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The asymmetric traveling salesman problem with time
windows (ATSP-TW) is a basic model for scheduling and
routing applications. In this paper, we present a formu-
lation of the problem involving only 0/1 variables asso-
ciated with the arcs of the underlying digraph. This has
the advantage of avoiding additional variables as well as
the associated (typically very ineffective) linking con-
straints. In the formulation, time-window restrictions
are modeled using “infeasible path elimination” con-
straints. We present the basic form of these constraints
along with some possible strengthenings. Several other
classes of valid inequalities derived from related asym-
metric traveling salesman problems are also described,
along with a lifting theorem. We also study the ATSP-TW
polytope, PTW, defined as the convex hull of the integer
solutions of our model. We show that determining the
dimension of PTW is a strongly NP-complete problem,
even if only one time window is present. In this latter
case, we provide a minimal equation system for PTW.
Computational experiments on the new formulation are
reported in a companion paper, where we show that it
outperforms alternative formulations on some classes
of problem instances. © 2000 John Wiley & Sons, Inc.
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1. INTRODUCTION

The asymmetric traveling salesman problem with time
windows (ATSP-TW), in the “open path” version consid-
ered in this paper, can be described as follows: Consider
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a complete digraph G = (V, A) on n := |V| nodes, having
nonnegative arc costs cij and setup times tij associated
with each arc (i, j) ∈ A. Nodes correspond to jobs to be
processed in sequence and without preemption on a sin-
gle machine. Arcs correspond to job transitions, the asso-
ciated setup times tij giving the changeover time needed
to process node j right after node i. A processing time
pi ≥ 0, a release date ri ≥ 0, and a deadline di ≥ ri

are given for every node i ∈ V. The release date ri de-
notes the earliest possible and the deadline di the latest
possible starting time for processing node i ∈ V. The
interval [ri, di] is called the time window for node i. The
time window is called active if ri > 0 or di < +∞; a
time window of the type [0, +∞) is called relaxed. We
deal with the case where waiting times are allowed, that
is, processing may reach a node i ∈ V earlier than ri and
wait until the node is released. We assume that costs and
setup times, as well as processing times, release dates,
and deadlines are integer values and allow di = +∞ for
some nodes i ∈ V.

The minimal time delay for processing node j imme-
diately after node i is given by

ϑij := pi + tij.

In several applications, the triangle inequality on ϑ is
satisfied, that is:

ϑij ≤ ϑik + ϑkj, for all i, j, k ∈ V, |{i, j, k}| = 3. (1.1)

The problem is to find a min-cost Hamiltonian path
satisfying the time-window restrictions, that is, a node
sequence with minimal total cost such that, for every
node i ∈ V, the start time for processing (visiting) node
i ∈ V lies within the given time window [ri, di].
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By introducing an additional node (depot), the prob-
lem can easily be transformed into its “closed-tour” ver-
sion in which one is interested in finding a min-cost
Hamiltonian tour through all nodes, starting at the depot
node at time 0 and satisfying the time-window restric-
tions for all other nodes.

Note that ATSP-TW reduces to the standard asym-
metric TSP when the time windows are relaxed; hence,
ATSP-TW with general time windows is an NP-hard
problem. In fact, Savelsbergh [33] showed that it is
already strongly NP-complete to find a feasible so-
lution for the problem; this also follows from Garey
and Johnson [26], who showed that it is strongly NP-
complete to find a feasible schedule for nonpreemptive
single-machine scheduling with release times and dead-
lines. Furthermore, Tsitsiklis [35] showed that the prob-
lem with general time windows remains strongly NP-
complete, even if the nodes correspond to points on a
line and all processing times equal 0.

The research in this paper was motivated by a joint
project with industry that had the aim of minimizing
the time needed for the unloaded moves of a stacker
crane in an automated storage system (see Ascheuer [3]
and Abdel-Hamid et al. [1] for details). As already men-
tioned, the ATSP-TW (in its “open-path” version) can
be interpreted as a one-machine scheduling problem with
time-windows and sequence-dependent setup times. We
refer to Queyranne and Schulz [31] for a comprehensive
survey on polyhedral approaches to scheduling problems.

Some different versions of the ATSP-TW were dis-
cussed in the literature on vehicle-routing problems. For
example, ATSP-TW is a subproblem in the “cluster-first,
route-second approach,” where the nodes that have to
be visited are first clustered according to some heuristic
criterion and then routed by solving an instance of ATSP-
TW for each cluster. In other applications, soft time win-
dows are considered, that is, a violation of the time win-
dows is allowed but results in an additional penalty cost.
For a survey on time-constrained routing and scheduling
problems, see Desrochers et al. [19, 20], among others.

To our knowledge, only a few papers describe exact
methods for solving to optimality the (symmetric) TSP
with time windows. Christofides et al. [17] and Baker [7]
described branch-and-bound algorithms, whereas Dumas
et al. [21] solved the problem through dynamic program-
ming. Polyhedral methods have turned out to be an ap-
propriate tool to solve the unconstrained ATSP (Fischetti
and Toth [25]) and the ATSP with precedence constraints
(Ascheuer et al. [4, 6]). Hence, we started our attempt of
extending these methods to take time windows into ac-
count.

In this paper, we address a polyhedral study of the
ATSP-TW. The paper is organized as follows: Section 2
gives the notation used throughout and introduces the
basic model that we use, in which the time-window re-
strictions are modeled using “infeasible path elimina-

tion” constraints. The polytope associated with the fea-
sible solutions to this model is addressed in Section 3,
where we investigate the polytope dimension in the very
special case in which only one of the time windows is
active. We show that, even in this oversimplified case,
determining the polytope dimension is a strongly NP-
complete problem. Several classes of additional valid in-
equalities are introduced in Section 4. In particular, we
describe different lifted forms of the basic infeasible path
elimination constraints, new inequalities associated with
concatenation of feasible paths, a lifting procedure, and
a strengthened version of the (π, σ)-inequalities proposed
by Balas et al. [12] for the ATSP with precedence con-
straints. Some conclusions are finally drawn in Section 5.

2. NOTATION AND MODELING

The ATSP-TW can be modeled in various ways: A
“standard model” (cf. Desrochers and Laporte [18],
among others) involves binary arc variables xij as well as
node variables τi, indicating the time when node i is vis-
ited. The time-window restrictions are modeled with the
help of the bound constraints ri ≤ τi ≤ di; linking be-
tween the x and τ variables is provided by a generaliza-
tion of the Miller–Tucker–Zemlin inequalities, namely:

τi + ϑij − (1 − xij) · M ≤ τj ∀i, j ∈ V, i ≠ j,

where M is a sufficiently large positive value. Note that
these constraints involve a “big M” term that is known
to cause computational problems.

Recently, Maffioli and Sciomachen [29] and van Eijl
[36] proposed a different model involving |A| additional
variables yij which give the time when node i is left in
direction to node j (with yij = 0 whenever xij = 0). The
time-window restrictions are then modeled via the con-
straints rixij ≤ yij ≤ dixij, whereas the linking between
x and y variables is established through the inequalities

n∑
i=1

(yij + ϑijxij) ≤
n∑

k=1

yjk ∀j = 1, . . . , n.

The computational results reported in Bogatsch [14] and
our companion paper [5] indicate that this model outper-
forms the standard one, mainly on instances where time
windows are not too tight.

In this section, we provide a different way of model-
ing the ATSP-TW as an integer linear program, which
avoids additional variables as well as “big M” coeffi-
cients. The time-window constraints are modeled implic-
itly by a class of infeasible path constraints. The infea-
sibility is not restricted to the case of time windows:
Capacity constraints, for example, might be modeled as
well in a similar vein.

We next introduce the main notation used in the se-
quel: Given a node set W ⊆ V, let

A(W) := {(i, j) ∈ A|i, j ∈ W}
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denote the set of all arcs with tail and head in W. For
any two node sets U, W ⊆ V let,

(U : W) := {(i, j) ∈ A|i ∈ U, j ∈ W}
denote the set of arcs with tail in U and head in W. To
simplify notation, we write (W : j) and (j : W) instead of
(W : {j}) and ({j} : W), respectively. If U = � or W = �,
then (U : W) = �. Given a node set W ⊂ V, W ≠ �, we
also define

δ−(W) := {(i, j) ∈ A|i ∈ V\W, j ∈ W},

δ+(W) := {(i, j) ∈ A|i ∈ W, j ∈ V\W},

δ(W) := δ−(W) ∪ δ+(W).

The arc set δ(W) is called a cut. To simplify notation, we
write δ−(v), δ+(v), and δ(v) instead of δ−({v}), δ+({v}),
and δ({v}), respectively. The numbers |δ−(v)|, |δ+(v)|,
and |δ(v)| are called the indegree, outdegree, and degree
of node v ∈ V. A node with degree zero is called iso-
lated.

For notational convenience, a path P consisting of
the arc set {(vi, vi+1)|i = 1, . . . , k − 1} is sometimes de-
noted by P = (v1, v2, . . . , vk). If not stated differently, the
path P is always intended to be open and simple, that is,
|P| = k − 1 and vi ≠ vj for i ≠ j. Moreover, we let

[P] := {(vi, vj) ∈ A|1 ≤ i < j ≤ k}
denote the transitive closure of P = (v1, . . . , vk).

Given a path P = (v1, . . . , vk), the earliest starting
time tvi at node vi (i = 1, . . . , k) along P is computed
as

tv1 := rv1

tvi := max{tvi−1 + ϑvi−1vi , rvi } for i = 2, . . . , k.

Notice that the formula introduces “waiting times”
wvi := max{0, rvi−1 − (tvi−1 + ϑvi−1vi )} which are positive
whenever a node vi, i = 2, . . . , k, is reached before its
release date. If wi = 0 for all i = 2, . . . , k, the path is
called minimal. We denote by ϑ(P) := tvk the earliest
starting time at the last node of P. For a minimal path,
ϑ(P) = rv1 +

∑k−1
i=1 ϑvivi+1 holds. To simplify notation,

we sometimes write ϑ(v1, v2, . . . , vk) instead of ϑ(P) for
P = (v1, v2, . . . , vk).

A Hamiltonian path P = (v1, . . . , vn) is called feasible
if each node is visited within its time window, that is,
rvi ≤ tvi ≤ dvi for i = 1, . . . , n. A path P = (v1, . . . , vk),
where 2 ≤ k ≤ n, is said to be infeasible if it does
not occur as a subpath in any feasible Hamiltonian path.
Deciding whether a given path P is feasible is clearly an
NP-complete problem, even when P contains only one
node, as in this case it amounts to deciding whether a
feasible Hamiltonian path exists. Easily checkable and
obvious sufficient conditions for infeasibility are given
in the following lemma:

Lemma (2.1). A path P = (v1, . . . , vk) is infeasible if at
least one of the following conditions holds:

(i) P violates the deadline for its last node vk, that is,
ϑ(P) > dvk .

(ii) The triangle inequality (1.1) on ϑ is satisfied and there
exists a node w not contained in P such that both paths
P1 = (w, v1, . . . , vk) and P2 = (v1, . . . , vk, w) violate the
given deadline on their last node, that is, ϑ(P1) > dvk

and ϑ(P2) > dw.

In case condition (ii) above is satisfied, we say that node
w cannot be covered by (an extension of) path P. If the
triangle inequality on ϑ is not satisfied, the condition can
easily be generalized by considering the ϑ-shortest paths
from w to v1 and from vk to w.

Time windows give rise to precedences among the
nodes. For example, whenever the ϑ-shortest path from
j to i is longer than di −rj, we can conclude that i has to
precede j in any feasible solution. Let i ≺ j denote the
fact that i has to precede j in any feasible solution and let
GP = (V, R) denote the precedence digraph where each
arc (i, j) ∈ R represents a precedence relationship i ≺ j.
Without loss of generality, we assume GP to be acyclic
and transitively closed. Moreover, let

π(v) := {i ∈ V|(i, v) ∈ R},

σ(v) := {j ∈ V|(v, j) ∈ R}
represent the set of the predecessors and successors of
a node v ∈ V, respectively. Set, moreover, π(X) :=
∪v∈Xπ(v) and σ(X) := ∪v∈Xσ(v) for all X ⊆ V.

We next describe the basic model that we propose,
written for the “open-path” version of ATSP-TW. A sim-
ilar model can easily be defined for the “closed-tour” ver-
sion of the problem. For each arc (i, j) ∈ A, we introduce
a binary variable xij ∈ {0, 1} with the interpretation

xij =
{

1, if (i, j) ∈ A is chosen,
0, otherwise.

For any Q ⊆ A, we write x(Q) for
∑

(i,j)∈Q xij. To guar-
antee that the set of chosen arcs (represented by x) forms
a feasible Hamiltonian path, we introduce the following
model:

min
∑

(i,j)∈A

cijxij

s.t. x(A) = n − 1 (2.2)

x(δ−(i)) ≤ 1 ∀ i ∈ V (2.3)

x(δ+(i)) ≤ 1 ∀ i ∈ V (2.4)

x(A(W)) ≤ |W| − 1 ∀ W ⊂ V, |W| ≥ 2 (2.5)

x(P) ≤ |P| − 1 ∀ infeasible path P (2.6)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.7)
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Constraints (2.5) forbid the occurrence of subtours;
(2.2), . . . , (2.5), (2.7) force the solution to represent a
Hamiltonian path, whereas the infeasible path con-
straints (2.6) forbid infeasible paths to be part of the so-
lution. The formulation of the infeasible path constraints,
as stated in (2.6), is very weak; in Section 4.1, we present
possible strengthenings of these inequalities.

We want to remark here that objective functions such
as minimizing the makespan or minimizing the waiting
times cannot be incorporated easily in this model. On
the other hand, note that no “big M” term is required
in the model. Only arc variables are present, which im-
plies that no linking constraints between arc and node
variables are necessary. This suggests that (a strength-
ening of) this model can be superior to alternative ones,
at least for some problem classes. The computational re-
sults presented in our companion paper [5] confirm this
expectation.

3. POLYHEDRAL ANALYSIS

In this section, we aim at analyzing the dimension of
the ATSP-TW polytope:

PTW := conv{x ∈ RA|x satisfies (2.2)–(2.7)},

defined as the convex hull of the characteristic vectors of
all feasible Hamiltonian paths on the complete digraph
G = (V, A). Recall that it is a strongly NP-complete
problem to find a feasible ATSP-TW solution, that is, to
decide (for the general case) whether PTW is nonempty.
We will therefore restrict ourselves to the study of “sim-
pler” special cases, in particular, the one where only one
time window is active. Rather unexpectedly, even in this
oversimplified case, the polyhedral analysis is quite diffi-
cult, in that PTW lies on a number of hyperplanes whose
defining equations have no counterpart in the pure ATSP.
Moreover, the solution of a min-cost Hamiltonian path
problem is required to compute the dimension of PTW,
that is, determining this dimension is a strongly NP-
complete problem even when all time windows but one
are relaxed.

In the remaining part of this section, we consider the
case in which only the time window [r1, d1] associated
with node 1 (say) is active. All other time windows are
relaxed to [0, +∞). Furthermore, we assume that the tri-
angle inequality (1.1) on ϑ is satisfied.

Partition the node set as follows:

V = {1} ∪ Q ∪ W,

where

Q := {j ∈ V\{1}|ϑ(j, 1) = rj + ϑj1 > d1}
contains the nodes that cannot be sequenced before node
1 without violating the time window for node 1, and
W := V\({1} ∪ Q). We define an undirected feasibility

graph GF = (V\{1}, E), where

E := {ij|i, j ∈ V\{1}, i ≠ j,

min{ϑ(i, j, 1), ϑ(j, i, 1)} ≤ d1}
contains all node pairs i, j such that either (i, j, 1) or
(j, i, 1), or both, are feasible paths. Note that the nodes of
Q (possibly among others) are isolated in GF, that is, they
are “incompatible” with all other nodes in j ∈ V\{1}
(see Fig. 1 for an illustration).

Consider the following equations:

xj1 = 0, ∀j ∈ Q (3.1)

x(δ+(1)) = 1, if node 1 cannot be the
(3.2)

final node of a feasible Hamiltonian path∑
j∈Sh

x(δ−(j)) = |Sh| − x(Sh : 1), h = 1, . . . , m, (3.3)

where S1, . . . , Sm are the m (say) connected components
of GF. Note that adding up the m eqs. (3.3) leads to

m∑
h=1


∑

j∈Sh

x(δ−(j))


 =

m∑
h=1

|Sh| −
m∑

h=1

x(Sh : 1),

which can be rewritten as x(A) = n − 1, that is, eq. (2.2)
is a linear combination of (3.3). Furthermore, note that
checking the condition in (3.2) requires the solution of a
min-cost Hamiltonian path problem.

Lemma (3.4). Equations (3.1)–(3.3) are valid for PTW.

Proof. Validity is obvious for eqs. (3.1) and (3.2). As
to eqs. (3.3), take any connected component Sh of GF and
note that no edge in GF crosses the cut induced by Sh.

Consider the characteristic vector x of any feasible
Hamiltonian path, and let k be its starting node, that is,
x(δ−(k)) = 0. The left-hand side of (3.3) reads∑

j∈Sh

x(δ−(j)) =
{ |Sh| − 1, if k ∈ Sh,

|Sh|, otherwise.

Hence, (3.3) is violated if and only if one of the following
two cases occurs (recall that 1 /∈ Sh, as node 1 is not part
of GF and that we assume the triangle inequality to hold):

(i) k ∈ Sh and x(Sh : 1) = 0 [see Fig. 2(a)]: Let j be such
that xj1 = 1 (note that k ∈ Sh implies k ≠ 1, i.e., node
1 has indeed a predecessor j in the path); since x(Sh :
1) = 0, we must have j /∈ Sh, which implies that k and
j are “compatible,” that is, kj ∈ E, a contradiction.

FIG. 1. The feasibility graph GF (with node 1 added).
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(ii) k /∈ Sh and x(Sh : 1) = 1 [see Fig. 2(b)]: Let j ∈ Sh

be such that xj1 = 1 and observe that kj ∈ E, again
a contradiction.

It is important to observe here that eqs. (3.1)–(3.3) are
valid for the case of general time windows as well, node
1 being any node with an active time window.

Lemma (3.5). Equations (3.1)–(3.3) are linearly inde-
pendent.

Proof. It is sufficient to exhibit for each equation
αx = α0 of the family (3.1)–(3.3) a point x ∈ RA satis-
fying all the equations in the family except αx = α0.

For each eq. (3.1), let x to be the characteristic vec-
tor of any path of the form (j, 1, Φ[S1], . . . , Φ[Shj−1],
Φ[Shj+1], . . . , Φ[Sm]), where Shj = {j} is the singleton
component of GF containing node j and Φ[Si] denotes
any permutation of the nodes in Si [see Fig. 3(a)].

For each eq. (3.3), let x to be the characteristic vector
of the two paths (1, Φ[S1], . . . , Φ[Sh−1], Φ[Sh+1], . . . , Φ[Sm])
and (Φ[Sh]) [see Fig. 3(b)].

As to eq. (3.2), let x be the characteristic vector of
any cycle on n − 1 nodes of the form (Φ[S1], . . . , Φ[Sm])
[see Fig. 3(c)].

We now show that (3.1)–(3.3) define a minimal equa-
tion system for the polytope PTW, that is, that no other
linearly independent valid equation exists. Let

µ =




1, if the condition in (3.2) is satisfied, that is,
node 1 cannot be the final node of a
feasible Hamiltonian path,

0, otherwise.

Theorem (3.6). Consider any ATSP-TW instance de-
fined on a complete digraph G = (V, A) with n ≥ 4
nodes. If only the time window for one node is active,
then

dim(PTW) = |A| − (|Q| + m + µ).

Proof. As before, we assume w.l.o.g. that only the
time window of node 1 is active. Lemmas (3.4) and (3.5)
imply that dim(PTW) ≤ |A| − (|Q| + m + µ). We give
a direct proof that this bound is tight, consisting of ex-

FIG. 2. Constructions for the proof of Lemma 3.4.

FIG. 3. Constructions for the proof of Lemma 3.5.

hibiting |A| − (|Q| + m + µ) + 1 affinely independent
vertices of PTW.

Consider first the face F of PTW induced by
x(δ−(1)) ≥ 0, containing all feasible Hamiltonian paths
starting with node 1. As we are assuming that dj = +∞
for all j ≠ 1, every Hamiltonian path starting with node 1
is indeed feasible. It is then easy to see that there is a 1–1
correspondence between the vertices of F and the Hamil-
tonian tours of G; in particular, dim(F) equals the dimen-
sion of the “closed-tour” ATSP polytope on G. Hence,
dim(F) = |A| − 2n + 1, and a minimal equation system
for F is given by

(i) xj1 = 0 ∀j ∈ V\{1},
(ii) x(δ−(j)) = 1 − xj1 ∀j ∈ V\{1},
(iii) x(δ+(1)) = 1.

[Note that, because of (i), the right-hand side in (ii) is, in
fact, 1.] Therefore, there exist dim(F)+1 = |A|−2n+2
affinely independent vertices of this face. To prove our
claim, we need 2n−1−|Q|−m−µ additional affinely in-
dependent points, which we define in the following way:

A. For each j ∈ (V\{1})\Q, we define the point xj ∈
PTW associated with any feasible Hamiltonian path of
the form (j, 1, . . .). The affine independence of each
such point follows from eqs. (i), in that x

j
j1 = 1,

whereas xj1 = 0 for all other points defined previ-
ously. This construction produces n − 1 − |Q| new
points.

B. For each h = 1, 2, . . . , m, in turn, consider the com-
ponent Sh and let Th ⊆ E be any tree spanning Sh.
Choose any root node ρ ∈ Sh and give an orien-
tation to the edges in Th so as to obtain a directed
tree (arborescence) rooted at ρ. Then, scan the nodes
v ∈ Sh\{ρ} in any sequence, visiting each node after
its father node in the arborescence, and let fv be the
father node of v in the arborescence. Since fvv ∈ E,
there exists a feasible Hamiltonian path of the form
(v, fv, 1, . . .) or (fv, v, 1, . . .), whose characteristic vec-
tor yv satisfies all the eqs. (ii) except those with j = v
and j = fv. Because of the particular sequence in
visiting the nodes, all the points constructed before
the current yv satisfy the eq. (ii) written for j = v;
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hence, each new point is affinely independent from
the previous ones. The above construction produces
|Sh|−1 new points yv for each component Sh, that is,
n − 1 − m new points in total.

C. If µ = 1, we are done; otherwise, the last point to be
constructed is associated with any feasible Hamilto-
nian path of the form (. . . , 1). The affine independence
of this point follows from the fact that eq. (iii) is satis-
fied by all the previous points in which node 1 always
appears in position 1, 2, or 3 (recall n ≥ 4).

As already mentioned, an implication of Theorem 3.6
is that determining the dimension of PTW is a difficult
problem even when all time windows except one are re-
laxed. To be more specific, consider the following deci-
sion problem:

PROBLEM “DIMENSION”:

INSTANCE: Any ATSP-TW instance defined
on a complete digraph G = (V, A)
with integer arc lengths ϑij ≥ 0
satisfying the triangle inequality.

QUESTION: dim(PTW) = |A| − 1?

Theorem (3.7). Problem DIMENSION is strongly NP-
complete even if all time windows but one are relaxed.

Proof. Because of the equation x(A) = n − 1, we
know that dim(PTW) ≤ |A| − 1; hence, the answer “yes”
can be certified concisely by exhibiting |A| affinely inde-
pendent vertices of PTW. This shows that DIMENSION
belongs to the class NP. We next show that the prob-
lem is indeed strongly NP-complete through a reduction
from the following well-known strongly NP-complete
problem, HP:

Given a complete digraph G̃ = (Ṽ, Ã) with inte-
ger triangular arc lengths ϑ̃ij ≥ 0 and an integer
bound L, does G̃ contain a Hamiltonian path P̃ with∑

(i,j)∈P̃ ϑ̃ij ≤ L?

Note that it is not restrictive to assume that min{ϑ̃ij, ϑ̃ji} ≤
L holds for all i, j ∈ Ṽ, i ≠ j, since, otherwise, the an-
swer to problem HP is trivially “no.”

Given any instance of HP, one can define, in polyno-
mial time, a new complete digraph G = (V, A) with node
set V := Ṽ ∪ {1} and set up the following ATSP-TW
instance on G:

• pj := 0, rj := 0, for all j ∈ V

• dj :=

{
+∞, for j ∈ Ṽ,

L, for j = 1

• tij :=




ϑ̃ij, for all (i, j) ∈ Ã,

0, for all (i, j) ∈ δ−(1)

max{ϑ̃ij : (i, j) ∈ Ã}, for all (i, j) ∈ δ+(1).

This instance has just one active time window, namely,
the one associated with node 1, and the values ϑij :=

pi + tij(= tij) satisfy the triangle inequality, as required.
In addition, the feasibility graph GF is complete since
min{ϑ(i, j, 1), ϑ(j, i, 1)} = min{ϑ̃ij, ϑ̃ji} ≤ L = d1 holds
for all i, j ∈ Ṽ, i ≠ j. It then follows from Theorem 3.6
that dim(PTW) = |A| − 1 − µ; hence, problem DIMEN-
SION has an affirmative answer if and only if µ = 0,
a condition equivalent to the existence of a Hamilto-
nian path P̃ in G̃ with

∑
(i,j)∈P̃ ϑ̃ij ≤ L. This proves the

claim.

4. CLASSES OF VALID INEQUALITIES

In this section, we summarize known classes of in-
equalities valid for PTW, present strengthenings of these
inequalities, and state new classes of valid inequalities.

In the last section, we have seen that it is a diffi-
cult problem to establish the dimension of PTW even
for the simple case where only one time window is ac-
tive. Another problem for the polyhedral study is that,
even for fixed n and fixed time windows, little changes
in the setup times tij may result in dramatical changes
of the polytope structure, for example, increasing just
one such coefficient may make many feasible paths or
even the whole instance infeasible. Therefore, proving
that certain classes of inequalities are facet-defining for
PTW appears a very difficult task; hence, we only prove
the validity of the constraints that we propose. With the
help of a computer program [16], we have verified for
small instances with n ≤ 5 that these inequalities are,
indeed, facet-defining for most instances.

Not many classes of valid inequalities for the time-
constrained ATSP can be found in the literature. If we
ignore the setup times tij, ATSP-TW is related to single-
machine scheduling problems, which require sequencing
a set of jobs on a single machine with release times
and deadlines. Balas [8] introduced inequalities for this
class of problems, which can be incorporated in the
“standard” ATSP-TW models in which node variables
are used. Applegate and Cook [2] performed computa-
tional experiments with several of these classes for the
job-shop scheduling problem in which, however, a differ-
ent objective function (minimization of the makespan) is
considered.

It can be seen easily that all classes of inequalities
that are valid for the unconstrained ATSP polytope (the
convex hull of Hamiltonian tours in G) have a version
valid for PTW, obtained by possibly modifying the in-
equality to take care of the “open-path” formulation that
we consider. The ATSP polytope was studied extensively
by, among others, Grötschel [27], Grötschel and Padberg
[28], Balas [9], Fischetti [22–24], Balas and Fischetti [10,
11], Chopra and Rinaldi [15], and Queyranne and Wang
[32]. Similarly, all classes of valid inequalities derived
for the precedence-constrained ATSP (cf. Ascheuer [3],
Balas et al. [12]) are valid for PTW, by considering the
precedence relationships implied by the time windows.
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For some of these inequalities, we will present strength-
ened versions taking into account the time windows ex-
plicitely.

4.1. Infeasible Path-elimination Constraints

These constraints express the fact that certain paths
are infeasible, that is, they violate a time-window con-
straint. For a given infeasible path P = (v1, . . . , vk), the
basic version of these inequalities is given by x(P) ≤
|P| − 1. There exist, however, several possibilities to
strengthen these inequalities. We next discuss in detail
some of these lifted inequalities.
4.1.1. Tournament Constraints

Lemma (4.1). For all infeasible simple paths P =
(v1, . . . , vk), the tournament constraint

x([P]) :=
k−1∑
i=1

k∑
j=i+1

xvivj ≤ k − 2(= |P| − 1) (4.2)

is valid for PTW; see Fig. 4 for an illustration.

Proof. Because of the degree inequalities x(δ−(j)) ≤ 1,
condition

∑k−1
i=1

∑k
j=i+1 xvivj > k − 2 would imply that∑k

j=i+1 xvivj = 1 for all i = 1, . . . , k − 1. This, in
turn, implies that xvk−1vk = 1, xvk−2vk−1 + xvk−2vk = 1 (i.e.,
xvk−2vk−1 = 1), etc. But then one would have xij = 1 for all
(i, j) ∈ P, impossible because of the infeasibility of P.

Notice that the above proof also shows that, for any sim-
ple path P, x([P]) = |P| iff xij = 1 for all (i, j) ∈ P.

The validity of a tournament constraint depends only
on the infeasibility of a single path P. In the case when
other infeasible paths through the nodes v1, . . . , vk ex-
ist, the inequality can be further lifted in several ways:
For example, in the tournament constraint represented
in Figure 4, the coefficient of variable xv3v1 can be lifted
to 1 if both paths (v2, v3, v1, v4) and (v3, v1, v2, v4) happen
to be infeasible.

Given a node set W ⊆ V, recall that Φ[W] denotes a
generic permutation of the nodes in W.

Theorem (4.3). For each node set Q = {v1, . . . , vk−1} ⊂
V and each node vk, ∈ V\Q such that all paths of the
form (Φ[Q], vk) are infeasible, the inequality

x(A(Q)) + x(Q : vk) ≤ k − 2(= |Q| − 1) (4.4)

is valid for PTW.

FIG. 4. The support graph of a tournament constraint on k = 4 nodes.

Proof. Let x be any vertex of PTW, and let Gx =
(V, {(i, j) ∈ A | xij = 1}) be its support graph. If
vertex x violates (4.4), then x(A(Q)) = |Q| − 1 and
x(Q : vk) = 1; hence, Gx contains a path of the form
(Φ[Q], vk), impossible since any such path is infeasible by
assumption.

Theorem (4.5). For each node set S = {v2, . . . , vk−1} ⊂
V and any two nodes v1, vk ∈ V\S, v1 ≠ vk, such that
all paths of the form (v1, Φ[S], vk) are infeasible, the
inequality

x(v1 : S) + x(A(S)) + x(S : vk) + xv1vk ≤ k − 2 (4.6)

is valid for PTW.

Proof. Analogous to that of the previous theorem:
If x violates (4.6), then x(v1 : S) = x(S : vk) = 1 and
x(A(S)) = |S| − 1; hence, Gx would contain an infeasible
path of the form (v1, Φ[S], vk).

Note that inequality (4.4) is a strengthening of the
subtour elimination constraint x(A(Q)) ≤ |Q| − 1. More-
over, both inequalities (4.4) and (4.6) are a strengthening
of the tournament constraints (4.2) associated with all the
infeasible paths of the form (Φ[Q], vk) and (v1, Φ[S], vk),
respectively.

It is not easy to decide whether all the paths of the
form (Φ[Q], vk) and (v1, Φ[S], vk) are infeasible, as re-
quired for the validity of inequalities (4.4) and (4.6).
Easily checkable sufficient conditions are given by the
next lemma; tighter conditions can be derived in a
similar way.

Lemma (4.7).

(a) Take any Q ⊂ V and vk ∈ V\Q. If

min
vi∈Q

{rvi } +
∑
vi∈Q

min{ϑvivj |vj ∈ Q ∪ {vk}} > dk,

then all the paths of the form (Φ[Q], vk) are infeasible.
(b) Take any S ⊂ V and v1, vk ∈ V\S, v1 ≠ vk. If

rv1 +min{ϑv1vj |vj ∈ S}+
∑
vi∈S

min{ϑvivj |vj ∈ S∪{vk}} > dk,

then all the paths of the form (v1, Φ[S], vk) are infea-
sible.

Proof. Obvious from the definitions.

4.1.2. Generalized Tournament Constraints The tour-
nament constraint (4.2) can, in some cases, be general-
ized by using a clique-lifting technique akin to that de-
scribed in Balas et al. [11, 12], in which each node vi

is replaced by a clique Si of “clones.” We obtain the
following result:

Theorem (4.8). Let S1, . . . , Sk be k ≥ 2 disjoint
node sets, and assume that any path of the form
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(Φ[S1], . . . , Φ[Sk]) is infeasible. Then, the inequality

k−1∑
i=1

k∑
j=i+1

x(Si : Sj) +
k∑

i=1

x(A(Si))

≤ k − 2 +
k∑

i=1

(|Si| − 1) =
k∑

i=1

|Si| − 2

is valid for PTW.

Proof. The inequality can only be violated by a point
x ∈ PTW if x(A(Si)) = |Si| − 1 for i = 1, . . . , k, and∑k−1

i=1
∑k

j=i+1 x(Si : Sj) = k − 1, where this latter condi-
tion implies that x(S1 : S2) = · · · = x(Sk−1 : Sk) = 1. But
this would imply that the support graph of x contains an
infeasible path of the form (Φ[S1], . . . , Φ[Sk]), a contra-
diction.

Figure 5 gives an illustration of a generalized tourna-
ment constraint based on infeasible paths on four cliques.

A simple case in which the assumption of Theorem
4.8 is satisfied arises when the triangle inequality (1.1)
on ϑ holds, and there exists vi ∈ Si (i = 1, . . . , k) such
that the path P = (v1, . . . , vk) is infeasible because of
condition (i) in Lemma 2.1 or because of condition (ii)
in the same lemma (provided that w /∈ ∪k

i=1Si).
A different generalization of tournament constraints

can be obtained along the following lines: Suppose that
we are given a family P = {P1, P2, . . . , Pk} of node dis-
joint simple paths, and let ω be any permutation of the in-
dices of P. The path P = (Pω(1), Pω(2), . . . , Pω(k)) is called
a concatenation of the paths in P. Now it may happen
that the paths P1, P2, . . . , Pk are feasible in themselves,
but that there is no way to connect them in a feasible
way. This observation leads to the following result:

Theorem (4.9). Let P = {P1, P2, . . . , Pk} be a family of
node-disjoint simple paths and assume that the triangle
inequality (1.1) on ϑ is satisfied. If ϑ(P) > dw for any
concatenation P = (. . . , w) of the paths in P, then the
inequality

k∑
i=1

x([Pi]) ≤
k∑

i=1

|Pi| − 1

is valid for PTW.

FIG. 5. A generalized tournament constraint.

Proof. To violate the inequality, a feasible solution
x ∈ PTW must satisfy x([Pi]) = |Pi| for all i = 1, . . . , k.
As observed in the proof of Theorem 4.1, this implies
that xuv = 1 for all (u, v) ∈ Pi and i = 1, . . . , k, a contra-
diction.

4.1.3. Other Lifted Path Inequalities Given an infea-
sible path P = (v1, . . . , vk), one possible way of strength-
ening the basic infeasible path constraint x(P) ≤ |P| − 1
into a tournament constraint x([P]) ≤ |P|−1 has been al-
ready presented. There are, however, several other ways
to lift the basic infeasible path constraint, whose valid-
ity is based only on the assumption of the infeasibility
of path P = (v1, . . . , vk).

Theorem (4.10). If P = (v1, v2, . . . , vk) is an infeasible
path, then the following inequalities are valid for PTW :

(a) x(P) +
∑k−2

j=1 xvjvk +
∑k−2

j=2
∑j−1

l=1 xvjvl ≤ k − 2
(b) x(P) +

∑k
j=3 xv1vj +

∑k−1
j=3

∑k
l=j+1 xvlvj ≤ k − 2

(c) x(P) +
∑k−1

j=2
∑j−1

l=1 xvjvl ≤ k − 2
(d) x(P) +

∑k−1
j=2

∑k
l=j+1 xvlvj ≤ k − 2.

Proof. Let ax ≤ k − 2 be any of the inequalities (a)–
(d) above. Since P is an infeasible path, for any x ∈ PTW,
there must be some h such that xvhvh+1 = 0. We have to
show that ax ≤ k − 2 holds for all cases (a)–(d) above:

(a) If h = k − 1, then ax ≤ ∑k−2
i=1 x(δ+(vi)) ≤ k − 2.

Otherwise, ax ≤ x(A({v1, . . . , vh})+
∑k−2

i=h+1 x(δ+(vi))+
x(δ−(vk)) ≤ (h − 1) + (k − 2 − h) + 1 = k − 2.

(b) If h = 1, then ax ≤ ∑k
i=3 x(δ−(vi)) ≤ k−2. Otherwise,

ax ≤ x(A({vh+1, . . . , vk})+
∑h

i=3 x(δ−(vi))+x(δ+(v1)) ≤
(k − h − 1) + (h − 2) + 1 = k − 2.

(c) We have ax ≤ x(A({v1, . . . , vh})) +
∑k−1

i=h+1 x(δ+(vi)) ≤
(h − 1) + (k − 1 − h) = k − 2.

(d) We have ax ≤ x(A({vh+1, . . . , vk})) +
∑h

i=2 x(δ−(vi)) ≤
(k − h − 1) + (h − 1) = k − 2.

Figure 6 gives examples of the inequalities (a)–(d) for
the infeasible path P = (v1, . . . , v5). As in the case of
tournament constraints, these inequalities can further be
lifted when other infeasible paths through the nodes of
P exist (see Ascheuer [3] for details).

4.2. A Lifting Procedure

In this section, we describe a lifting procedure, called
V-lifting, that can be used to construct new families
of valid infeasible path elimination inequalities for the
ATSP-TW.

Suppose that we are given two valid inequalities with
integer coefficients, say αx ≤ α0 and βx ≤ β0, such that
β0 = α0 + 1 and βij ≥ αij for all (i, j) ∈ A. Further-
more, assume that there exist three distinct nodes, say
u, w, and h, such that βuh ≥ αuh + 1 and βhw ≥ αhw + 1.
By adding up and then rounding the following valid in-
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FIG. 6. Lifted infeasible path elimination constraints on k = 5 nodes.

equalities weighted by 1
2 ,

αx ≤ α0

βx ≤ β0 = α0 + 1
xuh + xhw + 2xuw ≤ 2,

one obtains the new valid inequality

αx + xuh + xhw + xuw ≤ α0 +
⌊

3
2

⌋
= α0 + 1,

in which the α-coefficient of the three arcs (u, h), (h, w),
and (u, w) is increased by 1 at the “expense” of an in-
crease of 1 of the right-hand side α0.

Notice that the correctness of the construction de-
pends only on the validity of the inequality xuh + xhw +
2xuw ≤ 2 (which follows from the degree inequalities);
hence, it holds for the unconstrained ATSP polytope as
well.

V-lifting can easily be applied to tournament con-
straints, as illustrated in Figure 7. To this end, let αx :=
x([P]) ≤ α0 := |P| − 1 be the tournament constraint
associated with any infeasible path P = (v1, . . . , vk).
Take a node h /∈ {v1, . . . , vk} and assume that the path
P′ = (v1, . . . , vi, h, vi+1, . . . , vk) is infeasible for a certain
index i (when ϑ satisfies the triangle inequality, this is
likely to be the case for any choice of h and i). Then, let
βx ≤ β0 be the tournament inequality x([P′]) ≤ |P′| − 1
associated with P′; Define u := vi and w := vi+1 and
obtain through V-lifting the new inequality

x([P]) + xvih + xhvi+1 + xvivi+1 ≤ |P|
in which the coefficient of arc (vi, vi+1) is raised to 2. By
iterating the procedure, one can obtain V-lifted tourna-
ment inequalities with several coefficients 2.

4.3. Strengthened Predecessor/Successor-
Inequalities

In Balas et al. [12], the so-called (π, σ)-inequalities
(for predecessor–successor inequalities) were presented
for the precedence–constrained ATSP. These inequalities

can be strengthened for ATSP-TW by taking time win-
dows into account explicitly.

The (π, σ)-inequalities can be described as follows:
We are given two disjoint node sets X, Y ⊂ V such that
i ≺ j for all pairs i ∈ X, j ∈ Y. Furthermore, we are
given a node set S ⊂ V such that X is contained in S and
Y in its complement S̄ := V\S. In order not to violate the
precedence relationships among the nodes in X and Y,
a feasible path cannot cross the cut (S : S̄) only through
arcs incident with W := π(X) ∪ σ(Y); see Section 2 for
the definition of π(·) and σ(·). This observation leads to
the (π, σ)-inequality

x(S\W : S̄\W) ≥ 1. (4.11)

Due to the time-window restrictions, some paths from
S\W to S̄\W might be infeasible, which may be em-
ployed to reduce some left-hand side coefficients.

Theorem (4.12). Let X and Y be two disjoint node sets
such that i ≺ j for all i ∈ X and j ∈ Y, and define
W := π(X) ∪ σ(Y). Assume that the triangle inequality
(1.1) on ϑ is satisfied and define

W̃ := W ∪ {k ∈ V\(X ∪ Y) | ∃i ∈ X

and j ∈ Y s.t. ϑ(i, k, j) > dj}
and

Q := {(u, v) ∈ δ+(S)|∃i ∈ X

and j ∈ Y s.t. ϑ(i, u, v, j) > dj}.

Then, for all S ⊂ V such that X ⊆ S and Y ⊆ S̄, the
inequality

x((S\W̃ : S̄\W̃)\Q) ≥ 1 (4.13)

is valid for PTW.

Proof. For any feasible Hamiltonian path, the sub-
path P from the node of X visited last, say node i∗,
to the node of Y visited first, say node j∗, cannot tra-
verse any node of W without violating a precedence
relationship. Furthermore, P cannot traverse any node
k ∈ W̃\W, since, otherwise, it would contain an in-
feasible path of the form (i, . . . , i∗, . . . , k, . . . , j∗, . . . , j),
where i ∈ X and j ∈ Y are the two nodes whose exis-
tence is required in the definition of W̃. Finally, P can-
not use any arc (u, v) ∈ Q, since all paths of the form
(i, . . . , i∗, . . . , u, v, . . . , j∗, . . . , j) are infeasible. Thus, an
arc in (S\W̃ : S̄\W̃)\Q has to be used to leave S, from
which the validity of the inequality follows.

FIG. 7. V-lifted tournament constraint.

NETWORKS–2000 77



4.4. Separation

In general, solving the separation problem for the
general classes of valid inequalities introduced above is
hard. Among the new classes of inequalities, tournament
constraints (4.2) can be separated in polynomial time and,
in addition, special versions of the strengthened (π, σ)-
inequalities (4.13). We developed several heuristic sep-
aration routines for all the inequalities above which are
described in our companion paper [5]. We also reported
in [5] which of the inequalities valid for PTW are help-
ful in practical computation. It turns out that the use of
infeasible path elimination constraints is important, in
particular, tournament constraints (4.2) and inequalities
(4.6) did a “good job” on our particular testbed.

5. CONCLUSIONS

The asymmetric traveling salesman problem with time
windows (ATSP-TW) is a very important basic model for
scheduling and routing applications. We studied the poly-
hedral structure of a possible formulation of the problem,
in which only 0/1 arc variables are considered. This
has the advantage of avoiding additional variables and
the associated (typically very ineffective) linking con-
straints. A drawback is that the model cannot accom-
modate objective functions depending on makespan or
waiting times easily.

Time windows are modeled using infeasible path
elimination constraints which forbid the occurrence of
paths leading to a violation of some deadlines. Similar
constraints can also be used to model any other kind of
path infeasibility. We described the basic form of these
constraints and we introduced some possible strength-
enings. Several other classes of cuts were described as
well, derived from related ATSP problems.

We also studied the ATSP-TW polytope, PTW, whose
vertices are the characteristic vectors of the Hamilto-
nian paths satisfying the time-window restrictions. To
our knowledge, this polytope has never been studied be-
fore. Even on a complete graph with triangular setup
times, finding a feasible ATSP-TW solution is a difficult
problem. Hence, deciding whether PTW is nonempty is
an NP-complete problem in the general case. We then
studied a very simple special case of the problem, in
which only one of the time windows is active. Rather
unexpectedly, even under these assumptions, the deter-
mination of the polytope dimension is far from trivial,
in that the polytope lies in a family of hyperplanes hav-
ing no counterpart in the pure ATSP case. Moreover, we
showed that the exact determination of the polytope di-
mension is a difficult problem as it requires the solution
of a min-cost Hamiltonian path problem. As a conse-
quence, a deep analysis of the facial structure of PTW

appears a very difficult task.
In the companion paper [5], the polyhedral analysis

herein presented is used to design a branch-and-cut al-

gorithm for the exact solution of ATSP-TW, whose per-
formance is evaluated computationally on several real-
world test problems. An outcome is that the new ap-
proach outperforms some previous LP-based methods on
loosely constrained classes of problem instances.
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