
ematical concepts of angles and their measure. Our point of view is that angles are
intrinsically mathematical objects, and so is the method of assigning a measure to
them. The procedures of performing precise angular measurements are a different
matter, outside the scope of this comment.

In the letter by Quincey et al. [11], the authors argue that angles are not in-
herently length ratios, nor dimensionless. They list four “misconceptions that arise
in the discussion of angles”. We agree that the first two are at least somewhat
misleading, disagree regarding the third, and express no opinion on the fourth.

We address the first two together: “Misconception: mathematics tells us that
angle is a length ratio since s = rθ”, and “Misconception: an angle is defined as
the ratio of an arc length to a radius”. Obviously, by “angle”, the authors mean
what we call angular measure. Indeed, the first misconception relies on circular
reasoning. But for sure, mathematics does tell us that the angular measure as we
have defined it here, i.e., measuring angles in terms of radians, is the most natural
way to measure angles, not only because it leads to the equation s = rθ with no
extra constant of proportionality, but also because of the related fact that, when the
trigonometric functions are expressed in terms of radians, we have the derivatives
sin′ x = cos x and cos′ x = − sin x, again with no constant of proportionality needed.
These equations express a fundamental truth about the group of rotations, and
hence an extra constant in these equations would be most unfortunate. However,
the choice of measuring angles in radians is merely a convention, and like any
convention, it is not subject to mathematical proof. Our point is rather that angles
and angular measure are purely mathematical objects, which are applied to the
physical world. As such, angular measure can only be reasonably expressed as pure
numbers. Moreover, mathematics does indeed tell us that angular measure depends
in fundamental ways on length ratios.
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We would put it even more strongly, and claim that angles cannot even be un-
derstood without reference to length ratios.

When we identify angles of the same measure by translating and rotating one of
them until it coincides with the other, we fundamentally require that length ratios
do not change in this process.

The third “misconception” is this: Angle measurement requires length measure-
ment. We believe our discussion above disposes of this argument. It is certainly
true that one can use a compass and straightedge to repeatedly bisect a right angle,
thereby essentially creating a protractor with which one can measure an arbitrary
angle to any desired precision. However, the defining characteristic of a compass is
its ability to keep the distance between its points constant as one moves it about:
It is a distance measuring device, albeit a rather limited one. The same is true of a
physical protractor. To be useful, the protractor must be stiff, which by definition
means that the distance between any two points of the protractor does not change
as we move the protractor around.

We are of course aware that compasses and protractors are not very precise
instruments for the measurement of angles. We would have no reason to deal
with them here, except in response to their mention in [11]. However, any high
precision optical device used to measure angles is in principle not different, since
it relies on a precise knowledge of distances between the optical components of the
instrument. Moreover, even a cursory glance reveals that physical rigidity is of
paramount importance for the accurate operation of such devices.

3. Conclusion

Let us look at the previous discussion from a general point of view. Nobody
will question that points and lines are geometric objects. Angles, introduced as
the union of two rays with a common apex, are geometric objects as well. There
is a practical and theoretical need to associate numerical measures with geometric
objects. For lines, the common way is to choose a length unit (such as meter) with
which, for every line, the length of a line segment can be measured.

At first glance, it seems reasonable to treat angles in exactly the same way, but
due to the lack of scaling groups, this is not necessary. We have shown [2] that the
very identification of angles of the same measure, and hence the notion of angular
magnitudes, relies crucially on the concept of length. However, since length units
have no influence on angular measures, we must conclude that angular measure
have to be considered as a function of length ratios associated with pairs of linear
segments.

To each angular magnitude α we have assigned an angular measure ϑ(α), for
which we can write in the conventional manner ϑ(α) = s/r. We define the radian
as the angular measure of the angular magnitude α for which ϑ(α) = 1.

Note that the conventional notation α = s/r is, strictly speaking, a category
error, since a magnitude is not a number. It is, however, quite common to conflate
the two concepts, i.e., not to distinguish between α and ϑ(α). This is one of the
main reasons of misunderstandings. In the vast majority of cases this is harmless,
so long as the context makes the meaning clear.

Also the statement expressing the angular unit ‘rad’ by the quotient m/m ap-
pears in the SI brochure. While this seems to be natural from a practical point
of view, it does conflate the angular magnitude and its numerical representation.
However, our main point here is that mathematically, one cannot justify the addi-
tion of ‘rad’ as a base unit in the SI system, but to continue to use the “radian”
as an alias for the number one, as it is correctly done for a long time in the SI.
The “radian” was introduced in 1873 by James Thomson, brother of Lord Kelvin,
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in order to express that the “circular measure” of angle is meant. It was never
intended to be the name of a unit, but rather to simplify the communication.

When dealing with trigonometric functions, a commonly used expression such
as sin α would be a category error, the correct expression being instead sin ϑ(α).

We introduced the notion of angular magnitude and the meaning of ϑ only for
the purpose of the present discussion. However, requiring scientists and engineers to
maintain the distinction between angular magnitudes and their measure in radians
would impose an undue burden on them.

At this point, we wish to make a point regarding the fundamental nature of
angles versus lengths and other physical quantities. Since the meter was introduced
in 1793, improvements in the science of metrology has vastly increased our ability to
measure lengths accurately, in turn leading to the need to refine the very definition
of the meter in order to keep up with the technology. No such claim can be made for
angles. In fact, even though we can certainly measure angles much more accurately
today than we could three centuries ago, no conceivable technological advance can
lead to a need to refine the definition of the radian, or a right angle. This simple
observation supports the notion that angle is a mathematical concept rather than
a topic of the physical sciences.

Although the discussion here has been confined to planar angles, all conclusions
apply equally to the concepts of “angle of rotation” and “phase angle”, which have
not been discussed here in order to concentrate on the essential points.

A different argument for introducing a base unit for angles was presented in [10].
Here the starting point is to deduce from conservation principles the number of nat-
urally independent quantities, and the minimum number of base quantities within
a unit system. We clearly agree with the general principle of expressing the laws
of physics using equations that are invariant under the change of chosen units, but
this requirement is already guaranteed for angular measures, since they are pure
numbers. We will focus on this aspect below.

The authors’ argument is concerned with the unit for angular momentum, which
in the current SI equals the unit for action. They discuss the tendency of theo-
reticians to remove dimensional constants from the equations, the radian being one
example and the speed of light another, and its dire consequences. Regarding the
not uncommon practice of setting the speed of light to 1, they state: “According to
Noether’s theorem, this is equivalent to removing the distinction between energy
and momentum, and hence removing one of the conservation laws.” [10, p. 3].

However, this statement is incorrect, as conservation laws are unaffected by the
choice of units. We could do away with all units, and the equations of physics
would still remain valid, admitting the same conservation laws as before. Never-
theless, units are clearly needed not only for measurements, but are essential for all
engineering and applied sciences.

The authors conclude [10, p. 7]: “A great deal of time and energy spent discussing
unit systems could be saved by, firstly, appreciating that they should be built on
foundations of basic physics, not mathematics or arbitrary choices, and secondly,
recognizing the difference between complete equations and unit-specific equations.”

It has been well known for centuries that units are necessary for unique measure-
ments, but may be (and have always been) chosen by convention. There is only one
exception: the unit of the numbers, the number one, is fixed by mathematics and
no convention can change this. Thus pure numbers, as angular measures are, have
only one unit, the number one, and therefore “rad” is just an alias for this (mathe-
matically determined) unit. This is the current situation in the SI and should not
be changed. The number one is already there as an (implicit) unit of every system
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of units! What is wrong, is to state rad = m/m in the SI brochure and to say that
“the rad is a derived unit”.

We have argued that angles are geometric objects, and thus do not belong to the
realm of physics. Angular measures are far from built on “arbitrary choices”, but
rather on two millennia of mathematical development.
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