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Abstract This is an exposition of the contributions of László Lovász to mathematics
and computer science written on the occasion of the bestowal of the Abel Prize 2021
to him. Our survey, of course, cannot be exhaustive. We sketch remarkable results
that solved well-known open and important problems and that – in addition – had
lasting impact on the development of subsequent research and even started whole
new theories. Although discrete mathematics is what one can call the Lovász home
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turf, his interests were, from the beginning of his academic career, much broader.
He employed algebra, geometry, topology, analysis, stochastics, statistical physics,
optimization, and complexity theory, to name a few, to contribute significantly to the
explosive growth of combinatorics; but he also exported combinatorial techniques
to many other fields, and thus built enduring bridges between several branches
of mathematics and computer science. Topics such as computational convexity or
topological combinatorics, for example, would not exist without his fundamental
results. We also briefly mention his substantial influence on various developments
in applied mathematics such as the optimization of real-world applications and
cryptography.

1 Introduction

László Lovász was born in 1948 in Budapest. Laci, as he is called by his friends,
attended the Fazekas Mihály Gimnázium in Budapest, a special school for mathe-
matically gifted students and a fertile ground of world-class mathematicians. Katalin
Vesztergombi, his wife since 1969, was one of his classmates. Laci’s outstanding
talent became visible at very young age. He won, for example, several mathemat-
ics competitions in Hungary and also won three gold medals in the International
Mathematical Olympiad.

Lovász studied mathematics at Eötvös Loránd University (ELTE). He received
– with Tibor Galai as his mentor – his first doctorate (Dr. Rer. Nat.) degree from ELTE
in 1971, the Candidate of Sciences (C. Sc.) degree in 1970 and his second doctorate
(Dr. Math. Sci.) degree in 1977 from the Hungarian Academy of Sciences. Of great
influence for his scientific growth was the outstanding Hungarian combinatorial

Fig. 1 Lovász and Erdős at dinner in 1977 (Photo: Private)
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Fig. 2 In a Tokyo subway station on the way to the Kyoto Prize ceremony: Laci, Kati, and son Laci
M. Lovász, András Frank in the back (Photo: Private)

school (e.g., T. Galai, A. Hajnal, A. Rényi, M. Simonovits, V. T. Sós, P. Turán, and
foremost P. Erdős).

In 1971 Lovász started his professional career as a research associate at ELTE.
From 1975 to 1982 he was Docent, later Professor and Chair of Geometry at József
Attila University, Szeged; 1983–1993 Chair of Computer Science at ELTE; 1993–
1999 Professor of Computer Science at Yale University; and 1999–2006 Senior
Researcher, Microsoft Research, Redmond. In 2006 Lovász returned to his hometown
Budapest as a Professor and Director of the Mathematical Institute at ELTE from
which he retired in 2018. In 2020 he joined the Alfréd Rényi Institute of Mathematics.
Lovász served the International Mathematical Union as its President from 2007
to 2010 and the Hungarian Academy of Sciences as its President from 2014 to 2020
during demanding times.

Among the institutions Lovász visited for extended periods of time are Vander-
bilt University, University of Waterloo, Universität Bonn, University of Chicago,
Cornell University, Mathematical Sciences Research Institute in Berkeley, Princeton
University, Princeton Institute for Advanced Study, and ETH Zürich. Five univer-
sities bestowed special professorships upon him, he received six honorary degrees
and countless high-ranking honors and distinctions, including the Kyoto Prize 2010,
see Fig. 2.

Like every scientific discipline, mathematics has become a field with a large num-
ber of specializations. The Mathematics Subject Classification (MSC 2020) with its
63 first-level areas and 6,006 specific research areas is a witness of this development.
Today, no mathematician has a full understanding of all the mathematical branches.
But there are still a few people with broad mathematical knowledge, deep command
of their fields of special interest, and the ability to build bridges by transferring
results and techniques between fields to expand the mathematical toolboxes and
open up new research areas. One of these rare persons is László Lovász. In fact,
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quite fittingly, two volumes published in his honor at special occasions were entitled
Building Bridges, see [65] and [12].

Laci’s mathematical roots are in combinatorics. But he vastly expanded his reach
by employing combinatorial methods in other mathematical fields and bringing, in
return, tools from geometry, topology, algebra, analysis, probability theory, informa-
tion theory, optimization, and even ideas from physics into combinatorics. His deep
interest in algorithms led to major advances in modern complexity theory. In his
work, Lovász established profound connections between discrete mathematics and
computer science. This is reflected in the statement that the Norwegian Academy of
Science and Letters issued in its announcement of the award of the Abel Prize 2021
to him and Avi Wigderson

for their foundational contributions to theoretical computer science and discrete mathemat-
ics, and their leading role in shaping them into central fields of modern mathematics.

At the end of the 1960s and the beginning of the 1970s, graph theory, discrete mathe-
matics, combinatorics, and theoretical computer science were considered peripheral
fields of mathematics. This changed completely during Lovász’s lifetime. They
became central parts of modern mathematics for many reasons. The tremendous
development of computer technologies is the most obvious one. Essential factors
were also the high quality of the research and the results in these areas and their
wide applicability. The solutions of many problems arising in industry, society, other
sciences, even in other fields within mathematics critically depend on theories and
algorithms invented in discrete mathematics. Many mathematicians and computer
scientists contributed to this. László Lovász undoubtedly was and still is one of the
key players in this development.

There are other aspects that make László Lovász special. Mathematicians are
often divided into “problem solvers” and “theory builders”. Graph theory is, in
particular, a field to which problem solvers are drawn. Theory builders often see
deep and unusual connections, but often leave the difficult exploration of details to
others. As we will demonstrate, Lovász is a member of this rare breed of people who
possess both talents. Moreover, he brought his talents to bear not only in one field of
mathematics, he has also fertilized and inspired significant developments in a wide
range of other areas. If asked to formulate the essence of his contributions in few
words, we could use the following three:

Depth: Lovász solves many important and widely known problems in a competitive
environment. He isolates seemingly special topics and develops them into broad
and important calculi.

Elegance: His solutions are often surprisingly (and sometimes seemingly) simple.
At the same time, they often are mathematically beautiful and suggest funda-
mentally new ways to address a problem.

Inspiration: Many of his solutions are the basis of further active research and even
the foundations of whole new areas.
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László Lovász published eleven books and more than 300 articles. There is no way
to survey his contributions in an article like this. We have chosen to sketch some
of the publications and topics that we consider highlights, are not too difficult to
explain, had significant impact, moved the frontier of knowledge in the interface of
mathematics and computer science substantially, and are of lasting value.

2 Logic and Universal Algebra – Homomorphisms and Tarski’s
Problem

L. Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica 18:321–328, 1967.

L. Lovász. On the cancellation law among finite relational structures. Periodica
Mathematica Hungarica 1:145–156, 1971.

M. Freedman, L. Lovász, L. Schrijver. Reflection positivity, rank connectivity, and
homomorphisms of graphs. Journal of American Mathematical Society 20(1):37–51,
2007.

Up to the 1960s graph theory was mainly concerned with graphs as objects. Graph
parameters were introduced and the structural properties of graphs having these
properties were investigated. László Lovász made, as we will outline, very significant
contributions to this kind of research, but he left his first fundamental mark, when
he was 19 years old, in the more general context of universal algebra.

Intending to step out of the object orientation of graph theory, Lovász got inter-
ested in operations with graphs and their algebraic properties. We all know that, for
nonzero real numbers 𝑎, 𝑏, and 𝑐, the equation 𝑎𝑐 = 𝑏𝑐 implies 𝑎 = 𝑏. Suppose we
have three graphs 𝐴, 𝐵, and𝐶, and suppose we have defined a product “×” for which
𝐴×𝐶 = 𝐵×𝐶 holds, can we infer that 𝐴 = 𝐵? Such a question makes only sense if
equality “=” is replaced by “isomorphic” and the concrete issue to be addressed is:
Under what conditions, does such a “cancellation law” hold?

Questions of this type were asked by Alfred Tarski, in the context of finite
relational structures, to students in Berkeley in the 1960s. Lovász points this out in
the following quote, extracted from his article [97], where he states the question and
announces his solution:

Fig. 3 Quote from [97]
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Reference [1] in the quote above is the paper [25] of Chang, Jónsson, and Tarski
of 1964, see also [130].

A finite graph 𝐺 with vertex set 𝑉 (𝐺) and edge set 𝐸 (𝐺) is such a relational
structure where𝑉 (𝐺) is the ground set and the edges 𝑢𝑣 define the (binary) relations
between vertices 𝑢 and 𝑣. A standard product in graph theory is the direct (also
named categorial or tensor) product 𝐺1 ×𝐺2 of two graphs 𝐺1 and 𝐺2. Its vertex
set is𝑉 (𝐺1) ×𝑉 (𝐺2) = {(𝑢, 𝑣) | 𝑢 ∈ 𝑉 (𝐺1), 𝑣 ∈ 𝑉 (𝐺2)} and its edge set 𝐸 (𝐺1 ×𝐺2)
is defined to be the set of all pairs of vertices (𝑢1, 𝑢2), (𝑣1, 𝑣2) ∈ 𝑉 (𝐺1) ×𝑉 (𝐺2)
with 𝑢1𝑣1 ∈ 𝐸 (𝐺1) and 𝑢2𝑣2 ∈ 𝐸 (𝐺2). The question to be addressed is: Given two
graphs 𝐺 and 𝐻 and a third graph 𝐹, can one conclude that 𝐺 and 𝐻 are isomorphic
if the direct product 𝐹 ×𝐺 is isomorphic to 𝐹 ×𝐻? This particular question and
most of the related problems for finite relational structures were unsolved, despite
considerable effort. The earlier solution approaches taken were usually elementary,
trying to reduce the problem to known invariants.

Lovász devoted to these problems three of his early papers written in 1967,
1971, 1972. His approach was radically different: He invented a new invariant which
solved these problems for the direct product in full generality. His results completely
changed this area.

The Lovász argument is easy and can be given here in full. Interestingly, young
Lovász formulates his results very generally for finite relational structures, i.e.,
objects of the form 𝐴𝐴𝐴 = (𝑋𝐴𝐴𝐴, (𝑅𝐴𝐴𝐴;𝑅 ∈ 𝐿)) where 𝑅𝐴 is a subset of 𝑋 𝑎 (𝑅) (𝑎(𝑅)
is the arity of the relational symbol 𝑅; 𝐿 is the fixed set of symbols usually called
language). Shortly, we speak about 𝐿-structures.

A homomorphism 𝑓 : 𝐴𝐴𝐴→ 𝐵𝐵𝐵 = (𝑋𝐵𝐵𝐵, (𝑅𝐵𝐵𝐵;𝑅𝑅𝑅 ∈ 𝐿)) is a mapping 𝑓 : 𝑋𝐴𝐴𝐴 → 𝑋𝐵𝐵𝐵
such that for every 𝑅 ∈ 𝐿 holds (𝑥1, . . . , 𝑥𝑎 (𝑅) ) ∈ 𝑅𝐴𝐴𝐴 ⇒ ( 𝑓 (𝑥1), . . . , 𝑓 𝑥𝑎 (𝑅) ∈ 𝑅𝐵𝐵𝐵.
The product 𝐴𝐴𝐴×𝐵𝐵𝐵 is defined as 𝑋𝐴𝐴𝐴×𝐵𝐵𝐵 = 𝑋𝐴𝐴𝐴×𝑋𝐵𝐵𝐵 where 𝑅𝑅𝑅𝐴𝐴𝐴×𝐵𝐵𝐵 is the set of all tuples
((𝑥1, 𝑦1), . . . , (𝑥𝑎 (𝑅) , 𝑦𝑎 (𝑅) )) where (𝑥1, . . . 𝑥𝑎 (𝑅) ) ∈ 𝑅𝐴𝐴𝐴 and (𝑦1, . . . , 𝑦𝑎 (𝑅) ) ∈ 𝑅𝐵𝐵𝐵.

Note that the projections 𝜋𝐴𝐴𝐴 : 𝑋𝐴𝐴𝐴×𝐵𝐵𝐵 → 𝑋𝐴𝐴𝐴 and 𝜋𝐵𝐵𝐵 : 𝑋𝐴𝐴𝐴×𝐵𝐵𝐵 → 𝑋𝐴𝐴𝐴 are homomor-
phisms. Up to an isomorphiosm, projections uniquely determine the above product.
(The whole theory may be restated in categorical terms as worked out in papers by
Lovász [102] and Pultr [139].)

Denote by hom(𝐴𝐴𝐴,𝐵𝐵𝐵) the number of homomorphisms from 𝐴𝐴𝐴 to 𝐵𝐵𝐵. The key of
Lovász’s argument is the following statement:

Theorem. Finite 𝐿-structures 𝐴𝐴𝐴 and 𝐵𝐵𝐵 are isomorphic if and only if for every other
finite structure𝐶𝐶𝐶 holds: hom(𝐶𝐶𝐶,𝐴𝐴𝐴) = hom(𝐶𝐶𝐶,𝐵𝐵𝐵).

In other words (and today’s setting), if we take a fixed enumeration𝐹1, 𝐹2, . . . 𝐹𝑛, . . .
of all non-isomorphic finite graphs then the vector 𝐿 (𝐴𝐴𝐴) = (hom(𝐹𝑖 , 𝐴𝐴𝐴); 𝑖 = 1, . . .) is
the isomorphism invariant, expressed equivalently: 𝐴𝐴𝐴 � 𝐵𝐵𝐵 if and only if 𝐿 (𝐴𝐴𝐴) = 𝐿 (𝐵𝐵𝐵).

Hell and Nešetřil [76] (and others) call this invariant 𝐿 (𝐴𝐴𝐴) Lovász vector.
This setting is very suitable for the Tarski problem. For example, one immediately

obtains that for finite structures 𝐴𝐴𝐴𝑘 � 𝐵𝐵𝐵k holds if and only if 𝐴𝐴𝐴 � 𝐵𝐵𝐵. This follows
readily from hom(𝐶𝐶𝐶,𝐴𝐴𝐴𝑘) = (hom(𝐶𝐶𝐶,𝐴𝐴𝐴))𝑘 .

For brevity we mention another consequence for the special case of graphs.
If 𝐶𝐶𝐶 is a nonbipartite graph then 𝐴𝐴𝐴×𝐶𝐶𝐶 � 𝐵𝐵𝐵×𝐶𝐶𝐶 if and only if 𝐴𝐴𝐴 � 𝐵𝐵𝐵. (Note that
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for bipartite graphs 𝐶𝐶𝐶, cancelation need not hold as already for circuits we have
2𝐶𝐶𝐶3 ×𝐾2 �𝐶𝐶𝐶6 ×𝐾2.)

The above theorem is very general and yet the proof is easy. In the nontriv-
ial direction we prove by induction on the cardinality |𝑋𝐶𝐶𝐶 | of the ground set 𝑋𝐶𝐶𝐶
that, if hom(𝐶𝐶𝐶,𝐴𝐴𝐴) = hom(𝐶𝐶𝐶,𝐵𝐵𝐵), then also the number of injective homomorphisms
coincides, i.e., inj(𝐶𝐶𝐶,𝐴𝐴𝐴) = inj(𝐶𝐶𝐶,𝐵𝐵𝐵).

In the inductive step we have hom(𝐶𝐶𝐶,𝐴𝐴𝐴) = ∑
\ inj(𝐶𝐶𝐶/\, 𝐴𝐴𝐴) where \ is an

equivalence on 𝑋𝐶𝐶𝐶 . Thus by induction assumption we have 0 = hom(𝐶𝐶𝐶,𝐴𝐴𝐴) −
hom(𝐶𝐶𝐶,𝐵𝐵𝐵) = inj(𝐴𝐴𝐴,𝐴𝐴𝐴) − inj(𝐴𝐴𝐴,𝐵𝐵𝐵) = inj(𝐵𝐵𝐵,𝐵𝐵𝐵) − inj(𝐵𝐵𝐵,𝐴𝐴𝐴). But obviously inj(𝐴𝐴𝐴,𝐴𝐴𝐴) >
0 and inj(𝐵𝐵𝐵,𝐵𝐵𝐵) > 0, and thus, we have that there are injective homomorphisms from
𝐴𝐴𝐴 to 𝐵𝐵𝐵 and also from 𝐵𝐵𝐵 to 𝐴𝐴𝐴. Now as 𝐴𝐴𝐴 and 𝐵𝐵𝐵 are finite structures we have that
𝐴𝐴𝐴 � 𝐵𝐵𝐵.

Lovász recognized in the Tarski problem a magnificent pearl. His theorem turned
out to be very useful. It found many applications and inspired further research. This
continues until today, see the articles by Lovász and Schrijver [118], Dvořák [38]
and Dawar et al. [34], for example.

The papers [97] and [99] of Lovász belong to the first occurrences of homomor-
phisms in graph theory. Their successful utilization led to a rich calculus (see, e.g.,
the books by Hell and Nešetřil [76] and Lovász [112] and the article by Borgs et
al. [21]). We outline important parts of this approach.

Lovász already defined in [97] exponential structures 𝐴𝐴𝐴𝐵𝐵𝐵 (and exponential
graphs 𝐺𝐻 ). These played very recently a decisive role in the disproof of the
Hedetniemi conjecture which claimed that 𝜒(𝐺 ×𝐻) = min(𝜒(𝐺), 𝜒(𝐻)), see Shi-
tov [147], Wrochna [159], Tardif [156], and Zhu [161].

Another application of homomorphism counting was provided by Lovász in [103]
which deals with the following problem: When can one recognize a given finite struc-
ture from the collection of all its proper substructures? The special case for undirected
graphs is a classical conjecture of Ulam, see [157], which may be formulated in our
setting as follows:

Do the homomorphism numbers hom(𝐹,𝐺) for all graphs 𝐹 with fewer edges than𝐺
determine the graph 𝐺?

This conjecture is known to be true for special classes of graphs (such as trees
and maximal planar graphs), and the proofs usually consist of a complicated case
analysis. In [103] Lovász gave the first general result: The conjecture is true for graphs
that have more edges than their complement (i.e., more than half of all edges).

The proof, although not directly linked to the above theorem proceeds again
by clever homomorphism counting. Shortly after, this proof has been extended by
Müller in [132] (again by homomorphism counting) to graphs with 𝑛 log𝑛 edges.
This is still the best result.

Counting of homomorphisms and the investigation of their structure are corner-
stones of further areas of mathematics and theoretical computer science. We just
indicate three examples, where they play important roles: Tutte polynomials and
their variants, see [46]; constraint satisfaction problems (which can alternatively be
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viewed as existence theorems for general relational structures), see [52]; and partition
functions in statistical physics, see [23, 24, 112].

Let us finally elaborate on partition functions, the last item mentioned above. The
concept of graph homomorphisms can be extended to graphs with loops and weights
assigned to vertices ∝𝑣 (𝐺) and edges 𝛽𝑢𝑣 (𝐺). For unlabelled graphs 𝐹 and labelled
graphs 𝐺, one can define naturally the weight of a mapping 𝜑 : 𝑉 (𝐹) → 𝑉 (𝐺) and
then the total weight of hom(𝐹,𝐺). Allowing weights on the vertices and edges
greatly extends the expressive power of (weighted) homomorphisms. For example,
the number hom(𝐹,𝐺) can express the number of colorings (leading to chromatic
and Tutte polynomials), the counting of stable sets (corresponding to the so-called
hard core model in statistical physics) and also the counting of nowhere zero flows
and 𝐵-flows (i.e., flows attaining values from a given set 𝐵 only). All these are
parameters of the form hom(−, 𝐻). Freedman, Lovász, and Schrijver [54] provided
a structural characterization for all such parameters as follows:

Theorem. Let 𝑓 be a (real) graph parameter defined on multigraphs without loops.
Then f is equal to hom(−, 𝐻) for some weighted graph H on q vertices if and only
if 𝑓 (𝐾0) = 1, the 𝑓 connection matrix 𝑀 ( 𝑓 , 𝑘) is reflection positive, and its rank
satisfies 𝑟 (𝑀 ( 𝑓 , 𝑘)) ≤ 𝑞𝑘 for all 𝑘 ≥ 0.

(Briefly: Above, 𝐾𝑘 is the complete graph on 𝑘 vertices; the connection matrix
𝑀 ( 𝑓 , 𝑘) is defined by values of the parameter 𝑓 for amalgams of 𝑘-multilabeled
multigraphs; reflection positivity means that, for all 𝑘 , such matrices are positive
semidefinite.)

This theorem led to many similar results for other classes of graphs and for other
types of homomorphism numbers (e.g., in a dual setting with hom(𝐹,−) instead of
hom(−, 𝐻), see [119]). In terms of statistical physics, this theorem can be viewed as
a characterization of partition functions of vertex coloring models.

Lovász wrote extensively on this topic and devoted – ten years ago – a mono-
graph [112] to this subject, where the topics indicated here are treated in depth.

3 Coloring Graphs Constructively (on a Way to Expanders)

L. Lovász. On chromatic number of finite set-systems. Acta Mathematica Academiae
Scientiarum Hungaricae, 19:59–67,1968.

The chromatic number 𝜒(𝐺) of a graph 𝐺 is the minimum number of colors which
suffice to color all vertices of 𝐺 such that no two adjacent vertices get the same
colour. Alternatively, using the notion of the preceding section, 𝜒(𝐺) is smallest 𝑘
for which hom(𝐺,𝐾𝑘) > 0.

The chromatic number belongs to the most frequently studied combinatorial
parameters. Reasons for such an attention are that the question of how to color the
countries on a map can be easily explained to everyone and that the mathematical
modelling of this question can be employed as an appealing introduction to graph
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theory. The “colorful story of the 4-color conjecture” can be used to shed some light
on the rich history of mathematics and the difficulty of finding proofs for problems
that appear to be easy. Coloring the vertices of a graph captures the substance and the
difficulty of many problems. In a multiple sense, the chromatic number is a difficult
concept.

Just consider the easiest question: Are there graphs with large chromatic number?
Of course, complete graphs 𝐾𝑛 satisfy 𝜒 (𝐾𝑛) = 𝑛. But are there any other essentially
different graphs?

The answer is yes and a classical result, rediscovered several times, states that,
for every 𝑘 ≥ 1, there are graphs 𝐺𝑘 for which 𝜒(𝐺𝑘) = 𝑘 and 𝐺𝑘 does not contain
𝐾3 (i.e., the triangle) as a subgraph. This result and its many ramifications, for
instance in extremal graph theory, are still in the current focus of coloring research.
In fact, any new constructive proof of the existence of such graphs 𝐺𝑘 is interesting
and attracts great attention. Here is perhaps the simplest proof of this fact: Let us
define, for any integer 𝑛 ≥ 4, the graph 𝐺 = (𝑉,𝐸) where 𝑉 is the set of integer pairs
{𝑖 𝑗},1 ≤ 𝑖 < 𝑗 ≤ 𝑛, and {𝑖 𝑗 , 𝑘𝑙} ∈ 𝐸 if 𝑖 < 𝑗 = 𝑘 < 𝑙. Such a graph 𝐺 is called a shift
graph. 𝐺 has no triangles, and it can be shown that 𝜒(𝐺) = [log𝑛].

But this is not the end of the story. Graphs may have high chromatic number and
very low edge density. P. Erdős showed in [47] that there exist graphs which have
arbitrarily large chromatic number and which are locally trees and forests.

Theorem. For every 𝑘, 𝑙 there exists a graph 𝐺𝑘,𝑙 such that 𝜒(𝐺𝑘,𝑙) ≥ 𝑘 and 𝐺𝑘,𝑙
does not contain circuits of length ≤ 𝑙. (So the shift graph above is a graph of
type 𝐺𝑘,3.)

Erdős’ proof was a landmark. It constitutes one of the key applications of the
probabilistic method in graph theory, see, e.g., [6]. The proof shows that the prob-
ability of the existence of such graphs 𝐺𝑘,𝑙 is positive, but does not give any hint
how to construct concrete examples of graphs of type𝐺𝑘,𝑙 . The construction of such
graphs has been a longstanding problem with very slow progress (for the historic
development and related issues, see, e.g., the Nešetřil article [133]).

The first constructive proof of the theorem above was found by Lovász in one
of his early papers [98]. It was one of the highlights of the 1969 conference in
Calgary; and through his proof, Lovász again changed the setting of the problem
as he constructed the graphs 𝐺𝑘,𝑙 as special cases of a more general theorem about
hypergraphs. His complicated construction was later simplified, the Nešetřil–Rödl
construction is perhaps the simplest [135].

But various problems remained.
One of them is the question whether one can provide a construction that uses

only graphs. The answer is positive. I. Křı́ž [90] and more recently N. Alon et al. [3]
came up with such constructions, and Ramanujan graphs have to be mentioned here
as well.

The existence of graphs 𝐺𝑘,𝑙 with a large chromatic number and no short circuit
is a phenomenon of finite (and of countable) graphs. For graphs with an uncountable
number of vertices and uncountable chromatic number, an analogous result does not
hold. This was shown by Erdős and Hajnal [48]:
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If the chromatic number of a graph is uncountable then it contains every bipartite
graph.

A consequence of this result is that such a graph contains every circuit of even
length, for example the circuit𝐶𝐶𝐶4 of length four.

Graphs𝐺𝑘,𝑙 are what can be called difficult examples. They also play an important
role in Ramsey theory, extremal combinatorics, topological dynamics, and model
theory, to name just a few. In all these areas they are used as examples of complex
yet locally simple structures; they are prototypes of local-global phenomena.

It took some time to understand why the construction of graphs𝐺𝑘,𝑙 matters, why
it is important to know such graphs explicitly. This led to an explosion of theoretical
developments combining group theory, number theory, geometry, algebraic graph
theory, and, of course, combinatorics. The key notions are now familiar to every
student of theoretical computer science: expanders, Ramanujan graphs and sparsifi-
cation, see Margulis [127], Lubotzky, Phillips, and Sarnak [125], and Spielman and
Teng [153].

An expander graph, for instance, is a finite, undirected multigraph (parallel edges
are allowed) in which every subset of the vertices that is not “too large” has a
“large boundary”. There are various formalizations of these notions. Each of them
gives rise to a different notion of expanders, e.g., edge expanders, vertex expanders,
and spectral expanders. Expander graphs have found applications in the design
of algorithms, error correcting codes, pseudorandom generators, sorting networks,
robust computer networks and hash functions in cryptography. They also played a
role in proofs of important results in computational complexity theory, such as the
PCP theorem.

The construction and structure of graphs similar to 𝐺𝑘,𝑙 continues to be one of
the key problems of finite combinatorics and has a character of a saga (see, e.g.,
Hoory et al. [78] and Nešetřil [133]).

Coloring of graphs and hypergraphs has been a permanent theme of Lovász,
and thus, it is mentioned in most sections of our survey. For example, one of the
motivations of the next section was the study of 3-chromatic linear hypergraphs, i.e.,
hypergraphs in which edges meet in at most one vertex, or equivalently, hypergraphs
without cycles of length 2.

4 The Lovász Local Lemma

P. Erdős, L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and Finite Sets. Coll. Math. Soc. J. Bolyai, North
Holland:609–627, 1975.

A hypergraph is a collection of sets. The sets are called edges, the elements of the
edges are vertices. The degree of a vertex is the number of edges containing it. A
hypergraph is called r-uniform if every edge has 𝑟 vertices. The chromatic number
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of a hypergraph is the least number 𝑘 such that the vertices can be 𝑘-colored so that
no edge is monochromatic.

Fig. 4 Extracted from [49]

Graphs with chromatic number at least 3 are simple to characterize: they must
contain an odd circuit. But for hypergraphs, even the characterization of 3-chromatic
3-uniform hypergraphs is difficult (it is an NP-complete problem). Lovász and
Woodall had independently shown that every 3-chromatic 𝑟-uniform hypergraph
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contains a vertex of degree at least 𝑟. Erdős and Lovász [49] aimed at generalizing
this result in various ways. One of the key results of their article is the following:

Theorem. A (𝑘 + 1)-chromatic r-uniform hypergraph contains an edge which is
intersected by at least 𝑘𝑟−1/4 other edges. Thus, the degree of at least one vertex is
larger than 𝑘𝑟−1/(4𝑟).

To prove this theorem, the authors employed probability theory. As pointed out
by Erdős, Lovász contributed to the proof a substantial new result of elementary
probability. This was later called the Lovász Local Lemma.

The motivation for this lemma comes from a well-known observation of elemen-
tary probability:

If 𝑋1, . . . , 𝑋𝑛 are random events which are pairwise independent and if the proba-
bility of each event 𝑋𝑖 is smaller than 1, then the probability that none of the events
𝑋𝑖 occurs is positive. The Lovász Local Lemma is a quantitative refinement of this
observation for variables which are dependent.

Fig. 4 shows the formulation of the Lovász Local Lemma as stated and proved in
the original article [49]. Indeed, it is “just a lemma”.

Crystal clear: Not only when the events are independent, but if the dependence
graph 𝐺 has a small degree (≤ 𝑑) then also none of the events occurs with positive
probability. The adjective local in the name of the lemma refers to the situation that
each event is dependent only on a small number 𝑑 of others.

It is hard to overestimate the general importance of this result that just turned up
as a “supporting observation” for a proof in the chromatic theory of hypergraphs.
It appears again and again in multiple applications, ramifications, and forms. It is
not possible to cover here all the applications in Ramsey theory (see Spencer [152]),
extremal combinatorics (see Alon and Spencer [6]), number theory, and elsewhere
(see, e.g., Ambainis et al. [7], He et al. [75], and Szegedy [154]). It was also
discovered, see [145], that the Lovász Local Lemma closely relates to important
results of Dobrushin in statistical physics [37]. In fact, the proper setting of the
Dobrushin results is in the context of graph limits, see [112], which we discuss in
Section 17.

One of the motivations for [49] is the following number theoretic problem which
goes back to Ernst Straus (who was an assistant of Albert Einstein): Is there a
function 𝑓 (𝑘) such that, if 𝑆 is any set of integers with |𝑆 | = 𝑓 (𝑘), then the integers
can be 𝑘-colored so that each color meets every translated copy of 𝑆 (i.e., every set of
the form 𝑆+𝑎 = {𝑥+𝑎 | 𝑎 ∈ 𝑆})? Lovász and Erdős, already in their paper [49], made
use of the Lovász Local Lemma to prove the following more geometric generalization
of the question asked by Straus:

For every 𝑘 , there exists a function 𝑓 (𝑘), such that 𝑓 (𝑘) ≤ 𝑘 log 𝑘 and for every
set 𝑆 of lattice points in the 𝑛-dimensional space 𝐸𝑛 with |𝑆 | > 𝑓 (𝑘) there exists a
𝑘-coloring of all lattice points such that each translated copy of 𝑆 contains points of
all 𝑘 colors.

A side remark: There are many variants of coloring problems, and some of them
are surprisingly difficult. For example, during a conference in Boulder in 1972 Paul
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Erdős, Vance Faber, and László Lovász asked whether the vertices of any 𝑛-uniform
linear hypergraph with 𝑛 edges can be colored by 𝑛 colors such that the vertices of
any edge get all 𝑛 colors. This question has many reformulations and turned out to
be more difficult than originally thought (even by the authors as Erdős originally
offered $50 for a solution and eventually increased the prize to $500). About 50 years
later the Erdős–Faber–Lovász conjecture was shown to be true for large values of 𝑛
by D. Y. Kang, T. Kelly, D. Kühn, A. Methuku, and D. Osthus [84].

Nowadays, the Lovász Local Lemma is a “standard trick” which is often taught in
basic courses. And it is a very effective trick, as Joel Spencer once remarked: “Using
the Local Lemma one can prove the existence of a needle in a haystack.”

But the Lovász Local Lemma delivers only existence. The above proof does not
yield a method how to find that needle. We only know that certain things exist with
positive probability. Only much later a constructive proof was found by Marcus and
Tardos [126]. (Remark: A constructive proof for the above Straus’ problem is in Alon
et al. [4]; see also J. Beck [14].) Recently, Harvey and Vondrák [72] found another
constructive approach to the Lovász Local Lemma.

Investigations of infinite versions (Borel and measurable) of the Lovász Local
Lemma started also very recently by A. Bershteyn, G. Kun, O. Pikhurko, and others,
see, e.g., [18].)

The Lovász Local Lemma became what one can truly call a combinatorial prin-
ciple. This is László Lovász at its best: Maybe no other Lovász-contribution is so
profoundly simple and yet useful and elegant.

5 Coloring Graphs via Topology

L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of
Combinatorial Theory A 25:319–324, 1978.

Combinatorial questions are often easy to formulate; some have also an elementary
solution. But in many cases, the elementary nature of combinatorial problems is
just the top of an iceberg, and the hidden complexity must be discovered and tamed
before a solution can be found.

A beautiful example of this is the following elementary problem posed in 1955
by Martin Kneser [89] who was working on quadratic forms. In today’s language:

Let 𝑋 be a set with 𝑛 elements, 𝑛 ≥ 2𝑘 > 0. Denote by
(
𝑋
𝑘

)
the set of all 𝑘-element

subsets of 𝑋 . Then, for every coloring of the sets in
(
𝑋
𝑘

)
by fewer than 𝑛− 2𝑘 + 2

colors, there are two disjoint sets of the same color.

This problem can be reformulated as a graph theory question as follows. Let
𝐾𝐺 (𝑛, 𝑘) denote the graph (called Kneser graph) whose vertices are all 𝑘-element
subsets of set 𝑋 = {1,2, . . . , 𝑛}, and in which two vertices are joined by an edge
if the corresponding 𝑘-element subsets are disjoint. For example, 𝐾𝐺 (𝑛,1) is the
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{1,2}

{4,5}

{1,3}{2,5}

{3,4}
{3,5}

{2,3}

{2,4}{1,4}

{1,5}

Fig. 5 𝐾𝐺 (5.2) = The Petersen graph

complete graph 𝐾𝑛 and 𝐾𝐺 (5,2) is the famous Petersen graph (the “universal”
counterexample to many conjectures in graph theory) shown in Fig. 5.

Kneser’s question reads now: Does the Kneser graph 𝐾𝐺 (𝑛, 𝑘) have chromatic
number 𝑛−2𝑘 +2?

It is easy to see that 𝜒(𝐾𝐺 (𝑛, 𝑘)) ≤ 𝑛−2𝑘 +2. However, to find the fitting lower
bound for the chromatic number proved to be much harder.

Lovász [98] solved this problem in a surprising way using methods of algebraic
topology. The general idea is the following. Lovász associates with any graph 𝐺
a topological space and establishes a connection between a topological invariant
of this space with the chromatic number of 𝐺. He then infers properties of the
chromatic number of𝐺 from properties of the topological invariant of the associated
topological space. That this is possible and that topology can yield solutions of
difficult graph theory questions was completely unexpected. Lovász’s success with
this approach was the starting point of a new field: topological combinatorics. We
briefly sketch the main steps of Lovász’s solution of Kneser’s problem here.

Lovász proceeds as follows: Given a graph 𝐺 = (𝑉,𝐸), the neighborhood of a
vertex 𝑣 is composed of all vertices adjacent to 𝑣 in 𝐺. The neighborhood com-
plex 𝑁 (𝐺) of 𝐺 consist of all the vertices 𝑉 of the graph 𝐺; the simplices of 𝑁 (𝐺)
are sets of vertices with a common neighbor in the graph. Homomorphisms between
graphs lead to continuous mappings of neighborhood complexes. From the topolog-
ical connectivity of 𝑁 (𝐾𝐺 (𝑛, 𝑘)) it is possible to construct an antipodal continuous
mapping between spheres (𝑁 (𝐾𝑚+2) is an m-dimensional sphere) and one can then
apply the Borsuk–Ulam theorem. Thus, Lovász obtained:

Theorem. If the neighborhood complex 𝑁 (𝐺) of a graph G is (topologically) 𝑘-
connected then 𝜒(𝐺) ≥ 𝑘 +3.

(Topologically 𝑘-connected means that there are no holes of dimension ≤ 𝑘 . For
(simply) connected complexes this is equivalent to the fact that all 𝑖-homological
groups vanish for 𝑖 = 0,1, . . . , 𝑘 .)
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Lovász finally proves a theorem on the connectivity of neighborhood complexes
of graphs from which he can infer that the neighborhood complex of a Kneser
graph 𝑁 (𝐾𝐺 (𝑛, 𝑘)) is topologically (𝑛−2𝑘 −1)-connected. This establishes that the
Kneser graph 𝐾𝐺 (𝑛, 𝑘) has chromatic number 𝑛−2𝑘 +2.

This connection (and the whole proof) immediately led to intensive research.
Other proofs of this theorem were found (among them “book proofs” of Barany [10]
and Green [63]), but all lower bounds for the chromatic number of Kneser graphs use
or at least imitate Lovász’s topological proof. Matoušek’s book [128] surveys in detail
various implications and modifications of the proof techniques. For example, it has
been shown in [71] that the 𝑘-times generalized Mycielski construction has chromatic
number 𝑘 + 2, and again, topological arguments are the basis of the only known
proof of this fact. The paper [71] contains the following interesting construction of
graphs 𝐺𝑘 .

Put [𝑘] = {1,2, . . . , 𝑘}. The vertices of 𝐺𝑘 are all pairs (𝑖, 𝐴) where 𝑖 ∉ 𝐴 and
𝐴 is a nonepty subset of [𝑘]. (𝑖, 𝐴) and ( 𝑗 , 𝐵) form an edge in 𝐺𝑘 if 𝑖 ∈ 𝐵, 𝑗 ∈ 𝐴
and 𝐴 and 𝐵 are disjoint. This “Kneser-like” graph 𝐺𝑘 has remarkable properties:
Its chromatic number is 𝑘 , it is critical (i.e., every proper subgraph has a smaller
chromatic number) and every strongly 𝑘-colorable graph has a homomorphism into
it; it is the unique graph with this property. (A strong coloring of a graphs is a
coloring where the neighborhood of any color class forms a stable set. Such a graph
obviously has no triangles.)

The only known proof of these properties is an adaptation of Lovász’s topological
proof.

These examples of graphs were instrumental in the recent disproof of the Hedet-
niemi conjecture (that intended to establish a connection between the direct product
of two graphs and their chromatic number which we mentioned in Section 2; see
also [150]) and also in the study of gap problems for constraint satisfaction problems.
Related questions in this area are called promised problems. A typical question here
is: How difficult is to 5-color graphs or hypergraphs under the assumption that we
know they are 3-colourable, see [13, 35], and [160].

Lovász’s paper opened a whole area whose fruits are still continuing to appear.
Matoušek in the preface to [128] rightly wrote that Lovász’s proof of the Kneser
conjecture is a masterpiece of imagination.

Yet, in typical Lovász style, it was published just as a note (see Fig. 6).
Lovász’s solution of the Kneser problem did not exhaust his topological imagina-

tion nor the potential of topological methods in combinatorics. He returned to this
approach frequently during his career, often in collaboration with Lex Schrijver. We
mention just one of the highlights of their cooperation.

Motivated by estimating the maximum multiplicity of the second eigenvalue of
Schrödinger operators, Colin de Verdière introduced a new invariant for graphs 𝐺,
denoted `(𝐺), based on spectral properties of matrices associated with𝐺. He proved
that `(𝐺) ≤ 1 if and only if 𝐺 is a disjoint union of paths, that `(𝐺) ≤ 2 if and only
if 𝐺 is outerplanar, and that `(𝐺) ≤ 3 if and only if 𝐺 is planar.

Robertson, Seymour, and Thomas showed that a graph𝐺 is linklessly embeddable
if and only if 𝐺 does not have any of the seven graphs in the Petersen family as a mi-
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Fig. 6 The beginning of the article [105] starting topological combinatorics

nor. Their combinatorial result implies that `(𝐺) ≤ 4 if 𝐺 is linklessly embeddable,
and they conjectured that `(𝐺) ≤ 4 if and only if G is linklessly embeddable. Lovász
and Schrijver, see [117], proved the only if part of this topological characterization.
The key ingredient of their proof is a new Borsuk-type theorem on the existence
of antipodal links, which is an extension of a polyhedral version of Borsuk’s theo-
rem due to Bajmóczy and Bárány. The combination of all these results provides a
fascinating characterization of graphs 𝐺 satisfying `(𝐺) ≤ 4 by means of spectral,
combinatorial, and topological properties. Topological methods seem to keep on
flourishing in combinatorics and graph theory.

6 Geometric Graphs and Exterior Algebra

L. Lovász. Flats in matroids and geometric graphs. In Combinatorial Surveys. Proc. 6
British Comb. Conf. Academic Press, pages 45–86, 1977.

Many of Lovász’s proofs deal with graphs (and hypergraphs) and make use of some
additional structures. The Shannon Capacity paper, see Section 8, involved a geomet-
ric structure which was added (orthogonal representation) so that the problem could
be solved. To solve the Kneser problem, discussed in Section 5, Lovász employed
results from topology. To recognize that methodology from other mathematical fields
can be utilized, needs of course mathematical maturity, skill, and imagination. We
want to highlight that this is a different strategy than merely studying embeddings
of graphs (e.g., graphs on surfaces): the special embeddings are being incorporated
in proofs as tools in order to solve a (different) problem.
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A very special example of this is the Lovász-article [104] which is a remarkable
paper for multiple reasons.

The paper was published as an invited lecture in the proceedings of 6th British
Combinatorial conference. These proceedings volumes usually contain surveys of
recent developments. In contrast, the Lovász paper – full of new ideas – solved an
important problem and unleashed research in two different areas: First, it started
research in graphs where vertices are forming a matroid; Lovász uses here the
term geometric (or pregeometric) graphs, and this generalization is essential for
solving the problem. Secondly, the paper started the application of exterior algebra
in combinatorics. Particularly, Lovász defined exterior calculus in matroids and
Grassman graded matroids.

Why is Lovász introducing this general machinery? Well, he is explicit about that
in the introduction:

This paper was intended to deal with the covering problems in graphs. It has turned out,
however, that their study becomes much simpler if a more general structure, which we shall
call geometric graph, is considered.

Lovász later on used the term geometric graph in a broader sense, and he recently
wrote the book [113] treating the whole area in detail.

What were the “covering problems” of [104]?
The starting point was an old problem due to Tibor Gallai related to 𝜏-critical

graphs: The covering number of graph 𝐺 = (𝑉,𝐸), usually denoted by 𝜏(𝐺), is the
minimum cardinality of a set 𝐴 ⊆ 𝑉 such that every edge of𝐺 meets 𝐴. (Such a set 𝐴
is also called hitting set.)
𝜏(𝐺) is a “hard” combinatorial parameter (ultimately related to the stability

number 𝛼(𝐺) and the chromatic number 𝜒(𝐺)).
One approach to gain information about the covering number is to consider graphs

that are critical with respect to this parameter. A graph 𝐺 = (𝑉,𝐸) is 𝜏-critical if
𝜏(𝐺) > 𝜏(𝐺 − 𝑒) for every edge 𝑒 ∈ 𝐸 . Gallai proved in 1961 that every 𝜏-critical
graph 𝐺 satisfies |𝑉 | ≤ 2𝜏(𝐺). So given 𝜏 there are only finitely many 𝜏-critical
graphs and this implies a “finite basis theorem”.

However, a much stronger statement holds. Let us denote the gap in the above
inequality by 𝛿(𝐺) := 2𝜏(𝐺) − |𝑉 (𝐺) |. Then one can observe that, given a 𝜏-critical
graph 𝐺, the graph 𝐺′ obtained from 𝐺 by subdividing an edge of 𝐺 by an even
number of vertices is also 𝜏-critical, and obviously 𝛿(𝐺) = 𝛿(𝐺′). Gallai conjectured
that this is the only operation that does not destroy 𝜏-criticality and that the number
of 𝜏-critical graphs with a given value 𝛿 is (essentially) finite. And this was the
motivation of Lovász for his paper [104] in which he proved this conjecture.

Theorem. The number of connected 𝜏-critical graphs 𝐺 with gap 𝛿(𝐺) = 2𝜏(𝐺) −
|𝑉 (𝐺) | = 𝛿 and all vertex degrees ≥ 3 is at most 25𝛿2 .

The proof of this result is complex. In fact, Lovász develops several new tools.
The whole paper makes effective use of geometric graphs (where vertices form a
matroid). This allows Lovász to carry on a subtle refinement of induction procedures.
He makes magnificent use of his vast experience with matchings and generalized
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factors (this was the subject of his doctoral thesis supervised by T. Gallai) which found
its way into his early book on matching theory [115] with M. Plummer. The proof
also implicitly contains the “skew Bollobás theorem” (in a matroid setting) about
an extremal problem for set intersections of pairs of sets and many other inspiring
ideas, in particular, the surprising utilization of exterior algebra. This aspect of the
paper [104] also generated a whole new theory.

We shall illustrate the use of exterior algebra by the simpler example of the
(Prague) dimension of graphs (treated in another Lovász paper [114]).

It is easy to prove that every graph is an (induced) subgraph of the direct product
of complete graphs (the product we introduced in Section 2). The smallest number
of such a set of complete graphs is called dimension dim(𝐺) of the graph 𝐺.

Thus, dim(𝐾𝑛) = 1 and dim(𝐾𝑛 ×𝐾𝑛 × · · · ×𝐾𝑛) ≤ 𝑡 (direct product of 𝑡 copies
of 𝐾𝑛).

It is very nice that we have equality here. The proof in [114] is one of the first
applications of exterior algebra in combinatorics which was initiated in [104].

Theorem. dim(𝐾 𝑡𝑛) = 𝑡 for every 𝑡 ≥ 1, 𝑛 ≥ 2.

𝐾2
2 is isomorphic to 𝐾2 +𝐾2 and 𝐾 𝑡2 is isomorphic to a perfect matching (i.e.,

disjoint edges) of size 2𝑡−1.
It suffices to prove dim(𝐾 𝑡2) ≥ 𝑡. Given a representation 𝑓 : 𝐾 𝑡2 → 𝐾𝑑

𝑁
, we put

explicitly:
𝑓 (𝑖) = 𝑎𝑖 = (𝑎1

𝑖
, . . . , 𝑎𝑑

𝑖
) and 𝑓 (𝑖′) = 𝑏𝑖 = (𝑏1

𝑖
, . . . , 𝑏𝑑

𝑖
) (we think of matchings

having edges {𝑖, 𝑖′} 𝑖 = 1, . . . ,2𝑡−1). Clearly all these 2𝑡 vectors are distinct.
The condition that 𝑓 is an embedding can be then captured by

∏𝑑
𝑘=1 (𝑎𝑘𝑖 − 𝑏𝑘𝑗 ) ≠ 0

if and only if 𝑖 = 𝑗 ,
∏𝑑
𝑘=1 (𝑎𝑘𝑖 − 𝑎𝑘𝑗 ) = 0, and

∏𝑑
𝑘=1 (𝑏𝑘𝑖 − 𝑏𝑘𝑗 ) = 0 for all 𝑖, 𝑗 .

But these expressions can be written even more concisely by means of scalar
products of vectors in the exterior algebra, i.e., the same technique which we men-
tioned above in connection with 𝜏-critical graphs. Towards this end, for a vector
𝑥 = (𝑥1, . . . , 𝑥𝑑), we define 2𝑑-dimensional vectors

𝑥∗ =
(
𝑥∗ (𝐾) | 𝐾 ⊆ {1, . . . , 𝑑}

)
, 𝑥# =

(
𝑥# (𝐾) | 𝐾 ⊆ {1, . . . , 𝑑}

)
by 𝑥∗ (𝐾) =

∏
𝑖 𝜖 𝐾

𝑥𝑖 and 𝑥# (𝐾) =
∏
𝑖∉𝐾

−𝑥𝑖 .

The above expressions can be then written as

𝑑∏
𝑘=1

(𝑎𝑘𝑖 − 𝑏𝑘𝑗 ) =
∑︁(∏

𝑘∈𝐾
𝑎𝑘𝑖 ·

∏
𝑘∉𝐾

−𝑏𝑘𝑗
��𝐾 ⊆ {1, . . . , 𝑑}

)
=
∑︁
𝐾

𝑎∗𝑖 (𝐾) · 𝑏#
𝑗 (𝐾) = 𝑎∗𝑖 · 𝑏#

𝑗 .

Thus 𝑎∗
𝑖
·𝑏#
𝑗
≠ 0 iff 𝑖 = 𝑗 . Similarly we have 𝑏∗

𝑖
·𝑎#
𝑗
≠ 0 iff 𝑖 = 𝑗 while 𝑎∗

𝑖
· 𝑎#

𝑗
= 𝑏∗

𝑖
·𝑏#
𝑗
= 0

for all 𝑖, 𝑗 .
It follows then that the set of 2𝑡 vectors 𝑎∗

𝑖
, 𝑏∗
𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 2𝑡 is linearly independent

in the vector space of dimension 2𝑑 and thus 𝑡 ≤ 𝑑.
Again, no other (say combinatorial) proof is known.
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7 Perfect Graphs and Computational Complexity

L. Lovász. A characterization of perfect graphs. J. Comb. Theory 13:95–98, 1972.

L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Math.
2:253–267, 1972.

This section addresses a particular class of graphs that is tightly connected with four
important parameters. For a graph 𝐺 = (𝑉,𝐸) with vertex set 𝑉 and edge set 𝐸 , a
stable set (also called independent set) is a set of vertices such that no two vertices
are adjacent. The largest size of a stable set of vertices is denoted by 𝛼(𝐺) and
called stability number. Similarly, the largest size of a clique (mutually adjacent
vertices) is denoted by 𝜔(𝐺) and called clique number, the chromatic number 𝜒(𝐺)
is the smallest number of stable sets (each stable set is a color class) covering all
vertices of𝐺, and the clique covering number �̄�(𝐺) is the smallest number of cliques
covering all vertices of 𝐺.

If the vertices of a graph are colored so that no two adjacent vertices have
the same color then, obviously, the smallest number 𝜒(𝐺) of colors of such a
coloring must be at least as large as the largest number 𝜔(𝐺) of mutually adjacent
vertices, i.e., 𝜔(𝐺) ≤ 𝜒(𝐺). And similarly, the stability number 𝛼(𝐺) cannot be
larger than the smallest number �̄�(𝐺) of cliques covering all vertices of a graph 𝐺,
i.e., 𝛼(𝐺) ≤ �̄�(𝐺).

In the beginning of the 1960s Claude Berge, see [15, 16], called a graph𝐺 perfect
if 𝜔(𝐻) = 𝜒(𝐻) holds for all induced subgraphs 𝐻 of 𝐺. In the complement �̄� of
𝐺, two vertices are connected by an edge if and only if they are not connected in 𝐺,
and thus, 𝛼(𝐺) = 𝜔(�̄�) and 𝜒(𝐺) = �̄�(�̄�). Berge conjectured:

A graph 𝐺 is perfect if and only if its complement �̄� is perfect.

This conjecture (called weak perfect graph conjecture) started a massive search for
classes of perfect graphs. Examples are, for instance, bipartite graphs and their line
graphs, interval graphs, parity graphs, and comparability graphs; Schrijver [144]
describes many of these graphs in detail in Chapter 66, Hougardy [80] gives a
survey of these graphs and provides a list of 120 classes. More importantly, intensive
attempts to solve the conjecture began. Fulkerson introduced pluperfect graphs in [56]
and, developing in [57] the antiblocking theory for this purpose, he came very close
to its solution – as he outlines in [58]. Just a lemma (later called replication lemma)
was missing. Lovász [100] solved the conjecture by proving the replication lemma,
pointing out, though, that the more difficult step was done first by Fulkerson. In a
subsequent paper, Lovász [101] provided a new characterization of perfect graphs
as follows:

Theorem. A graph𝐺 = (𝑉,𝐸) is perfect if the following holds:𝜔(𝐻)𝛼(𝐻) ≥ |𝑉 (𝐻) |
for all induced subgraphs 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) of 𝐺.

This Theorem immediately implies the weak perfect graph conjecture since the
condition given in it is invariant under taking graph complementation. The perfect
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graph theorem is also a generalization of the well-known theorems of König on
bipartite matching and Dilworth on partially ordered sets. It generated particular
interest in the characterization of conditions under which the Duality Theorem of
linear programming holds in integer variables and initiated related investigations in
polyhedral combinatorics.

Due to its importance and elegance, the Lovász’s article [100] was reprinted in the
collection Classic Papers in Combinatorics, edited by I. Gessel and G. C. Rota [60].

The beginning of the 1970s was a particularly productive time period for László
Lovász. He was solving one open problem after the other. These years firmly es-
tablished his international position as the world foremost researcher in graph theory
and combinatorics.

As in many other cases, Lovász was not just looking for a proof of the weak perfect
graph conjecture, he looked for a more general mathematical setting for which it is
possible to prove farther reaching results that imply the conjecture. In [101] Lovász
considered a hypergraph approach. We sketch the construction.

Recall that a hypergraph 𝐻 is a non-empty finite collection of finite sets called
edges; the elements of the edges are the vertices of 𝐻. The chromatic index of a
hypergraph 𝐻 is the least number of colors with which the edges can be colored so
that edges with the same color are disjoint. The number of edges containing a given
vertex is called the degree of the vertex. The largest degree of a vertex of 𝐻 is called
the degree of 𝐻.

Clearly, the degree of 𝐻 is a lower bound on the chromatic index of 𝐻. Lovász
called a hypergraph 𝐻 normal if the degree and the chromatic index are the same for
every partial hypergraph of 𝐻. Let us call a set 𝑇 of vertices a transversal (or hitting
set) if𝑇 meets every edge of𝐻 and denote its minimum cardinality by 𝜏(𝐻). (We just
point out that 𝜏(𝐻) is the hypergraph generalization of 𝜏(𝐺) for graphs discussed
in Section 6.) If we denote by a(𝐻) the maximum number of edges of 𝐻 that are
pairwise disjoint, then we obviously have a(𝐻) ≤ 𝜏(𝐻). Lovász called a hypergraph
𝐻 𝜏-normal if this inequality holds with equality for all partial hypergraphs of
𝐻. He also introduced procedures to associate with every hypergraph 𝐻 its edge
graph 𝐺 (𝐻) and with every graph 𝐺 a hypergraph 𝐻 (𝐺) and proved the following:

Theorem. A hypergraph 𝐻 is normal if and only if its edge graph 𝐺 (𝐻) is perfect;
𝐺 is perfect if and only if 𝐻 (𝐺) is normal; 𝐻 is 𝜏-normal if and only if �̄� (�̄�) is
perfect; �̄� is perfect if and only if 𝐻 (𝐺) is 𝜏-normal.

Corollary. A hypergraph is normal if and only if it is 𝜏-normal.

This hypergraph generalization immediately implies the weak perfect graph con-
jecture.

A side remark: In Section 4 we mentioned the Erdős–Faber–Lovász conjecture.
This appears in this context in the following two equivalent forms: (1) The chromatic
index of hypergraphs consisting of 𝑛 edges such that each edge contains 𝑛 vertices and
any two edges have exactly one vertex in common is 𝑛. (2) For graphs 𝐺 consisting
of 𝑛 cliques of size 𝑛 so that two of these cliques have one vertex in common, 𝜔(𝐺)
equals 𝜒(𝐺). As indicated before the conjecture is true for large 𝑛, see [84].
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Berge [16] also conjectured – later called strong perfect graph conjecture –
that a graph is perfect if and only if it does neither contain an odd cycle nor the
complement of an odd cycle as an induced subgraph. After a long sequence of
contributions of many researchers, this conjecture was finally solved in 2006 by
Chudnovsky, Robertson, Seymour, and Thomas [26].

During the early 1970s computational complexity theory took off, see Wigder-
son’s book [158] for an up-to-date survey. The classes of decision problems that can
be solved in polynomial time, denoted by P, and those solvable in nondeterministic
polynomial time, denoted byNP, were introduced. S. Cook [29] and L. A. Levin [96]
independently showed the existence of NP-complete problems, which are decision
problems in NP with the property that, if they can be solved with a polynomial time
algorithm, then P =NP. Whether P is equal to NP is one of the great open problems
in mathematics and computer science.

Optimization problems can be phrased as decision problems by asking whether,
for a given value 𝑡, there exists a feasible solution with value at least (or at most) 𝑡.
If the decision problem associated this way to an optimization problem is NP-
complete, the optimization problem is called NP-hard. For example, if a graph
𝐺 = (𝑉,𝐸) with rational weights 𝑤𝑣 for every vertex 𝑣 ∈𝑉 , is given and one wants to
find a stable set 𝑆 in𝑉 such that the sum of the weights of the vertices in 𝑆 is as large
as possible, we have a typical combinatorial optimization problem. The associated
decision problem asks if there is a stable set whose value is at least 𝑡. If this decision
problem can be solved in polynomial time, the stable set problem can also be solved
in polynomial time by binary search. And vice versa, a polynomial time algorithm
for the (weighted) stable set problem would prove that P =NP.

Karp [86] showed that many graph-theoretical problems, such as computing the
value of the four parameters 𝛼(𝐺), 𝜔(𝐺), 𝜒(𝐺), and �̄�(𝐺), introduced above, are
NP-hard for general graphs𝐺. The immediate question came up: Is that also true for
perfect graphs, or can their special structure be exploited to design polynomial time
algorithms? This challenge triggered significant developments that we outline later.

Another side remark: Lovász was one of many contributors to one of the most
astonishing results in complexity theory, the PCP Theorem. This theorem is the
highlight of a long sequence of research on interactive proofs and probabilistically
checkable proofs. It states that every decision problem in NP has probabilistically
checkable proofs of constant query complexity using only a logarithmic number of
random bits. Nine persons (including Lovász) received the Gödel Prize 2002 “for the
PCP theorem and its applications to hardness of approximation”. A consequence
of the PCP Theorem is, for instance, that many well-known optimization problems,
including the stable set problem mentioned above and the shortest vector problem
for lattices to be introduced subsequently, cannot be approximated efficiently unless
P =NP.
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8 The Shannon Capacity of a Graph and Orthogonal
Representations

L. Lovász. On the Shannon capacity of graphs. IEEE Trans. Inform. Theory 25:1–7,
1979.

L. Lovász. Graphs and geometry. Amer. Math. Soc. 2019.

Suppose the vertices of a graph 𝐺 represent letters of an alphabet and the edges 𝑢𝑣
of 𝐺 indicate that the two letters of the alphabet represented by 𝑢 and 𝑣 can be
confused, e.g., when transmitted over a noisy communication channel. It is obvious
that the largest number of one-letter messages that can be sent without danger of
confusion is the largest number of vertices mutually not adjacent, i.e., the stability
number 𝛼(𝐺). Two 𝑘-letter words are confusable if their 𝑖-th letters, 1 ≤ 𝑖 ≤ 𝑘 , are
confusable or equal.

Let 𝐺𝑘 denote the 𝑘-th Cartesian product of 𝐺. Words with 𝑘-letters can be
transmitted without danger of confusion if they are unequal and inconfusable in at
least one letter. This implies that 𝛼(𝐺𝑘) is the maximum number of inconfusable
𝑘-letter words. Forming 𝑘-letter words from a stable set of size 𝛼(𝐺), one can easily
construct 𝛼(𝐺)𝑘 inconfusable words. This proves that 𝛼(𝐺)𝑘 ≤ 𝛼(𝐺𝑘).

Shannon [146] introduced the number

Θ(𝐺) = sup
𝑘

𝑘
√︁
𝛼(𝐺𝑘) = lim

𝑘→∞
𝑘
√︁
𝛼(𝐺𝑘),

where the second equation follows from𝛼(𝐺𝑘+𝑙) ≥ 𝛼(𝐺𝑘)𝛼(𝐺𝑙).Θ(𝐺), today called
the Shannon capacity of 𝐺, is a measure of the information that can be transmitted
across a noisy communication channel. Shannon proved thatΘ(𝐺) = 𝛼(𝐺) for graphs
which can be covered by 𝛼(𝐺) cliques. Perfect graphs have this property and thus
belong to this class. How can one determine Θ(𝐺) in other cases? Lovász, see [106],
invented an ingenious upper bound on the Shannon capacity as follows:

Let 𝐺 = (𝑉,𝐸) be a graph. An orthonormal representation of 𝐺 is a sequence
(𝑢𝑖 | 𝑖 ∈ 𝑉) of |𝑉 | vectors 𝑢𝑖 ∈ R𝑁 , where 𝑁 is some positive integer, such that
∥𝑢𝑖 ∥ = 1 for all 𝑖 ∈ 𝑉 and 𝑢𝑇

𝑖
𝑢 𝑗 = 0 for all pairs 𝑖, 𝑗 of nonadjacent vertices. Trivially,

every graph has an orthonormal representation (just take all the vectors 𝑢𝑖 mutually
orthogonal in R𝑉 ). Figure 7 shows a less trivial orthonormal representation of the
pentagon𝐶5 inR3. It is constructed as follows. Consider an umbrella with five ribs of
unit length (representing the nodes of 𝐶5) and open it in such a way that nonadjacent
ribs are orthogonal. Clearly, this can be achieved in R3 and gives an orthonormal
representation of the pentagon. The central handle (of unit length) is also shown.

Where (𝑢𝑖 | 𝑖 ∈𝑉), 𝑢𝑖 ∈ R𝑁 , ranges over all orthonormal representations of𝐺 and
𝑐 ∈ R𝑁 over all vectors of unit length, let

𝜗(𝐺,𝑤) B min
{𝑐, (𝑢𝑖 ) }

max
𝑖∈𝑉

𝑤𝑖

(𝑐𝑇𝑢𝑖)2 .
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Fig. 7 Orthonormal representation of the 5-cycle in R3

The quotient has to be interpreted as follows. If 𝑤𝑖 = 0 then we take 𝑤𝑖/(𝑐𝑇𝑢𝑖)2 = 0
even if 𝑐𝑇𝑢𝑖 = 0. If 𝑤𝑖 > 0 but 𝑐𝑇𝑢𝑖 = 0 then we take 𝑤𝑖/(𝑐𝑇𝑢𝑖)2 = +∞.

Lovász proved that, if the vertex weights 𝑤𝑖 above are all equal to 1 and 𝐺 is the
pentagon graph 𝐶5, i.e., the 5-cycle, then the value of 𝜗(𝐺,𝑤) is

√
5 and equal to the

Shannon capacity Θ(𝐶5) of 𝐶5.
This looks like a tiny achievement, but at present, this is the only known Shannon

capacity of a non-perfect graph. In fact, the complexity of determining the Shannon
capacity of a general graph is today still open. Much more important, Lovász provided
several different characterizations of the function 𝜗 (called the Lovász 𝜗-function)
that became, as we show later, important ingredients for proving that the four graph
parameters 𝛼(𝐺), 𝜔(𝐺), 𝜒(𝐺), and �̄�(𝐺) can be computed in polynomial time for
perfect graphs 𝐺.

In his recent book [113], Lovász investigated the representation of graphs as
geometric objects in great depth. His main message is that such representations are
not merely a way to visualize graphs, but important mathematical tools. The range
of applications is wide. We mention three examples: rigidity of frameworks and
mobility of mechanisms in engineering, learning theory in computer science, the
Ising and Fortuin–Kasteleyn model, and conformal invariance in statistical physics.
Orthogonal representations of graphs are treated in Chapters 10 to 12. Lovász shows
that orthogonal representations are, in addition to the stability and chromatic num-
ber, related to several fundamental properties of graphs such as connectivity and
tree-width. Among many other aspects, he also discusses a quantum version of the
Shannon capacity problem, as well as two further interesting applications of or-
thogonal representations to the theory of hidden variables and in the construction
of strangely entangled states. These are exciting topics in quantum physics that we
cannot cover here.
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9 The Ellipsoid Method

P. Gács, L. Lovász. Khachiyan’s algorithm for linear programming. Math. Prog. Study
14: 61–68, 1981.

One of the major open complexity problems in the 1970s was the question whether
linear programs (LPs) can be solved in polynomial time. The simplex algorithm did
(and still does) work well in practice, but for all known variants of this algorithm,
there exist sequences of LP-instances for which the running time is exponential.
In 1979 Khachiyan indicated in [87] how the ellipsoid method, an algorithm devised
for nonlinear nondifferentiable optimization based on work of Shor and Yudin and
Nemirovskiı̆, can be modified to check the feasibility of a system of linear inequal-
ities in polynomial time. Employing binary search or a sliding objective function
technique, this implies that linear programs are solvable in polynomial time. Linear
programs arise almost everywhere in industry, and their fast solution is of eco-
nomic importance. Thus, Khachiyan’s achievement received significant attention in
the nonscientific media; it even made it on the front page of the New York Times
on November 7, 1979. Most of these statements, though, were exaggerations or
misinterpretations.

We sketch the method. Let 𝑃 be polyhedron defined by a system of linear inequal-
ities 𝐴𝑥 ≤ 𝑏. We assume that 𝑃 is full-dimensional or empty; and for simplifying the
exposition, we also assume that 𝑃 is bounded, i.e., a polytope. The ellipsoid method
utilizes the following facts. Given 𝐴𝑥 ≤ 𝑏 with rational coefficients, then numbers 𝑟
and 𝑅 can be computed in time polynomial in the encoding length of 𝐴 and 𝑏 with
the following properties. If 𝑃 is nonempty, the ball 𝐵 of radius 𝑅 around the origin
contains 𝑃, and 𝑃 contains a ball 𝑆 of radius 𝑟 .

Fig. 8 The first step of the ellipsoid method

The basic ellipsoid method begins with the ball 𝐵 and center 𝑎0 = 0 as initial
ellipsoid 𝐸0. In a general step it checks whether the center 𝑎𝑘 of the current el-
lipsoid 𝐸𝑘 , 0 ≤ 𝑘 , is contained in 𝑃. If this is the case, a point in 𝑃 is found and
𝐴𝑥 ≤ 𝑏 is feasible. If not, there must be an inequality in the system 𝐴𝑥 ≤ 𝑏 that is



The Mathematics of László Lovász 25

violated by 𝑎𝑘 . Using this inequality, a new ellipsoid 𝐸𝑘+1 is computed that contains
𝑃 and has a volume that is – by a constant shrinking rate – smaller than the vol-
ume of the previous ellipsoid 𝐸𝑘 (cf. Fig. 8). This way a sequence of points 𝑎𝑘 and
shrinking ellipsoids 𝐸𝑘 is created. Using variants of the formulas for determining the
Löwner–John-ellipsoid of a convex body, one can prove that the volume shrinking
rate satisfies vol(𝐸𝑘+1)/vol(𝐸𝑘) < 𝑒−1/(2𝑛) < 1 and that the ellipsoid method either
discovers a point in 𝑃 or, after a number 𝑁 of steps that is polynomial in the encoding
length of 𝐴 and 𝑏, the ellipsoid 𝐸𝑁 has a volume that is smaller than that of the small
ball 𝑆. This can only happen in case 𝑃 is empty. All computations carried out can be
made with rational numbers of polynomial size in such a way that nonemptiness of
𝑃 is certified by a finding a feasible solution or the emptiness of 𝑃 is guaranteed by
the mentioned volume argument, see [69] for details.

This method was a total surprise for the linear programming community. A
polynomial time termination proof employing shrinking volumes, the combination of
geometric and number theoretic “tricks” (e.g., making a low-dimensional polyhedron
full-dimensional, reduction to the bounded case, careful rounding of the real numbers
that appear in the update-formulas, and various necessary estimation processes)
puzzled the LP-specialists. The brief article by Khachiyan (four pages), written in
Russian, needed interpretation. One of the first papers explaining the approach and
adding missing details was a preprint by Gács and Lovász [59]. It appeared in the
fall of 1979 (and was published in 1981). This paper made Khachiyan’s important
contribution accessible to a wide audience and had a significant bearing on the boom
of follow-up research on the ellipsoid method.

The ellipsoid method, though provably a polynomial time algorithm, performs
poorly in practice. Its appearance, however, sparked successful research efforts that
led to new LP-algorithms, based on various ideas from nonlinear programming, often
also influenced by differential and other types of geometry, that are theoretically and
practically fast. They run under the names interior point or barrier methods. New
implementations of the simplex algorithm improved its performance significantly
as well. The ellipsoid method, on the other hand, turned out to have fundamental
theoretical power as an elegant and versatile tool to prove the polynomial time
solvability of many geometric and combinatorial optimization problems. The next
chapter has details.

10 Oracle-Polynomial Time Algorithms and Convex Bodies

M. Grötschel, L. Lovász, A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1:169–197, 1981.

M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, Springer, 1988.

In a general step of the ellipsoid method, one has to verify that the center of the
current ellipsoid is in the polyhedron 𝑃 = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏}. This is usually done by
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substituting the center into the given inequality system 𝐴𝑥 ≤ 𝑏. A reasonable idea
is to replace this substitution by an algorithm that checks feasibility and provides
a violated inequality in case the center is not in 𝑃. Two cases, relevant in real-
world applications, where this generalization might be helpful come immediately
into mind.

The first case is the traditional transformation of combinatorial optimization
problems into linear programs. The idea is, for a given combinatorial optimization
problem, to define the convex hull of all incidence vectors of feasible solutions and
to try to find a linear system describing this polytope, at least partially. The number
of facets of such polytopes is often exponentially large in the encoding length of
the combinatorial problem. This holds for NP-hard problems and even for some
problems solvable in polynomial time. One such instance is the matching problem.
This is implied by the result of Rothvoss [142] that the matching problem has
“exponential extension complexity”. Substituting the ellipsoid center into a linear
system of exponential size makes the running time of ellipsoid algorithm exponential.
Can one replace the substitution by a polynomial time algorithm?

The second case are convex sets and is even more demanding. Convex sets
are intersections of potentially infinitely many halfspaces. Can one optimize over
exponentially many linear inequalities in polynomial time?

The roots of this research program were laid by Grötschel, Lovász, and Schrijver
in [66] and were fully worked out in [69]. The results were the starting point of what

Fig. 9 A. Schrijver, L. Lovász, M. Grötschel at the International Symposium on Mathematical
Programming in Amsterdam, 1991 (Photo: Nationaal Foto-Persbureau B. V.)



The Mathematics of László Lovász 27

Gritzmann and Klee [64] called an algorithmic theory of convex bodies, or briefly,
computational convexity. We outline important steps of this approach.

Suppose now that we have some convex set 𝐾 ⊆ R𝑛 and we want to obtain
information about properties of 𝐾 . Let us formulate three questions that are typical
in this context:

The Strong Optimization Problem (SOPT). Given a vector 𝑐 ∈ R𝑛, find a vector
𝑦 ∈ 𝐾 that maximizes 𝑐𝑇𝑥 on 𝐾 , or assert that K is empty.

The Strong Separation Problem (SSEP). Given a vector 𝑦 ∈ R𝑛, decide whether
𝑦 ∈ 𝐾 , and if not, find a hyperplane that separates 𝑦 from 𝐾; more exactly, find a
vector 𝑐 ∈ R𝑛 such that 𝑐𝑇 𝑦 > max{𝑐𝑇𝑥 | 𝑥 ∈ 𝐾}.

The Strong Membership Problem (SMEM). Given a vector 𝑦 ∈R𝑛, decide whether
𝑦 ∈ 𝐾 .

It is clear that the strong membership problem can be solved if either the strong
optimization or the strong separation problem can be solved. What about the other
way around? And what do we have to assume about 𝐾 , what is the input length of 𝐾 ,
and how do we estimate running times? Before addressing these issues, we observe
that, if we allow arbitrary convex sets 𝐾 , the unique solution of an optimization
problem over 𝐾 may have irrational coordinates. To deal with such issues we have to
allow margins and to accept approximate solutions. Let us define, for the Euclidean
norm and a rational number 𝜖 > 0,

𝑆(𝐾,𝜖) B
{
𝑥 ∈ R𝑛 | ∥𝑥− 𝑦∥ ≤ 𝜖 for some 𝑦 ∈ 𝐾

}
, 𝑆(𝐾,−𝜖) B

{
𝑥 ∈ 𝐾 | 𝑆(𝑥, 𝜖) ⊆ 𝐾

}
.

Points in 𝑆(𝐾,𝜖) can be viewed as “almost in 𝐾”, while points in 𝑆(𝐾,−𝜖) as “deep
in 𝐾”. The exactness requirements of the strong problems above can be softened as
follows:

The Weak Optimization Problem (WOPT). Given a vector 𝑐 ∈ Q𝑛 and a rational
number 𝜖 > 0, either

(i) find a vector 𝑦 ∈Q𝑛 such that 𝑦 ∈ 𝑆(𝐾,𝜖) and 𝑐𝑇𝑥 ≤ 𝑐𝑇 𝑦+𝜖 for all 𝑥 ∈ 𝑆(𝐾,−𝜖)
(i.e., 𝑦 is almost in 𝐾 and almost maximizes 𝑐𝑇𝑥 over the points deep in 𝐾), or

(ii) assert that 𝑆(𝐾,−𝜖) is empty.

The Weak Separation Problem (WSEP). Given a vector 𝑦 ∈Q𝑛 and a rational num-
ber 𝛿 > 0, either

(i) assert that 𝑦 ∈ 𝑆(𝐾,𝛿), or
(ii) find a vector 𝑐 ∈Q𝑛 with ∥𝑐∥∞ = 1 such that 𝑐𝑇𝑥 ≤ 𝑐𝑇 𝑦+𝛿 for every 𝑥 ∈ 𝑆(𝐾,−𝛿)

(i.e., find an almost separating hyperplane).

The Weak Membership Problem (WMEM). Given a vector 𝑦 ∈ Q𝑛 and a rational
number 𝛿 > 0, either

(i) assert that 𝑦 ∈ 𝑆(𝐾,𝛿), or
(ii) assert that 𝑦 ∉ 𝑆(𝐾,−𝛿).
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We are interested in the algorithmic relations between these problems. To do this
we make use of the oracle algorithm concept. An oracle is a device that solves a
certain problem for us. Its typical use is as follows. We feed some input string to the
oracle, and the oracle returns another string specifying the solution (of which we
hope that it helps solving our original problem). We make no assumption on the way
the oracle finds its solution. An oracle algorithm is an algorithm in the usual sense
whose power is enlarged by allowing querying an oracle and using the oracle answer
for determining its next computational steps.

If a query to and an answer of the oracle are counted as one step each, we can
determine the running time of an oracle algorithm in the usual way. The output of
the oracle may, however, be huge so that reading it may take exponential time. Since
our aim is to design polynomial time algorithms, we require that for every oracle
we have a polynomial 𝑞, such that for every query of encoding length at most 𝑙,
the answer of the oracle has length at most 𝑞(𝑙). Under this assumption we say that
an oracle algorithm has oracle-polynomial running time if its usual running time
plus the running time of the interaction with the oracle is bounded by a polynomial
in the input length of the original problem. A consequence of this set-up is that, if
an oracle can be realized by a polynomial time algorithm on a real computational
device, an oracle-polynomial algorithm is in fact a polynomial time algorithm in the
usual sense.

For ease of exposition, we restrict ourselves to considering convex bodies 𝐾
only. A convex set 𝐾 ⊆ R𝑛 that is compact and has dimension 𝑛 is called convex
body. To perform computations, we have to assume that the convex body 𝐾 is given
by a mathematical description. Let us briefly call it Name(𝐾). Then the encoding
length of 𝐾 is defined as the dimension 𝑛 plus the encoding length of Name(𝐾). To
determine the algorithmic relations between the problems above, we assume that a
convex body is given by an oracle for the solution of one of the problems and we
investigate whether any of the other problems can be solved employing the oracle.
The running times are measured as usual in the size of the input. This is, in the cases
described here, the encoding length of 𝐾 (as defined above) to which we have to add,
if they appear in the problem statement, the following: the encoding lengths of the
parameters 𝜖 and 𝛿, the encoding lengths of the objective function 𝑐 and the vector 𝑦,
and moreover the encoding lengths of the additional data (the radii 𝑟 and 𝑅, and the
center 𝑎0 of a ball) appearing in the statements of the theorems. The following was
proved in [69]:

Theorem. (a) There exists an-oracle polynomial time algorithm that solves the
weak membership problem for every convex body 𝐾 in R𝑛 given by a weak
optimization or a weak separation oracle.

(b) There exists an oracle-polynomial time algorithm that solves the weak separation
problem for every convex body 𝐾 in R𝑛 given by a weak optimization oracle.

(c) There exists an oracle-polynomial time algorithm that solves the weak opti-
mization problem for every convex body 𝐾 in R𝑛 given by a weak separation
algorithm, provided a radius 𝑅 > 0 of a ball around the origin containing 𝐾 is
given as well.
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(d) There exists an oracle-polynomial time algorithm that solves the weak opti-
mization problem for every convex body 𝐾 in R𝑛 given by a weak membership
algorithm, provided the following data are given as well: a vector 𝑎0 and a
radius 𝑟 > 0 such that 𝑆(𝑎0, 𝑟) ⊆ 𝐾 , and a radius 𝑅 > 0 with 𝐾 ⊆ 𝑆(0, 𝑅).

This theorem establishes the oracle-polynomial time equivalence of WOPT,
WSEP, and WMEM under mild additional assumptions. Moreover, the oracle-
polynomial time equivalence of the strong versions SOPT, SSEP, and SMEM of
these problems can be derived from the results above (assuming, of course, that 𝐾 is
given such that exact answers are possible). One can prove on the other hand that, if
we would drop one of the additional requirements in the theorem such as the knowl-
edge of radii 𝑟 or 𝑅 or the vector 𝑎0, it is impossible to derive oracle-polynomial
time algorithms.

A consequence of the last result, see [66] and [69], is the polynomial time solv-
ability of convex function minimization – in the following weak sense:

Theorem. There exists an oracle-polynomial time algorithm that solves the following
problem:
Input: A convex body 𝐾 given by a weak membership oracle, a rational number
𝜖 > 0, radii 𝑟 , 𝑅 > 0, a vector 𝑎0 such that 𝑆(𝑎0, 𝑟) ⊆ 𝐾 ⊆ 𝑆(0, 𝑅), and a convex
function 𝑓 : R𝑛 → R given by an oracle that, for every 𝑥 ∈ Q𝑛 and 𝛿 > 0, returns a
rational number 𝑡 such that | 𝑓 (𝑥) − 𝑡 | < 𝛿.
Output: A vector 𝑦 ∈ 𝑆(𝐾,𝜖) such that 𝑓 (𝑦) < 𝑓 (𝑥) + 𝜖 for all 𝑥 ∈ 𝑆(𝐾,−𝜖).

This is the first polynomial time solvability result for convex minimization.

11 Polyhedra, Low Dimensionality, and the LLL Algorithm

M. Grötschel, L. Lovász, A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1:169–197, 1981.

A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring Polynomials with rational
coefficients. Mathematische Annalen 261(4):515–534, 1982.

The Abel prize citation states (correctly, of course): “The LLL algorithm is only
one among many of Lovász’s visionary contributions”. It may be surprising to learn
that its invention was triggered by a technical problem arising in the analysis of the
ellipsoid method. We explain its origin and usefulness in this context.

Since square roots appear in the update formulas defining the ellipsoid method,
computing with irrational numbers is unavoidable. Careful rounding is necessary
to reach the desired approximation of an optimal value or solution. In various
applications exact solutions can in fact be obtained by appropriate rounding. In
integer programming, e.g., the solution vectors are required to have integral entries,
and if the objective function is integral, the optimal value 𝑣∗ is integral as well. If
one can tune the ellipsoid method so that it guarantees to find an approximation 𝑣 of
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the optimal value 𝑣∗ such that |𝑣−𝑣∗ | < 1/2, then one can simply round 𝑣 to the next
integer to find the true optimum value. Such considerations are the key to pass from
“weak solutions” to “strong solutions”, i.e., derive exact from approximate results.
This straightforward rounding unfortunately is often not sufficient.

We sketch the case of optimizing a linear objective function over a poly-
tope 𝑃 ⊆ R𝑛. We say that 𝑃 has facet-complexity at most 𝜑 if there exists a system
of inequalities with rational coefficients that has solution set 𝑃 and such that the
encoding length of each inequality of the system is at most 𝜑. No assumption about
the number of inequalities is made. Let us define the encoding length of 𝑃 to be
𝑛 + 𝜑, call such a polyhedron well-described, and denote it by (𝑃; 𝑛, 𝜑). One can
prove that the encoding length of each vertex of (𝑃; 𝑛, 𝜑) is at most 4𝑛2𝜑 and that,
if 𝑃 is full-dimensional, 𝑃 contains a ball 𝐵𝑃 with radius 2−7𝑛3𝜑 .

To illustrate the annoying “technical problem” that triggered the invention of the
LLL algorithm, let us consider a well-described polytope 𝑃 ⊆ R𝑛 that is not full-
dimensional; for ease of exposition, say 𝑃 has dimension 𝑛−1. The ellipsoid method
would not work in this case. To get around this problem, one needs to carefully
blow 𝑃 up to a polytope 𝑃′ that contains 𝑃 and is full-dimensional such that running
the ellipsoid method on 𝑃′ approximately delivers the desired result for 𝑃. This can
be done but is technically tedious and requires ugly pre- and post-processing.

Let us instead make a bold step and run the ellipsoid method on 𝑃 directly. We
suppose 𝑃 is given by a separation oracle. Since 𝑃 is low-dimensional it is highly
unlikely that the ellipsoid method finds a feasible solution in one of its iterations.
After a number 𝑁 of iterations that is polynomial in 𝑛 + 𝜑, the 𝑁-th ellipsoid 𝐸𝑁
contains 𝑃 and has a volume that is smaller than the volume of 𝐵𝑃 , the ball 𝑃
would contain if 𝑃 were full-dimensional. This is contradictory. The basic ellipsoid
method, assuming a full-dimensional polytope 𝑃 is given, would conclude now that
𝑃 is empty. But 𝐸𝑁 contains information that one may be able to employ.

Let 𝐻 = {𝑥 ∈ R𝑛 | 𝑎𝑇𝑥 = 𝛼} be the unique hyperplane containing 𝑃. Then 𝑎𝑇𝑥 = 𝛼
is the (up to scaling) unique equation defining 𝐻. The last ellipsoid 𝐸𝑁 , having such
a small volume, must obviously be very “flat” in the direction perpendicular to 𝐻. In
other words, the symmetry hyperplane 𝐹 belonging to the shortest axis of 𝐸𝑁 must
be very close to 𝐻. Is it possible to find 𝑎𝑇𝑥 = 𝛼 by rounding the coefficients of the
linear equation defining this symmetry hyperplane 𝐹? A positive answer would be an
elegant way to avoid the blow-up mentioned and the numerical problems associated
with it.

The authors of [66] and [69] were at this point in the fall of 1981 and realized that
such a rounding can be done – in principle – using the following classical theorem
of Dirichlet [36] on the existence of a solution of a simultaneous Diophantine
approximation problem.

Theorem. Given any real numbers 𝛼1, . . . , 𝛼𝑛 and 0 < 𝜖 < 1, there exist integers
𝑝1, . . . , 𝑝𝑛, and 𝑞 such that 1 < 𝑞 < 𝜖−𝑛 and |𝛼𝑖 − 𝑝𝑖/𝑞 | < 𝜖/𝑞 for 𝑖 = 1, . . . , 𝑛.

No polynomial algorithm is known to compute such integers. And at the end
of their writing session, no progress was achieved. About three months later the
following letter from L. Lovász arrived:
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Fig. 10 Beginning of a letter from L. Lovász

Lovász approached the approximation problem via the consideration of (integral)
lattices. If {𝑏1, . . . , 𝑏𝑛} is a basis ofR𝑛, then the set 𝐿 = 𝐿 (𝑏1, . . . , 𝑏𝑛) that is generated
by taking all integral linear combinations of the vectors 𝑏𝑖 is called a lattice with
basis {𝑏1, . . . , 𝑏𝑛}. Integral lattices have been studied in number theory for a very
long time (with contributors such as Gauss, Minkowski, Landau, and many others).
Clearly, a lattice may have different bases, and it may be interesting to find a “minimal
basis” {𝑎1, . . . , 𝑎𝑛} of 𝐿, i.e., a basis such that the product of the norms of the 𝑎𝑖 is
as small as possible. However, this problem is NP-hard. Lovász introduced the quite
technical notion of a reduced basis, which we do not explain here, that is a weak
form of a minimal basis and proved:

Theorem. There is a polynomial time algorithm that, for any given linearly inde-
pendent vectors {𝑏1, . . . , 𝑏𝑛} inQ𝑛, finds a reduced basis of the lattice 𝐿 (𝑏1, . . . , 𝑏𝑛).

The algorithm, called LLL algorithm, to achieve this starts with the Gram–
Schmidt orthogonalization and then performs carefully designed exchange opera-
tions. Proving polynomiality requires not only controlling the number of steps, but
in particular, the estimation of the encoding lengths of all numbers appearing in the
course of the algorithm. A consequence of this algorithm is the following weak form
of Dirichlet’s theorem.

Theorem. There exists a polynomial time algorithm that, given rational numbers
𝛼1, . . . , 𝛼𝑛 and 0 < 𝜖 < 1, computes integers 𝑝1, . . . , 𝑝𝑛, and 𝑞 such that and 1 ≤ 𝑞 ≤
2𝑛(𝑛+1)/4𝜖−𝑛 and |𝛼𝑖𝑞− 𝑝𝑖 | < 𝜖 for 𝑖 = 1, . . . , 𝑛.

This algorithm, based on computing a reduced basis, made it possible to compute
via simultaneous Diophantine approximation, the coefficients of the equation 𝑎𝑇𝑥 =
𝛼 defining the hyperplane 𝐻 containing the well-described polytope (𝑃; 𝑛, 𝜑) as
indicated above. By iterating this process, the affine hull of any lower dimensional
polytope can be determined in oracle-polynomial time.

For well-described polyhedra (𝑃; 𝑛, 𝜑), the restriction to the bounded case can
also be dropped, and one can show the following:
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Theorem. Any of the following three problems:
– strong separation
– strong violation
– strong optimization
can be solved in oracle-polynomial time for any well-described polyhedron (𝑃; 𝑛, 𝜑)
given by an oracle for any of the other two problems.

For a linear program given by a system of rational linear inequalities, the strong
separation problem can be trivially solved by substituting a given rational vector y
into the inequalities, i.e., linear programs can be solved in polynomial time.

Employing the LLL algorithm and results of András Frank and Éva Tardos [53]
one can, in fact, derive a general result about optimization problems for polyhedra
and their dual problems in strongly polynomial time. Strongly polynomial means that
the number of elementary arithmetic operations to solve an optimization problem
over a well-described polyhedron and to solve its dual problem does not depend on
the encoding length of the objective function. More precisely, the following can be
shown:

Theorem. There exist algorithms that, for any well-described polyhedron (𝑃; 𝑛, 𝜑)
specified by a strong separation oracle, and for any given vector 𝑐 ∈ Q𝑛,
(a) solve the strong optimization problem max{𝑐𝑇𝑥 | 𝑥 ∈ 𝑃}, and
(b) find an optimum vertex solution of max{𝑐𝑇𝑥 | 𝑥 ∈ 𝑃} if one exists, and
(c) find a basic optimum standard dual solution if one exists.
The number of calls on the separation oracle, and the number of elementary arith-
metic operations executed by the algorithms are bounded by a polynomial in 𝜑. All
arithmetic operations are performed on numbers whose encoding length is bounded
by a polynomial in 𝜑 and the encoding length of the objective function vector 𝑐.

An important application of this theorem is that one can turn many polynomial
time combinatorial optimization algorithms into strongly polynomial algorithms.

Summarizing: The search for an elegant proof that avoids tedious numerical
estimates was the driving force for the invention of the LLL algorithm.

12 The LLL Algorithm and its Consequences

A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4):515–534, 1982.

The basis reduction algorithm by L. Lovász to solve a problem, that initially looked
like a technicality, had a significant impact on the book [69] as outlined in Section 11.
Its deep impact on other fields came really unexpected, even for Lovász himself as
can be inferred from his letter, see Fig. 11.

We consider this as one of the occasional miracles in mathematics where a result
that was prompted by the desire to find an elegant solution for a technical detail has
consequences that are simply beyond imagination.
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Fig. 11 Cutout from a Lovász letter

Lovász informed not only the coauthors Grötschel and Schrijver of his book [69]
about his achievement, but also Hendrik Lenstra. Employing tools from the geometry
of numbers, Hendrik had (briefly before) made the substantial discovery that integer
programs (IPs) can be solved in polynomial time when the dimension is fixed.
Concerning this, he was in discussion with Lovász who pointed out that some of the
steps of Hendrik’s IP-algorithm could be improved, see [95].

Hendrik got excited about the news because his brother Arjen was (together with
two fellow students) about to implement a method to factor univariate polynomials
over algebraic number fields. Zassenhaus had suggested to use the Berlekamp–Hensel
approach for this which, however, could be “very, very much exponential” according
to Arjen. A few days after Lovász’s letter had arrived, Hendrik became convinced that
the basis reduction algorithm implies that there is a polynomial time algorithm for
factorization in the ring Q(𝑋) of univariate polynomials over the rational numbers.
At that time this looked inconceivable as one did not (and still does not) know a
polynomial time algorithm for finding the factors of an integer. After working out the
details, Hendrik’s observation turned out to be true. The two Lenstra brothers and
Lovász combined their contributions and wrote the joint paper [94]. Believing that
polynomial time factoring of polynomials over the rational numbers (an unexpected
result) is the most important contribution of their work, they agreed to mention only
this aspect in the paper title. The full story of this cooperation is nicely described in
the article of I. Smeets [151].

It turned out that basis reduction has applications that reach much further than
linear programming or polynomial factorization. It is beyond the scope of this article
to highlight here the wide range of applications of the basis reduction algorithm
which – in contrast to the ellipsoid method – is usable in practice. We mention two
concrete examples.

Odlyzko and te Riele [137] used the basis reduction algorithm to disprove the
Mertens conjecture, a conjecture standing in number theory since 1897, which – if
true – would have implied the Riemann hypothesis. This disproof was surprising as
there was extensive computational evidence that the Mertens conjecture is true.

Lagarias and Odlyzko [92] employed the lattice basis reduction algorithm to
launch a polynomial time attack on knapsack-based public-key cryptosystems which
made these cryptosystems unsafe.
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The LLL algorithm, in fact, created a revolution in cryptography. It is known that
the widely used public-key schemes such as the RSA or elliptic-curve cryptosystems
can be defeated if Shor’s quantum polynomial time factoring algorithm can be im-
plemented on a quantum computer. Many cryptographers are convinced that certain
lattice problems cannot be solved efficiently. Based on this, some lattice-based con-
structions appear to be resistant to attack by both classical and quantum computers.
For surveys see Regev [141] or Micciancio and Goldwasser [131]. The National
Institute of Standards and Technology (NIST) and other institutions are currently
preparing cryptography standards for the post-quantum era. The first Quantum-
Resistant Cryptographic Algorithms were announced by NIST in July 2022. Lattices
play a major role here, and lattice basis reduction algorithms have become standard
tools to test the security of cryptosystems.

Instead of attempting to comprehensively document the impact of Lovász’s work
on basis reduction, we point to the book by Nguyen and Vallée [136] entitled
The LLL Algorithm: Survey and Applications which consists of a collection of
broad overviews of fields where the LLL algorithm is employed. Chapters, written
by specialists in the respective fields, cover, for instance, applications in number
theory, Diophantine approximation, integer programming, cryptography, geometry
of provable security, inapproximability, and improvements of the LLL algorithm. A
reviewer of this book wrote:

The LLL algorithm embodies the power of lattice reduction on a wide range of problems
in pure and applied fields [. . .] [and] the success of LLL attests to the triumph of theory in
computer science.

Finally, the algorithm Lovász designed to find a reduced lattice basis is usually called
LLL algorithm, because it appeared in a paper written by three authors whose last
names starts with L. Of course, the Lenstra brothers do not claim that it is their
invention, they also attribute it to L. Lovász. But LLL algorithm has become the
usually employed name of the algorithm.

13 Cutting Planes and the Solution of Practical Applications

M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin, 1988.

László Lovász has, in addition to inventing beautiful theory, designed many algo-
rithms, concentrating particularly on polynomial time algorithms. The theory and
the algorithms Lovász developed had significant impact on computational practice.
Chapter 8 of [69] “Combinatorial Optimization: A Tour d’Horizon” is a highly con-
densed overview of the applicational potential that arises from combinations of the
many insights provided by the ellipsoid method, the LLL algorithm, and further
ideas. These have contributed to the astonishing computational success stories that
evolved in the last thirty to forty years in combinatorial optimization. We sketch
some of these aspects.
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In combinatorial optimization, a typical approach is, as indicated before, to at-
tack a problem by transforming it into a linear programming problem with integer
variables.

Take the traveling salesman problem, for instance. Given a complete graph 𝐺 =

(𝑉,𝐸) on 𝑛 vertices and a distance 𝑐𝑒 for every edge 𝑒 ∈ 𝐸 , we look for a Hamiltonian
cycle (briefly: tour) of minimum length. If 𝐻 is a tour, let 𝑥𝐻 ∈ R𝐸 be its incidence
vector, i.e., the 𝑒-th component 𝑥𝐻𝑒 of 𝑥𝐻 is equal to 1 if 𝑒 ∈ 𝐻, otherwise it is 0. The
traveling salesman polytope TSP(𝐺) of 𝐺 is the convex hull of all incidence vectors
of tours in 𝐺. TSP(𝐺) is a polytope in R𝑛(𝑛−1)/2. To apply the linear programming
approach, we now have to find a linear inequality system, so that the integral solutions
of the linear program are exactly the incidence vectors of tours. Such linear programs
are called LP-relaxations. Let 𝛿(𝑊) denote the set of edges in 𝐸 with one endvertex
of 𝑒 in𝑊 and the other in𝑉 \𝑊 , and let 𝑥(𝛿(𝑊)) denote the sum over all variables 𝑥𝑒
with 𝑒 ∈ 𝛿(𝑊). It is well known that the following linear program:

0 ≤ 𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸
𝑥
(
𝛿({𝑤})

)
= 2 for all 𝑤 ∈ 𝑉

𝑥
(
𝛿(𝑊)

)
≥ 2 for all𝑊 ⊆ 𝑉 with 2 ≤ |𝑊 | ≤ |𝑉 | −2

is an LP-relaxation of the TSP. The third type of inequalities is called subtour
elimination constraints.

Let us call the polytope defined by the linear system above TSPLP(𝐺). All
vertices of the traveling salesman polytope TSP(𝐺) are vertices of TSPLP(𝐺).
But TSPLP(𝐺) has many nonintegral vertices as well. About 2𝑛 inequalities define
TSPLP(𝐺). This renders the straightforward LP-solution approach hopeless. The
facet complexity 𝜑 of TSPLP(𝐺), however, is small since the entries of every
inequality or equation are only 0 or 1 and the right-hand sides are 0, 1, or 2. Thus the
facet complexity of TSPLP(𝐺) is linear in the number of variables |𝐸 | = 𝑛(𝑛−1)/2.
Due to the oracle-polynomial time equivalence of strong separation and strong
optimization, linear programs over TSGLP(𝐺) can be solved in polynomial time –
provided, given a vector 𝑦 ∈ Q𝐸 , one can find a fast separation algorithm for the
subtour elimination constraints.

This can in fact be done, as was observed by Hong [77]. One assigns the value 𝑦𝑒
to every edge 𝑒 ∈ 𝐸 as a capacity and computes (this can be done quickly) a minimum
nonempty cut 𝛿(𝑊∗) in this capacitated graph𝐺 = (𝑉,𝐸). If 𝑦(𝛿(𝑊∗)) < 2, a violated
inequality is found, otherwise y satisfies all subtour elimination constraints. This is
an example of a linear program appearing in many practical applications with an
exponential number of inequalities that, nevertheless, can be solved in polynomial
time. An optimal solution of a linear program over TSPLP(𝐺) is usually nonintegral
but provides a very good lower bound on the optimum TSP-value in practice. Finding
a provably optimal solution needs additional effort, though.

In 1954 Dantzig, Fulkerson, and Johnson [33] proposed in a seminal paper to
solve combinatorial optimization problems such as the traveling salesman problem
by starting with some LP-relaxation, checking whether the optimum solution 𝑦 is the
incidence vector of a tour (in this case the problem is solved), and if not searching for
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inequalities valid for TSP(G) that are violated by 𝑦, adding these to the current LP
as cutting planes, and to continue. This was one of the first proposals to solve linear
and integer programs using cutting planes in an iterative process. The cutting plane
search in this case was done manually, the LPs were solved by the simplex method.
Four years later Gomory [61] invented an automatic cutting plane generation scheme
(called Gomory cuts) for which he could prove finite termination. This looked like a
promising approach to solve integer programs.

However, the computer implementations of this and related approaches in the
1960s and 1970s were not successful in practice. Moreover, theoretical results of
Chvátal [27] and others showed that there are series of examples for which the number
of cutting plane additions cannot be effectively bounded. Hoping for unimportance
of these negative aspects in real-world applications, the idea came up in the 1970s
to study combinatorial optimization problems of practical relevance and to look
for cutting planes that define facets of the investigated polytopes. These are cuts
that cut as deep as possible. The first implementations employing a combination of
manual and heuristic searches for facet defining cutting planes at the end of the 1970s
indicated practical success. Soon after, the ellipsoid method theory with the principle
of polynomial time equivalence of optimization and separation was developed and
demonstrated that this approach is a viable idea, and that linear optimization over
exponentially large systems of linear inequalities is possible in polynomial time – at
least theoretically.

Despite serious attempts, no implementation of the ellipsoid method has shown
satisfactory numerical performance in computational practice. By replacing it with
new implementations of the dual simplex algorithm, the theoretical polynomial time
termination is lost, but astonishing computational results were achieved by many
researchers in combinatorial optimization. Of course, lots of additional features
(such as presolve techniques, heuristic primal and dual searches, branch and bound,
robust numerics, etc.) were implemented as well. The new insights gave a significant
push to the theoretical and applied part of combinatorial optimization. Problems with
many industrial applications such as linear ordering; set partitioning and packing;
knapsack; clustering; various types of matching; connectivity; path, flow and other
network problems; max cut; unconstrained Boolean quadratic programming; stable
sets; several variations of coloring; and vehicle and passenger routing could be solved
for instances of practically relevant sizes. The discovery of new classes of facets and
fast separation procedures (exact and heuristic) has been an important ingredient
of this solution methodology. To indicate at least one example of practically useful
separation algorithms we mention the paper [138] of Padberg and Rao that describes
sophisticated and fast separation algorithms for various ramifications of the matching
polytope. A large number of separation algorithms are, of course, described in the
book [69].

This research activity goes on and brings application relevant instances of many
NP-hard combinatorial optimization problems to the realm of practical solvability.
For the traveling salesman problem, for example, the “solvability world record” was
42 cities in 1954, it went to 120 in 1977, 2392 in 1987, and in 2017 a TSP with
109,399 cities could be solved to optimality, see the Webpage of Bill Cook [31], his
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Fig. 12 MIP-code performance 1990–2019 (courtesy Robert E. Bixby)

book [30], and the book [8] by Applegate, Bixby, Chvátal, and Cook for compre-
hensive information. The solution process includes linear programming technology
(its theory and implementation) that is able to prove, for example, that a vector in
dimension 1010 satisfies more than 2100,000 constraints and is optimal for this system.
This is really breathtaking.

The success stories indicated above, and the theoretical and practical lessons
learned from these began to be harvested and improved by the developers of com-
mercial optimization software in the 1990s. One reason for this is that many mixed-
integer optimization problems (MIPs) occurring in industry contain subproblems that
are combinatorial optimization problems for which large classes of facet-defining in-
equalities have been discovered. Efficient separation algorithms for these inequalities
were successfully added to the existing MIP-codes. The graphic in Fig. 12, presented
with the permission of Bob Bixby, shows the development of the commercial mixed
integer programming codes CPLEX and Gurobi in the 30 years from 1990 to 2019.
The large bar (pointed at by “Mining Theoretical Backlog”) shows an almost tenfold
speedup that is obtained from one version of the code to the next in which cutting
plane technology (including a fresh implementation of Gomory cuts) was introduced
together with various supporting features. The overall message is that the MIP tech-
nology in 2019 runs 3.5 million times faster than the codes of 1990. That speedup
is due to mathematical and implementation improvements and is independent of the
hardware speedup during this period. This is real progress indeed. Cutting plane
technology contributed to it significantly.
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14 Computing Optimal Stable Sets and Colorings in Perfect
Graphs

M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs. Annals
of Discrete Math. 21:325–256, 1984.

M. Grötschel, L. Lovász, A. Schrijver. Relaxations of vertex packing. J. Combin. Theory
B 40:330–343, 1986.

The extension of the ellipsoid method to convex bodies outlined in Section 10 was
driven by the hope that one could solve the stable set and the coloring problem
in perfect graphs in polynomial time with this methodology, see Section 7. The
successful attempt is presented in the articles [66, 67], and [68]. We describe the
stable set case.

For a graph 𝐺 = (𝑉,𝐸) and a stable set 𝑆 ⊆ 𝑉 , one can define the incidence
vector 𝑥𝑆 in R𝑉 as follows: the 𝑖-th component 𝑥𝑆

𝑖
of 𝑥𝑆 is equal to 1 if the vertex

𝑖 ∈ 𝑉 is an element of 𝑆, and it is 0 otherwise. The stable set polytope of 𝐺 is the
convex hull of all incidence vectors of stable sets 𝑆 of 𝐺, i.e.,

STAB(𝐺) B conv
{
𝑥𝑆 ∈ R𝑉 | 𝑆 ⊆ 𝑉 stable set

}
.

Let 𝑤 :𝑉→Q be any weighting of the vertices of𝐺 (we may assume that all weights
are positive) and denote the largest weight of a stable set in 𝐺 by 𝛼(𝐺,𝑤). Then
𝛼(𝐺,𝑤) is the maximum value of the linear function 𝑤𝑇𝑥 for 𝑥 ∈ STAB(𝐺), in other
words, 𝛼(𝐺,𝑤) can be computed by solving a linear program over STAB(𝐺). For
this observation to be of any use, we have to find inequalities defining STAB(𝐺).
Consider the polytope defined by

QSTAB(𝐺) B
{
𝑥 ∈ R𝑉 |𝑥𝑖 ≥ 0 ∀𝑖 ∈ 𝑉, 𝑥𝑖 + 𝑥 𝑗 ≤ 1 ∀𝑖 𝑗 ∈ 𝐸,

𝑥(𝑄) ≤ 1 ∀𝑄 ⊆ 𝑉 clique
}
,

where 𝑥(𝑄) denotes the sum of all 𝑥𝑖 , 𝑖 ∈ 𝑄. The corresponding inequality is called
clique constraint. Since the intersection of a clique and a stable set contains at
most one vertex, all clique constraints are satisfied by all incidence vectors of stable
sets. This implies STAB(𝐺) ⊆ QSTAB(𝐺) and optimizing over QSTAB(𝐺) is an
LP-relaxation of the stable set problem.

The stable set problem is NP-hard. Therefore, solving linear programs over
STAB(𝐺) is NP-hard as well. For some combinatorial optimization problems, their
natural LP-relaxation is solvable in polynomial time. A sobering observation is that,
for general graphs, solving linear programs over QSTAB(𝐺) is also NP-hard. So, in
general, nothing is gained algorithmically. For perfect graphs, though, this approach
combined with a tighter relaxation delivers the desired result.

Lovász’s Shannon capacity article [106] suggests studying a different relaxation
of the stable set problem.

Let (𝑢𝑖 | 𝑖 ∈ 𝑉), 𝑢𝑖 ∈ R𝑁 , be any orthonormal representation of 𝐺 and let 𝑐 ∈ R𝑁
with ∥𝑐∥ = 1. Then for any stable set 𝑆 ⊆ 𝑉 , the vectors 𝑢𝑖 , 𝑖 ∈ 𝑆, are mutually
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orthogonal and hence, ∑︁
𝑖∈𝑆

(𝑐𝑇𝑢𝑖)2 ≤ 1.

Since
∑
𝑖∈𝑉 (𝑐𝑇𝑢𝑖)2𝑥𝑆

𝑖
=
∑
𝑖∈𝑆 (𝑐𝑇𝑢𝑖)2, we see that the inequality∑︁

𝑖∈𝑉
(𝑐𝑇𝑢𝑖)2𝑥𝑖 ≤ 1 (ORC)

holds for the incidence vector 𝑥𝑆 ∈ R𝑉 of any stable 𝑆 set of nodes of𝐺. Thus, (ORC)
is a valid inequality for STAB(𝐺) for any orthonormal representation (𝑢𝑖 | 𝑖 ∈𝑉) of𝐺,
where 𝑢𝑖 ∈ R𝑁 , and any unit vector 𝑐 ∈ R𝑁 . We shall call (ORC) the orthonormal
representation constraints for STAB(𝐺).

Utilizing these inequalities, the following set was introduced in [68]. For any
graph 𝐺 = (𝑉,𝐸) let

TH(𝐺) B
{
𝑥 ∈ R𝑉 | 𝑥𝑖 ≥ 0 ∀𝑖 ∈ 𝑉,

and 𝑥 satisfies all orthonormal representation constraints
}
.

TH(𝐺) is the solution set of infinitely many linear inequalities and thus a convex
set. Since for every clique 𝑄, its clique constraint appears as an orthonormal rep-
resentation constraint (given a clique 𝑄 ⊆ 𝑉 , let {𝑢𝑖 | 𝑖 ∈ 𝑉 \𝑄} ∪ {𝑐} be mutually
orthogonal unit vectors and set 𝑢 𝑗 = 𝑐 for 𝑗 ∈ 𝑄) and every incidence vector of a
stable set satisfies all such inequalities, we obtain:

STAB(𝐺) ⊆ TH(𝐺) ⊆ QSTAB(𝐺).

An important fact is, that the Lovász theta function 𝜗(𝐺,𝑤) introduced in Section 8
can also be characterized as follows:

𝜗(𝐺,𝑤) = max
{
𝑤𝑇𝑥 | 𝑥 ∈ TH(𝐺)

}
.

TH(𝐺) is contained in the unit ball, and it is easy to find the center of a ball contained
in the interior of TH(𝐺). Thus, TH(𝐺) is a convex body satisfying the assumptions
required for the oracle-polynomial time equivalence of weak optimization, separa-
tion, and membership. The desired result is, of course, the following:

Theorem. The weak optimization problem for TH(𝐺) is solvable in polynomial time
for any graph 𝐺 = (𝑉,𝐸).

Lovász, see [106], established several characterizations for his 𝜗-function. They
can be used in various ways to prove this theorem. One proof, worked out in detail
in [66] and [69], is based on the following characterization:

𝜗(𝐺,𝑤) = max{�̄�𝑇𝐵�̄� | 𝐵 ∈ K},
where K B {𝐵 ∈ R𝑉×𝑉 | 𝐵 ∈ D∩M and tr(𝐵) = 1}.
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Above, D is the set of positive semidefinite matrices, M the set of symmetric
matrices 𝐵 that satisfy 𝑏𝑖 𝑗 = 0 whenever 𝑖 𝑗 is an edge in 𝐺, and �̄� denotes the vector
whose entries are the square roots of the values 𝑤𝑖 , 𝑖 ∈ 𝑉 . The main part of the
proof consists in showing that the weak membership problem for K can be solved
in polynomial time, and the core of this proof is established by showing whether a
symmetric matrix is positive definite.

A by-product of the proof is the first polynomial time algorithm for optimization
problems containing positive semidefinite constraints, a major result that led to
considerable follow-up research such as the design of polynomial time interior point
(and other) algorithms for semidefinite programming.

Another way to establish the above theorem is by utilizing the following fact:

𝜗(𝐺,𝑤) = min
{
Λ(𝐴+𝑊) | 𝐴 ∈M⊥},

where Λ denotes the largest eigenvalue, M⊥ the orthogonal complement of M, and
𝑊 the symmetric𝑉 ×𝑉-matrix whose entries are the square roots of 𝑤𝑖𝑤 𝑗 . Λ(𝐴+𝑊)
is a convex function that ranges over a linear space, and thus, we can obtain 𝜗(𝐺,𝑤)
via an unconstrained convex function optimization problem in polynomial time.

A third way to prove the theorem was demonstrated in [116], and this approach
turned out to be one of the starting points for a generalization of this technique.
Lovász and Schrijver developed in this article a general lift-and-project method that
constructs higher-dimensional polyhedra (or, in some cases, convex sets) whose
projection approximates the convex hull of 0-1 valued solutions of a system of linear
inequalities. An important feature of these approximations is that one can optimize
any linear objective function over them in polynomial time. Lift-and-project methods
have been extended in many directions and are still an area of intensive research.
The recent (not even exhaustive) survey by Fawzi, Gouveia, Parrilo, Saunderson,
and Thomas [51] discusses the contributions of almost one hundred articles and
illustrates the richness of this topic by presenting examples from many different
areas of mathematics and its applications.

We refrain from describing the technically challenging details of this lift-and-
project technique and return to stable sets in perfect graphs.

A combination results of Fulkerson [57] and Chvátal [28] yields:

Theorem. STAB(𝐺) = QSTAG(𝐺) if and only if 𝐺 is perfect.

And since we already know that STAB(𝐺) ⊆ TH(𝐺) ⊆ QSTAB(𝐺) holds, we
obtain:

Corollary. STAB(𝐺) = TH(𝐺) = QSTAG(𝐺) if and only if G is perfect.

Since the weak optimization problem for TH(𝐺) can be solved in polynomial time
and since, in case 𝐺 is perfect, TH(𝐺) is a well-described polyhedron, the strong
optimization problem for TH(𝐺) can be solved in polynomial time. This yields the
desired result:

Theorem. The stable set problem can be solved in polynomial time for perfect
graphs.
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We can now employ the fact that, if a linear program can be solved in polynomial
time, the dual linear program can also be solved in polynomial time, see Section 11.
By proving that, in this case, an optimum basic solution of the dual program can be
transformed in polynomial time into an integral optimum basic solution one can find
an optimum solution of the weighted clique covering problem. Since the cliques of
a graph 𝐺 are the stable sets of the complementary graph �̄� of 𝐺 and the colorings
of 𝐺 are the clique covering of �̄�, we can conclude:

Theorem. For perfect graphs, the stable set, the clique, the coloring, and the clique
covering problem can be solved in polynomial time. This also holds for the weighted
versions of these problems.

15 Submodular Functions

L. Lovász. Submodular functions and convexity. In Mathematical Programming: The
State of the Art (eds. A. Bachem, M. Grötschel, B. Korte), Springer, pages 235–257,
1983.

Let 𝐸 be a finite set. A function 𝑓 : 2𝐸 → R is called submodular on 2𝐸 (the power
set of 𝐸) if

𝑓 (𝑆∩𝑇) + 𝑓 (𝑆∪𝑇) ≤ 𝑓 (𝑆) + 𝑓 (𝑇) for all 𝑆,𝑇 ⊆ 𝐸.

Submodular functions play an important role in lattice theory, geometry, graph
theory, and particularly, in matroid theory and matroidal optimization problems.
The rank function of a matroid, for example, is submodular as well as the capacity
function of the cuts in directed and undirected graphs.

Two polyhedra can be associated with a submodular function 𝑓 : 2𝐸 → R in a
natural way

𝑃 𝑓 B
{
𝑥 ∈ R𝐸 | 𝑥(𝐹) ≤ 𝑓 (𝐹) for all 𝐹 ⊆ 𝐸, 𝑥 ≥ 0

}
,

𝐸𝑃 𝑓 B
{
𝑥 ∈ R𝐸 | 𝑥(𝐹) ≤ 𝑓 (𝐹) for all 𝐹 ⊆ 𝐸

}
.

𝑃 𝑓 is called the polymatroid associated with the submodular function 𝑓 , 𝐸𝑃 𝑓 the
extended polymatroid associated with 𝑓 . A deep theorem of Edmonds [43] states that
if 𝑓 and 𝑔 are two integer valued submodular functions then all vertices of 𝑃 𝑓 ∩𝑃𝑔
as well as all vertices of 𝐸𝑃 𝑓 ∩ 𝐸𝑃𝑔 are integral. This theorem contains a large
number of integrality results in polyhedral combinatorics; it particularly generalizes
the matroid intersection theorem.

To address algorithmic questions concerning the structures introduced above,
we assume that a submodular function 𝑓 is given by an oracle that returns the
value 𝑓 (𝑆) for every query 𝑆 ⊆ 𝐸 . We also assume that we know an upper bound 𝛽
on the encoding length of the output of the oracle. With these assumptions we define
the encoding length of the submodular function as |𝐸 | + 𝛽.
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It is well-known that, for any nonnegative linear objective function, the greedy
algorithm finds an optimum vertex of 𝐸𝑃 𝑓 in oracle-polynomial time, and that this
vertex is integral provided the submodular function 𝑓 is integer valued. Optimizing
over polymatroids or the intersections of two polymatroids or the intersections of two
extended polymatroids and finding integral optima is more complicated and needs
careful analysis. The most important algorithmic problem in this context is:

Submodular Function Minimization. Given a submodular function 𝑓 : 2𝐸 → Q,
find a set 𝑆 ⊆ 𝐸 minimizing 𝑓 .

Lovász has built in [110] a bridge between submodularity and convexity by
showing that submodular functions are discrete analogues of convex functions and
has thus provided the key to the algorithmic solution of the submodular function
minimization problem. The link is established as follows.

Let 𝑓 : 2𝐸 →R be any set function. For every subset𝑇 ⊆ 𝐸 , let 𝑥𝑇 be its incidence
vector and set

𝑓 (𝑥𝑇 ) B 𝑓 (𝑇).

This way 𝑓 is defined on all 0/1-vectors. Note that every nonzero nonnegative
vector 𝑦 ∈ R𝐸 can be expressed uniquely as

𝑦 = _1𝑥
𝑇1 +_2𝑥

𝑇2 + . . .+_𝑘𝑥𝑇𝑘 ,
such that _𝑖 > 0, 𝑖 = 1, . . . , 𝑘 and ∅ ≠ 𝑇1 ⊂ 𝑇2 ⊂ . . . ⊂ 𝑇𝑘 ⊆ 𝐸.

Then
𝑓 (𝑦) B _1 𝑓 (𝑇1) +_2 𝑓 (𝑇2) + . . .+_𝑘 𝑓 (𝑇𝑘)

is a well-defined extension of the set function 𝑓 (called Lovász extension of 𝑓 ) to the
nonnegative orthant. Lovász proved in [110]:

Theorem. Let 𝑓 : 2𝐸 → R be any set function and 𝑓 its extension to nonnegative
vectors. Then 𝑓 is convex if and only if 𝑓 is submodular.

Lemma. Let 𝑓 : 2𝐸 → R be set function with 𝑓 (∅) = 0. Then

min
{
𝑓 (𝑆) | 𝑆 ⊆ 𝐸

}
= min

{
𝑓 (𝑥) | 𝑥 ∈ [0,1]𝐸

}
.

Thus, instead of minimizing a set function 𝑓 over 𝐸 , it suffices to minimize its
Lovász extension 𝑓 over the unit hypercube. We observe that 𝑓 (𝑥) can be evaluated
in oracle-polynomial time using the oracle defining 𝑓 and that, if 𝑓 is submodular,
then 𝑓 is convex. We know already from Section 10 that convex functions can be
minimized in oracle-polynomial time. (The assumption 𝑓 (∅) = 0 is irrelevant, if
necessary, we can replace 𝑓 by the function 𝑓 − 𝑓 (∅).) This yields:

Theorem. Let 𝑓 : 2𝐸 →Q be a submodular function. Then a subset 𝑆 of 𝐸 minimizing
𝑓 can be found in oracle polynomial time.

This theorem implies the polynomial time solvability of many combinatorial
optimization problems, including the computation of a minimum capacity cut in a
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graph. It has various ramifications such as solvability in strongly polynomial time,
as outlined in [110] and [69].

The running time of the polynomial time algorithm sketched above makes it,
however, infeasible for practical use. New and better polynomial time algorithms,
not employing the ellipsoid method, have been devised by Schrijver [143] and Iwata,
Fleischer, and Fujishige [81].

16 Volume Computation

L. Lovász. How to compute the volume? Jber. d. Dt. Math.-Vereinigung,
Jubiläumstagung 1990, B. G. Teubner, Stuttgart, pages 138–151, 1992.

Since the convergence of all versions of the ellipsoid method depends on sequentially
shrinking the volume of an ellipsoid containing the given convex body 𝐾 , it is
tempting to ask whether the algorithm can be tuned to provide a reasonable estimate
of the volume of 𝐾 . The key idea in this context is, of course, to come up with
an algorithmic version of the Löwner–John theorem, that states, that, for a convex
body 𝐾 in R𝑛, there exists a unique ellipsoid 𝐸 of minimal volume containing 𝐾;
moreover, 𝐾 contains the ellipsoid obtained from 𝐸 by shrinking it from its center
by a factor of 𝑛. In formulas, let 𝐸 (𝐴,𝑎) B {𝑥 ∈ R𝑛 | (𝑥−𝑎)𝑇 𝐴−1 (𝑥−𝑎) ≤ 1} denote
the ellipsoid defined by a positive definite matrix 𝐴 with center 𝑎 ∈ R𝑛 then the
Löwner–John theorem states

𝐸 (𝑛−2𝐴,𝑎) ⊆ 𝐾 ⊆ 𝐸 (𝐴,𝑎),

if 𝐸 (𝐴,𝑎) is the Löwner–John ellipsoid 𝐸 of 𝐾 . Algorithmically, the following could
be achieved in the Grötschel–Lovász–Schrijver book [69].

Theorem. There exists an oracle-polynomial time algorithm that finds, for any
convex body 𝐾 given by the space dimension 𝑛, a weak separation oracle and two
real numbers 𝑟 and 𝑅 with the property that 𝐾 is contained in the ball of radius 𝑅
around the origin and contains a ball of radius 𝑟 , an ellipsoid 𝐸 (𝐴,𝑎) such that

𝐸

( 1
𝑛(𝑛+1)2 𝐴,𝑎

)
⊆ 𝐾 ⊆ 𝐸 (𝐴,𝑎).

With more effort and making additional assumptions such as central symmetry
or requiring that a system of defining linear inequalities is explicitly given (in the
polytopal case), the factor 1/(𝑛(𝑛+1)2 in front of the matrix 𝐴 above can be slightly
improved, but not fundamentally. If one declares the volume of the interior ellipsoid
as an approximation of the volume of 𝐾 , the relative error turns out to be 2𝑛𝑛3𝑛/2,
which appears to be outrageously bad.

Surprisingly, the error is not as bad as it looks since subsequently Elekes [45] and
others proved that no oracle-polynomial time algorithm can compute, for a convex
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body 𝐾 as given above, the volume of 𝐾 with a much better relative error. We quote
a result of Bárány and Füredi [11].

Theorem. Consider a polynomial time algorithm which assigns to every convex
body 𝐾 given by a membership oracle an upper bound 𝑤(𝐾) on its volume vol(𝐾).
Then there is a constant 𝑐 > 0 such that in every dimension 𝑛 there exists a convex
body 𝐾 for which 𝑤(𝐾) > 𝑛𝑐𝑛 vol(𝐾).

Following up, various authors proved more negative results on the deterministic
approximation of the volume, width, diameter and other convexity parameters.

These negative results fueled the investigation of stochastic approaches to estimate
the volume of a convex body. Instead of giving a deterministic guarantee, one could
try to calculate a number that is close to the true value of the volume with high
probability employing a randomized algorithm.

A side remark: Khachiyan [88] and Lawrence [93] proved that, for every dimen-
sion 𝑛, one can construct systems of rational inequalities defining polytopes 𝑃 so
that the encoding length of the rational number 𝑝/𝑞 representing the true volume
of 𝑃 requires a number of digits that is exponential in the encoding length of the
inequality system. Hence, exact volumes of convex bodies cannot be computed in
polynomial time since specifying the exact volume requires exponential space.

A fundamental breakthrough was achieved in Dyer, Frieze, and Kannan [40]
who provided a randomized polynomial time approximation scheme for the volume
approximation problem where 𝐾 is given by a membership oracle. The ingredients
of their algorithm are a multiphase Monte-Carlo algorithm (using the so-called
product estimator) to reduce volume computation to sampling, the utilization of
Markov chain techniques for sampling, and the use of the conductance bound on the
mixing time, due to Jerrum and Sinclair [82]. The running time of the algorithm is
roughly 𝑂 (𝑛23) which is truly prohibitive. The exponent 23 of 𝑛 was subsequently
reduced considerably by adding further techniques and improved estimates to the
toolbox of randomized algorithms, including rapid mixing, harmonic functions,
connection to the heat kernel, isoperimetric inequalities, discrete forms of Cheeger
inequality, and many more.

Lovász played an important role in the exponent shrinking race. For example, the
exponent went down to 16 (Lovász and Simonovits [120]), to 10 (Lovász [111]), to 8
(Dyer and Frieze [39]), to 7 (Lovász and Simonovits [121]), to 5 (Kannan, Lovász,
and Simonovits [85]), and to 4 (Lovász and Vempala [124]). A nice survey of the
many tricky issues in designing randomized algorithms for volume computation and
their analysis is the article by Simonovits [149].

The race for better algorithms has not stopped. On September 3, 2022, the new
record was published on arXiv by Jia, Laddha, Lee, and Vempala [83]. The authors
show that the volume of a convex body in R𝑛 defined by a membership oracle can
be computed to within relative error 𝜖 using �̃� (𝑛3𝜓2 +𝑛3/𝜖2) oracle queries, where
𝜓 is the KLS constant. With the current bound of 𝜓 = �̃� (1), this gives an �̃� (𝑛3/𝜖2)
algorithm, improving on the Lovász–Vempala �̃� (𝑛4/𝜖2) algorithm.
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17 Analysis, Algebra, and Graph Limits

L. Lovász, Large Networks and Graph Limits. American Mathematical Society, 2012.

We have already indicated that many of the results mentioned in our article seem to
be of permanent importance and are used again and again: the Lovász Local Lemma,
algorithmic consequences of the ellipsoid method, topological combinatorics, and
the LLL algorithm, to name just few. Very recently Lovász’s mathematics culminated
in a topic that somehow combines this into an all-in-one subject: like a late symphony
of a grand composer displaying the experience of the master and an echo of his/her
life. We believe that this happened with the subject of graph limits founded and
developed by Lovász with co-authors and students in the last 15 years. Here is a brief
sketch of this fascinating development.

We have seen in Section 2 that the homomorphism function hom(𝐹,𝐺) and the
Lovász vector 𝐿 (𝐺) are determining every graph 𝐺 up to an isomorphism. With
a proper scaling this leads to the notion of homomorphism density 𝑡 (𝐹,𝐺), which
is the probability that a random mapping between sets of vertices of 𝐹 and 𝐺 is a
homomorphism: 𝑡 (𝐹,𝐺) = hom (𝐹,𝐺)

𝑣 (𝐺)𝑣 (𝐹) where 𝑣(𝐺) denotes the number of vertices of
graph 𝐺.

This definition is close to the sampling density and one motivation for introducing
it. One can observe that homomorphism densities do not determine a graph up to
an isomorphism but up to a “blowing up of vertices”. (This is a procedure by which
vertices are replaced by a certain number of twin copies.) It is perhaps more important
that one can then define convergence of a sequence of finite graphs𝐺1,𝐺2, . . . ,𝐺𝑛, . . .
as the convergence of homomorphism densities 𝑡 (𝐹,𝐺𝑛) for every graph 𝐹. This
convergence concept (and various other notions of convergence) were introduced
and investigated in the article [22] of C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós,
and K. Vesztergombi.

Hence, a sequence of graphs converges if, for every 𝐹, all homomorphism densi-
ties (or 𝐹-sampling densities) converge. Does this convergence have a real (geomet-
rical) meaning? Are there limit graphs or, perhaps, other limit objects?

Fig. 13 Lovász’s Graph Limits book
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It appears that these questions have non-trivial yet positive answers and these
were the starting point of a very rich and interesting area. In fact, they generated a
whole new theory. Here is a sample of some of the results.

L. Lovász and B. Szegedy proved the following in [122]:

Theorem. A sequence of graphs (with unbounded size) is converging if and only if
it converges to a symmetric measurable function 𝑊 : [0,1]2 → [0,1]. Moreover, up
to a measurable bijection, such a function W is uniquely determined.

Explicitly, this means that for every graph 𝐹 = (𝑉,𝐸) the homomorphism densities
𝑡 (𝐹,𝐺𝑛) are converging to:

𝑡 (𝐹,𝑊) =
∫

[0,1]𝑉

∏
𝑖 𝑗∈𝐸

𝑊 (𝑥𝑖 , 𝑥 𝑗 )
∏
𝑖∈𝑉

𝑑𝑥𝑖

Such functions 𝑊 are called graphons. Graphon is a very intuitive notion and the
convergence of a graph sequence to a graphon looks like a movie. It leads to “pixel”
pictures like those on samples shown in Figure 14 (taken from Lovász‘s book [112]).

1.5. HOW TO APPROXIMATE THEM? 17

identically 1/2 function (have a look at the two squares on the left of Figure 1.5).
Figure 1.7 illustrates that the sequence of half-graphs (discussed in Section 1.5.2)
converges to a limit (the function W (x, y) = (y ≥ x + 1/2 or x ≥ y + 1/2). It
has been observed and used before (see e.g. Sidorenko [1991]) that such functions
can be used as generalizations of graphs, and this gives certain arguments a greater
analytic flexibility.

Figure 1.7. A half-graph, its pixel picture, and the limit function

Let us describe another example here (more to follow in Section 11.4.2). The
picture on the left side of Figure 1.8 is the adjacency matrix of a graph G with 100
nodes, where the 1’s are represented by black squares and the 0’s, by white squares.
The graph itself is constructed by a simple randomized growing rule: Starting with
a single node, we create a new node, and connect every pair of nonadjacent nodes
with probability 1/n, where n is the current number of nodes. (This construction
will be discussed in detail in Section 11.4.2.)

Figure 1.8. A randomly grown uniform attachment graph with
100 nodes, and a (continuous) function approximating it

The picture on the right side is a grayscale image of the function U(x, y) =
1 − max(x, y). (Recall that the origin is in the upper left corner!) The similarity
with the picture on the left is apparent, and suggests that the limit of the graph
sequence on the left is this function. This turns out to be the case in a well defined
sense. It follows that to approximately compute various parameters of the graph
on the left side, we can compute related parameters of the function on the right
side. For example, the triangle density of the graph on the left tends (as n → ∞)
to the integral

(1.3)

∫

[0,1]3

U(x, y)U(y, z)U(z, x) dx dy dz
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14 1. VERY LARGE NETWORKS

Figure 1.4. A half-graph and its pixel picture

a graph that is close to the random graph. But rearranging the rows and columns
so that odd indexed columns come first, we get the 2× 2 chessboard on the right!
So wee see that both the middle and the right side pictures represent a complete
bipartite graph. The pixel picture of a graph depends on the ordering of the nodes.
We can be reassured, however, that a random graph remains random, no matter
how we order the nodes, and so the picture on the left remains uniformly grey, no
matter how the nodes are ordered.

Figure 1.5. A random graph with 100 nodes and edge density
1/2, a random graph with very many nodes and edge density 1/2,
a chessboard, and the pixel picture obtained by rearranging the
rows and columns.

Remark 1.3. Using pixel pictures to represent graphs, in particular random
graphs, goes in a sense in the opposite direction to what was studied in the psy-
chology of vision. Of course, processing images given by pixel pictures has been
a fundamental issue in connection with computer graphics and related areas, and
we are not going into this issue in this book. But we should mention the work of
Julesz, who studied the question of how well the human eye can distinguish random
noise (like Figure 1.5(a)) from images that are also uniformly grey but more struc-
tured (textured). The chessboard in Figure 1.5(b) would be a trivial example of
such an image. Disproving some of his conjectures, Diaconis and Freedman [1981]
constructed pixel pictures that are very closely related to our W -random graphs.

The Regularity Lemma. We illustrate the Regularity Lemma by Figure 1.6.
The graph on the left side (given by its pixel picture) looks quite random. In the
middle we see the same graph, with its nodes ordered differently. In this picture, we
see some structure of the graph (even though it is not as clear-cut as in Figure 1.5);
what we see is that the upper left corner is denser, and the lower right corner is
sparser. If we cut the picture into four equal parts, and average the “blackness” in
each, we get the picture on the right. Inside each of the four parts, the arrangement

Fig. 14 Samples of graphons

The first row of Fig. 14 shows on the left a randomly grown uniform attachment
graph with 100 nodes, and on the right a (continuous) function approximating
it. The picture on the right side is a grayscale image of the function 𝑈 (𝑥, 𝑦) =
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1−max(𝑥, 𝑦). The second row of Fig. 14 indicates the construction of the graphon
for the “halfgraph” (the graph on the left side). The bottom part indicates the influence
of ordering and the regularity Lemma in its simplest form. Note that the sequence
of random graphs is converging to a graphon 𝑊 that is a constant function. It is
important that the same is true for “quasirandom graphs”.

Graphon is not just an intuitive notion, it has mathematical relevance. This setting
extends work of Aldous [2] and Hoover [79] in probability theory on exchangeable
random graphs (see, e.g., [9]). Graphons are also not just a generalization. They
present a convenient and useful way to study extremal problems for graphs (such as
to find maximum number of edges of a graph satisfying given local properties).

These problems then often take the form of linear inequalities. Lovász introduced
graph algebras (of “quantum graphs”) with nice “pictorial” proofs, see [112]), and
independently Alexander Razborov developed “flag algebras” [140] which proved to
be a very efficient tool in various extremal problems, see, e.g., [73] and [70].

The graph algebra of Lovász and Razborov was motivated by early examples
provided by the Caccetta–Häggkvist conjecture, see [20], the Sidorenko conjec-
ture [148], and the early paper [50] of Erdős, Lovász, and Spencer on topological
properties of the graphcopy function.

A typical extremal problem may be expressed as a fact that a certain linear in-
equality built from homomorphism densities of graphs is nonnegative. This in turn
led Lovász to a question whether any such inequality can be deduced from a sum of
squares of “quantum graphs”. A related question was formulated by Razborov [140]
whether the validity of any such inequality can be solved by “Cauchy–Schwarz Cal-
culus”. However, Hamed Hatami and Serguei Norin [74] showed that both these
questions have a negative answer in general as the related problems are algorithmi-
cally undecidable. So, extremal problems may be more difficult as originally thought.
This was further supported by the universality results of Cooper, Grzesik, Král, Mar-
tins, and L. M. Lovász, see [32] and [70], claiming particularly that every graphon
may be extended to a “finitely forcible” graphon.

This approach also provides an understanding of the celebrated Szemerédi reg-
ularity lemma. The Szemerédi regularity lemma in this interpretation means an
approximation of every graph (and every graphon) by means of a “small” pixel im-
age where almost all entries are constant (but may be different for different pixels).

The key of the approach of [22] is to characterize convergence using the cut metric
𝑑□ (𝐺,𝐻) (based on the cut norm introduced by R. Frieze and R. Kannan in [55]).
If the homomorphism density is defined by scaled subgraph density, then the cut
metric is, somewhat dually, characterized by means of a scaled density of partitions.

The cut metric 𝑑□ (𝐺,𝐻) for finite graphs𝐺,𝐻 on the same vertex set𝑉 is defined
as

max
𝑆,𝑇⊆𝑉

|𝑒𝐺 (𝑆,𝑇) | − |𝑒𝐻 (𝑆,𝑇) |
|𝑉 ×𝑉 |

i.e., as the scaled difference of the-sizes of cuts in 𝐺 and 𝐻; above 𝑒𝐺 (𝑆,𝑇) is the
number of edges of 𝐺 between sets 𝑆 and 𝑇 . (This definition can be extended to
graphs on different vertex sets. This is technical and it takes three full pages in [112]).
Interestingly, the cut distance for a graphon𝑊 is more easily defined than in the finite
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case: it is induced by the norm:

∥𝑊 ∥ = sup
𝑆,𝑇⊆[0,1]

∫
𝑆×𝑇

𝑊 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

The cut norm is also very natural and fitting from an algorithmic point of view; and
it is bounded by the Grothendieck norm up to a multiplicative constant (as shown by
Alon and Naor [5]).

As a culmination of several auxiliary results, one obtains that the convergence
is indeed induced by a distance. This is the key fact in many applications and was
proved by Lovász and Szegedy in [122]:

Theorem. If (𝐺𝑛) is a sequence of graphs of unbounded size, then (𝐺𝑛) is a converg-
ing sequence if and only if (𝐺𝑛) is a Cauchy sequence with respect to cut distance
𝑑□ (𝐺𝑖 ,𝐺 𝑗 ).

The following result was proved by Lovász and Szegedy in [123]. Lovász considers
it as one of the basic results treated in his book [112].

Theorem. The space of all graphons𝑊 with cut distance is compact.

This compactness theorem may be viewed as the roof result for the Szemerédi
regularity Lemma and its various extensions. It also displays the usefulness of the
limit language and of the much more general setting. This area was studied exten-
sively, for instance by Borgs, Chayes, Elek, Lovász, Sós, Szegedy, Vesztergombi,
and Tao in [23, 44, 123, 155].

The mathematical richness of this area is best illustrated by the Appendix A
of [112] which contains the following sections: Möbius functions; the Tutte polyno-
mial; some background in probability and measure theory; moments and the moment
problem; ultraproduct and ultralimit; Vapnik–Chervonenkis dimension; nonnegative
polynomials; categories. Obviously, it is impossible to present here more than a
glimpse of what the book [112] covers.

Note that the above results are interesting for dense graphs. For sparse graphs (for
example for graphs with constant degrees) one has to devise a different approach.
Limit objects are now called graphings and modelings. For them results similar
to above three theorems are not known. This is treated, e.g., by Benjamini and
Schramm [17] and by Nešetřil and Ossona de Mendez [134]; see again [112].

It is amazing that the area of graphs and their limits can be traced back to
Lovász’s very early algebraic results (mentioned in Section 2). Some forty years
later it blossomed in the inspiring climate of the Microsoft Research Theory Group
at Redmond in an atmosphere of concentrated research and quality, with persons
such as Michael Freedman, Oded Schramm and many other great visitors and with
László Lovász as a driving force.
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18 Final Remarks

Let us finish the fireworks of beautiful theorems ranging over many parts of mathe-
matics and theoretical computer science by adding a few general remarks.

It happens very rarely that a well-known and long-standing open problem is solved
by a novel technique that immediately influences not just that area, but other parts of
mathematics as well. Lovász not only accomplished this once. It is unbelievable that
Lovász repeatedly offered to the world community exactly such solutions. Some of
these proofs are really elegant and were included in the collections of other beautiful
“book proofs”, see [1] and [129].

In this article we concentrated on Lovász-results which had general influence,
led to intensive research by many others, and sometimes spawned the emergence of
whole new theories. Work in areas such as combinatorial optimization, applications
of the ellipsoid method, algebraic graph theory, graph homomorphisms, topological
graph theory, and graph limits is very difficult to imagine without the pioneering
accomplishments of László Lovász.

In our Introduction we indicated that Lovász is both, a “problem solver” and a
“theory builder”, and pointed out that the trio depth, elegance, and inspiration is a
particular signature of his work that makes his achievements unique. We do hope
that the glimpse into his oeuvre and the scientific influence of his results, that we
have offered here, provides at least a partial proof of our conviction.

Fig. 15 Several Lovász-books on a poster (by A. Goodall and J. N.) of the Charles University in
Prague (Photo: Private)
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To keep this article at a reasonable length we had to omit many topics on which
Lovász left his marks. In particular, it was impossible to give adequate attention to
the books he has written, see Fig. 15, and the influence they had and still have. To
mend this omission, albeit very incompletely, we elucidate the contents and impact
of four of his books – extremely briefly, though.

Lovász’s third book Combinatorial Problems and Exercises [107] became
– without any exaggeration – a bible for combinatorialists worldwide. This is a
book organized in an unusual way. It has three parts: The first part consists of mostly
easily formulated questions and problems, the second part contains hints for the
solutions, and the third part thorough proofs with discussions. This of course, makes
up the largest part.

Lovász convincingly claims in this book that discrete mathematics, at the time
of publication, has grown out of an area with simple questions that are relatively
easy to solve without much mathematical knowledge into a structured field with
various branches consisting of central concepts and theorems forming a hierarchy
and possessing a rich bouquet of proof techniques. Instead of presenting the theories
analytically and deductively, Lovász designed his book with the purpose of helping
interested readers to learn many of the existing techniques in combinatorics. And as
he wrote in the introduction:

The most effective (but admittedly very-time consuming) way of learning such techniques is
to solve (appropriately chosen) exercises and problems.

We believe that this book significantly changed the level on which combinatorics
(and graph theory in particular) was treated. It caught worldwide attention from
the very start (see, e.g., the book review by Bollobás [19]) by combinatorialists,
computer scientists, and mathematicians in general. It is remarkable that after more
than 40 years of its existence the book, that mirrors the vast experience of the author,
is still in print and in use.

A side remark: Combinatorics meetings usually have an open problems session
where participants explain questions they are working on and have not solved yet.
Lovász, with his wide knowledge of proof techniques, has always been outstanding
in being able to solve many of the open problems on the spot.

Matching problems have played a considerable role in the development of graph
theory. Well-known and important early results are, e.g., König’s Matching Theo-
rems, the Marriage Theorem, and Tutte’s 𝑓 -factor theorem. Matchings, 𝑏-matchings,
𝑇-joins, etc. have a rich structure theory. The Edmonds–Galai decomposition is one
such example. Various matching problems and their ramifications appear in a large
variety of applications of combinatorial optimization (e.g., the Chinese Postman
Problem). Many of these are solvable with (highly nontrivial) polynomial time al-
gorithms for which the pioneering work of J. Edmonds, see [41], laid the basis.
Edmonds [42] achieved also a breakthrough in polyhedral combinatorics by provid-
ing a linear description of the matching polytope that does not simply follow from
total unimodularity. Lovász [108] came up with a new and elegant proof of this result
that was later often mimicked for the characterization of other polytopes arising in
combinatorial optimization.
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The book [115] Matching Theory, written by László Lovász and Mike Plummer,
provides a broad view of this subject and covers the roughly 40 articles that Lovász
has contributed to this field. We just want to highlight Chapters 10 and 11 of this
book. Chapter 10 is devoted to the 𝑓 -factor problem which asks whether, for a given
graph 𝐺 = (𝑉,𝐸) and integers 𝑓 (𝑣) for every vertex 𝑣 ∈ 𝑉 , there is a spanning
subgraph 𝐻 of 𝐺 such that the degree of 𝑣 in 𝐻 is equal to 𝑓 (𝑣). In a series of
four papers that appeared 1970–1972, Lovász developed a generalization of the
Edmonds–Galai Structure Theorem to the 𝑓 -factor problem to provide an elegant
answer of the 𝑓 -factor problem. Chapter 11 introduces further generalizations such as
the matroid and polymatroid matching problem which are interesting (and difficult)
combinations of topics in graph and matroid theory. We refer to this Chapter of [115]
and the article [109] for some of the results that can be shown in this context. Finally,
this book contains in the preface a wonderful brief, yet in-depth survey of the
historical development of matching theory.

Lovász’s book Large networks and graph limits [112] is aiming in a different
direction. It is the result of a stay of Lovász at the IAS in Princeton. We have
dealt with parts of this book in Section 17. Graph limits became a very active
field with contributions ranging from model theory, probability, functional analysis
to theoretical computer science, network science and, of course, combinatorics.
This theory fits very well with advanced combinatorics; for example, the role of
Szemerédi’s regularity lemma is highlighted and explained properly in this context.
The basic theory of convergent graph sequences is derived in several settings; and
multiple applications to parameter and property testing, extremal theory, and other
applications are given. The book starts with an informal introduction into large
graphs in a network science context, specifying the abundance of real applications,
and questions to ask about them. This is followed by a lengthy chapter on the algebra
of graph homomorphisms. This chapter can be read independently and is also of
independent interest. But one of the main features of this book is to show how this
algebra is connected to limit structures and limit distributions. It is amazing how
much material was developed in this context in less than a decade. In the very nice
preface, Lovász lists the branches of mathematics that come into play in his book
and writes:

These connections with very different parts of mathematics made it quite difficult to write
this book in a readable form [. . .] [continuing that he found that] the most exciting feature
of this theory [. . .] [is] its rich connections with other parts of mathematics (classical and
non-classical) [. . .] [so that he] decided to explain as many of these connections [. . .] [as
he] could fit in the book.

Summarizing, this book is a real tour de force.
The American Mathematical Society Colloquium Publications were established

in 1905. So far 66 books were published in this AMS flagship book series “of-
fering the finest in scholarly mathematical publishing”. Vol. 60 is the book [112]
Large Networks and Graph Limits discussed above, Vol. 65 is the book Graphs and
Geometry [113], so far the last book written by Lovász.

Vol. 60 pictures the emergence and maturation of a new theory while Vol. 65
presents a wide spectrum of geometry related techniques (and tricks) to study graphs.
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In twenty chapters (and three appendices) Lovász surveys many connections between
graph theory and geometry concentrating on those which lie deeper. These are among
others: rubber band representations, coin representations, orthogonal representation,
and discrete analytic functions. Interestingly, this book is only about geometry, and
thus topology is outside its scope. Nevertheless, the book contains some of the key
discoveries of Lovász in a new context.

The Leitmotiv of the whole book [113] is described in the preface:
Graphs are usually represented as geometric objects drawn in the plane, consisting of vertices
and curves connecting them. The main message of this book is that such a representation is
not merely a way to visualize the graph, but an important mathematical tool. It is obvious
that this geometry is crucial in engineering if you want to understand rigidity of frameworks
and mobility of mechanisms. But even if there is no geometry directly connected to the
graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning
and applications in proofs and algorithms. This thought emerged in the 1970s, and I found
it quite fruitful.

Lovász has been developing these thoughts for about forty years observing:
Many new results and new applications of the topic have also been emerging, even outside
mathematics, like in statistical and quantum physics and computer science (learning theory).
At some point I had to decide to round things up and publish this book.

This finishes his preface. But he returns to these considerations in Chapter 20,
“Concluding Thoughts”, on page 390 as follows:

I am certain that many new results of this nature will be obtained in the future (or are already
in the literature, sometimes in a quite different disguise). Whether these will be collected and
combined in another monograph, or integrated into science through some other platform
provided by the fast changing technology of communication, I cannot predict. But the beauty
of nontrivial connections between combinatorics, geometry, algebra and physics will remain
here to inspire research.

When reviewing the book [112] in the Bulletin of the American Mathematical
Society, one of us quoted Michel Mendès France who once told him that envy is the
right feeling when reading beautiful mathematics. Yes, this is the feeling one may
have when reading Lovász’s books such as [112] and [113].

His exceptional research capabilities and his broad knowledge of mathematics
are mirrored in Lovász’s public presentations and survey articles. He has the ability
to explain difficult results in understandable language and, in particular, to display
and illustrate connections between seemingly unrelated topics. Examples of that can,
e.g., be found in the articles he contributed to the Handbook of Combinatorics [62],
see also [91]. The titles of some of his survey and motivating articles contain phrases
such as One mathematics or Discrete and Continuous: Two sides of the same. This
reflects his philosophy that science is not a collection of independent topics but
a tightly connected network to be discovered and understood. He contributed to
this conviction also administratively by serving the scientific community in leading
positions of the International Mathematical Union and the Hungarian Academy of
Sciences.

The unity of mathematics and the role of mathematics in the world have been
addressed again and again by László Lovász through many of his activities. Given the
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outstanding excellence in his own research and the huge experience as a professional
in combination with admirable modesty the mathematical community can hardly
think of a better representative.
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114. L. Lovász, J. Nešetřil, A. Pultr. On a product dimension of graphs. J. Comb. Theory B

29:47–67, 1980.
115. L. Lovász, M. Plummer. Matching Theory. North Holland, 1986.
116. L. Lovász, A. Schrijver. Cones of matrices and set-functions, and 0-1 optimization. SIAM J.

Optim. 1:166–190, 1991.
117. L. Lovász, A. Schrijver. A Borsuk theorem for antipodal links and a spectral characterization

of linklessly embeddable graphs. Proceedings of the Amer. Math. Soc. 126:1275–1285, 1998.
118. L. Lovász, L. Schrijver. Semidefinite functions on categories. Electron. J. Combin. 16(2),

2009.
119. L. Lovász, L. Schrijver. Dual graph homomorphism functions. J. Comb. Theory A 117:216–

222, 2010.
120. L. Lovász, M. Simonovits. The mixing rate of Markov chains, an isoperimetric inequality, and

computing the volume. Proc. 31st IEEE Annual Symp. on Found. of Comp. Sci, pp. 346–354,
1990.

121. L. Lovász, M. Simonovits. Random walks in a convex body and an improved volume algo-
rithm. Random Struct. and Algorithms 4:359–412, 1993.

122. L. Lovász, B. Szegedy. Limits for dense graph sequences. J. Combin. Theory B 96:933–957,
2006.
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Centenial, Springer, pp. 383–407, 2013.
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