
Math Meth Oper Res (1999) 49 :501±515

999

Order picking in an automatic warehouse: Solving online
asymmetric TSPs

Norbert Ascheuer, Martin GroÈtschel, Atef Abdel-Aziz Abdel-Hamid

Konrad-Zuse-Zentrum fuÈr Informationstechnik Berlin (ZIB), Takustr. 7, D-14195
Berlin-Dahlem, Germany (e-mail: ascheuer@zib.de)

Abstract. We report on a joint project with industry that had the aim to se-
quence transportation requests within an automatic storage system in such
a way that the overall travel time is minimized. The manufacturing environ-
ment is such that scheduling decisions have to be made before all jobs are
known. We have modeled this task as an online Asymmetric Traveling Sales-
man Problem (ATSP). Several heuristics for the online ATSP are compared
computationally within a simulation environment to judge which should be
used in practice. Compared to the priority rule used so far, the optimization
package reduced the unloaded travel time by about 40%. Because of these
signi®cant savings our procedure was implemented as part of the control
software for the stacker cranes of the storage systems.

Key words: Traveling Salesman Problem, online-algorithm, automatic storage
system

1 Introduction

Designing and controlling Flexible Manufacturing Systems (FMSs) provides
a wide application ®eld for methods of Combinatorial Optimization. FMSs
are very complex, in general. As a consequence, it is (at least at present) im-
possible to optimize such systems on the whole. Rather, subproblems are
identi®ed, modeled mathematically, and optimization algorithms are devel-
oped and implemented for these special tasks. See, among others, [14, 15] for
surveys. One hopes that the chosen decomposition of the global FMS opti-
mization problem provides acceptable solutions ± at least in practice.

Manuscript received: November 1998

The FMS we consider here is part of the production plant of ``Werk fuÈr
Arbeitsplatzsysteme'' of Siemens Nixdorf Informationssysteme (SNI) in
Augsburg, Germany. This factory is designed to assemble and test a variety of
products such as personal computers, keyboards, monitors, etc. See Figure 1.1
for a partial sketch of the factory layout.

After the opening of the plant, the production volume increased and the
warehouses turned out to be bottlenecks for the material ¯ow within the FMS.
Especially after technical or software malfunctions, transportation tasks
started to pile up. It took long to process all tasks; the required parts were
often not supplied in time to the assembly lines. This made either manual in-
terference necessary or resulted in a production delay.

The automatic storage systems

The automatic storage system we consider at SNI contains six warehouses,
each consists of a two-sided aisle and is equipped with a computer-controlled
stacker crane. Each warehouse is divided into an upper and a lower part. The
lower part contains the material supply locations (called bu¨ers) for the adja-
cent assembly line, while the upper part serves for storage purposes (of short
to medium term). Material is stored either on pallets, box pallets, oversized
``special-purpose pallets'', or in tote-boxes of two di¨erent sizes. To simplify
notation we will just talk about containers whenever we address any of the
di¨erent types of transportation units. The input- and output docks are lo-
cated at one end of the aisle. Figure 1.2 shows a side-view, and a view from
the top, respectively, of the rectangular warehouse that we consider. (An AGV
is an automatically guided vehicle transporting containers to and from the
warehouse.)

A single stacker crane can travel between the two ends of the aisle of the
warehouse. It is capable of carrying one container at a time and travels both
horizontally and vertically. The main function of the stacker crane is to
transport the containers within the warehouse. Such transportation tasks, e.g.,
are storage tasks (material is moved from the input dock to some storage lo-

Fig. 1.1. Sketch of the factory layout

502 N. Ascheuer et al.

cations), retrieval tasks (material is moved from some location to the output
dock), bu¨er supplying tasks (material is moved from a storage location to a
bu¨er), etc. More details about the system can be found in Abdel-Hamid [1]
and Ascheuer [3].

The engineers, observing the performance of the stacker crane in practice,
had the feeling that too many ``long'' unloaded moves were executed resulting,
at times, in unnecessarily long waiting times at the assembly line. After a de-
tailed analysis of the system and a careful consideration of possible alternative
objectives it was decided to develop an optimization tool aiming at the mini-
mization of unloaded travel times with the hope that this would improve the
overall performance of the storage system. We thus concentrated on the se-
quencing problem described below.

The sequencing problem

At an arbitrary point in time the stacker crane is idle or performing some
transportation task. If it is not idle the control system typically maintains a
pool of transportation tasks (called orders from now on) that have been gen-
erated and whose execution has not started yet. The original control system
used a priority rule to choose an order from the pool. More precisely, each
type of order (storage, retrieval, etc.) is assigned to a certain priority class. The
orders with highest priority are considered ®rst. Within one priority class the
orders are executed according to the First-In-First-Out (FIFO) principle. An
analysis of the system showed that the priority based strategy resulted in long
unloaded moves between the orders. In total there existed six priority-classes

Fig. 1.2.

Order picking in an automatic warehouse 503

at SNI. Under heavy load conditions, the order-pool contained 10±15 tasks
on the average and up to 50 orders maximally.

We proposed to replace this rule by the following approach: Whenever an
order is generated or modi®ed, schedule the currently available orders in such
a way that the total crane utilization time is as short as possible. This utiliza-
tion time consists of three components:

. Total loaded time (the time the crane travels with loads to execute an or-
der),. total unloaded time (the time the crane travels without loads between two
orders), and. transfer time (the time for the crane to load or unload a container at the
I/O-dock, at a storage location, or at a bu¨er place).

Clearly, the rule used to execute the orders does not a¨ect both the transfer
time and total loaded time. Thus, we have to consider unloaded travel time
only.

This leads us to consider the following (two-dimensional) order picking
problem: For each order, compute the time the crane travels unloaded be-
tween this order and the other orders in the pool. Schedule these orders such
that the sum of times needed for the unloaded moves is as small as possible.

Related problems

Several warehousing problems have been studied in the literature. We brie¯y
survey some of them. For an extensive survey on warehousing problems we
refer to van den Berg [22].

One of the most ``popular'' order-picking systems that have been analyzed
can brie¯y be described as follows: We are given a set of parallel double-sided
aisles with cross-overs at each side of the aisles. An order consists of items that
have to be picked at some position in the aisles. Each order-picker has the
capacity to visit a set of pick-positions on one tour. The problem is to ®nd a
sequence in which the pick-positions are visited, such that the total time to
complete the order is as small as possible. As only horizontal travel-time is
considered this leads to a special case of the traveling salesman problem (TSP)
that is solvable in polynomial time (see Ratli¨ and Rosenthal [20] and Van
Dal [21], among others).

More complex situations arise when one considers a single-aisled, double
sided Automatic Storage and Retrieval System (AS/RS). The stacker crane
has to pick orders, but now horizontal and vertical travel time is considered.
Depending on the capacity of the crane either storage and retrieval request
have to be combined or an optimal route through several pick positions has to
be calculated. The latter problem can be modeled as a TSP in the plane. The
scienti®c literature mainly focuses on the development of analytic expres-
sions for calculating the expected travel time for command cycles under the
assumption that the retrievals are sequenced due to a certain strategy
(e.g., FIFO, nearest-neighbor heuristic). These expressions are then evaluated
in a simulation environment with randomly generated data (see [13, 16, 19],
among others).

Burkard et al. [9] consider a system with seven parallel aisles, crossovers at

504 N. Ascheuer et al.

one end of the aisle and three stacker cranes. As each stacker crane is capable
of moving into each aisle, the cranes might block each other. Their aim was
to develop a control-system that guarantees a ``con¯ict-free'' routing of the
cranes, minimizing the stacker cranes' idle movements and waiting times.
Their solution approach is to build up a decision tree for a restricted time
horizon. In that tree branches correspond to taken decisions and are weighted
by the seconds a stacker crane remains idle caused by that decision. The so-
lution corresponding to a shortest path from the root to a leaf is accepted as
the current control for the next time period.

2 Modeling

We introduce a directed graph D � �V ;A� with V � f1; . . . ; ng where nodes
2; . . . ; n represent the orders in the pool. Node 1 A V corresponds to the cur-
rent task the stacker crane is performing, or to the current position of the
stacker crane in case it is idle. An arc �i; j� A A represents the possibility to
execute task j directly after task i. (For technical reasons some arcs �i; j� may
not be present.) With each arc �i; j� A A we associate a weight cij that indicates
the cost of executing task j after task i. This cost-coe½cient equals the time the
crane travels without load between the destination of task i and the source of
task j. As the stacker crane stops at the position where the last order of the
pool is achieved we set ci1 � 0. Otherwise the arcs �i; 1� Ei A Vnf1g are
weighted with the travel time to the dwell point, i.e., the point where the
stacker crane is positioned strategically whenever it is idle. Typically, cij 0 cji

holds. Figure 2.1 illustrates the modeling procedure on a small example with
three transportation tasks 2, 3, 4 (represented by solid arrows). The point P
designates the current stacker crane position and corresponds to node 1 of the
associated digraph.

It is easy to see that an optimal solution of the asymmetric traveling sales-
man problem (ATSP) on this directed graph D � �V ;A� corresponds to a se-
quence of orders of the pool such that the total unloaded time is as small as
possible.

Online aspects

The model described above is only a snapshot of the production stage at a
certain point in time and does not take the dynamic changes of the system into
account. In reality, the order pool is not static, it is altered over time and,

Fig. 2.1. Modeling the sequencing problem

Order picking in an automatic warehouse 505

thus, the ATSP is changing dynamically as follows. Suppose we have an order
pool and that the orders of this pool are sequenced optimally by solving the
corresponding ATSP. While executing this sequence new tasks for the stacker
crane are generated. It is not known a priori at what time what type of order is
generated. As soon as a new task is generated the control system has two
possibilities:

(a) Either, to perform the sequence as it was calculated and to collect the
generated tasks in a new pool to be optimized after all orders of the cur-
rent pool are executed (this is sometimes called IGNORE strategy), or

(b) to update the sequence each time a new task is generated, which is a
REPLAN strategy.

In agreement with the management we decided to follow the second
approach. This implies that as soon as a new task is generated, a new sequence
has to be calculated. Obviously, this new sequence consists of the new task
and the tasks of the old pool that have not been executed yet.

In the following example the dynamic nature and the arising di½culties
concerned with this are illustrated.

Example (2.1): Let us consider a pool containing 8 orders to be performed
(cmp. Figure 2.2). The tasks are labeled 2 to 9. Node 1 represents the initial
position of the stacker crane. Now, the corresponding ATSP is solved to op-
timality and the corresponding shortest sequence starting with node 1 is
shown in Figure 2.2(a). We start performing the tasks. After t time units tasks
2, 3, and 4 are already performed, 5 is executed, and a new task 10 is gen-
erated. A new sequence starting at node 5 and visiting nodes 6±10 has to be
calculated. Again, the optimal sequence is calculated (Figure 2.2(b)). The re-
sulting overall travel path is given in Figure 2.2(c).

Now, suppose that, in the initial step, we made a mistake and followed the
non-optimal path shown in Figure 2.2(d). Again, after t time units the new

Fig. 2.2.

506 N. Ascheuer et al.

task 10 is generated that has to be achieved. If the new node associated with
task 10 is inserted best possible as shown in Figure 2.2(e), then the overall
travel path is the one shown in Figure 2.2(f). This path is shorter than the one
of Figure 2.2(c). r

In other words, computing an optimum solution for every subproblem ``on
the run'' does not necessarily lead to an optimum sequence of orders of the
whole day.

In classical optimization theory one generally assumes that an algorithm
has complete knowledge of the input data. In our application, this would im-
ply that the control system needs to have, in the morning, full information
about the orders generated throughout the whole day. Although the FMS is
computer-controlled, this is not realistic. It is quite unpredictable when con-
tainers arrive at the I/O-dock, and the time needed for the manual assembly is
not completely predictable either. The control system simply has to take de-
cisions every time that new data occurs without any knowledge about future
requests. The algorithm has to decide which order to perform next, based on
information on the current order pool only. Once the execution of a task has
started, this decision cannot be revised (even if it might later turn out to result
in a bad overall performance of the system). In the literature, problems of this
type are called online problems. Thus, the sequencing problem is in fact an
online ATSP.

Today's theory (and practice) of online optimization is still far from being
satisfactory. It is not clear what type of mathematical models are appropriate
for a particular online situation. Even if the modeling issue is resolved, the
current theory does not provide reasonable criteria for selecting a solution al-
gorithm. This is also true for our application. We have therefore decided to
use simulation, based on real-world data provided by SNI, to compare dif-
ferent solution approaches. See Fiat and Woeginger [10] and Borodin and El-
Yaniv [8] for recent surveys on online algorithms; Ascheuer et al. [4, 5] for a
discussion of the applicability of competitive analysis to real-world transpor-
tation problems; Ausiello et al. [6, 7] for competitiveness results for the online-
TSP.

3 Computational studies

The ATSP is known to be an NP-hard problem. For the instance sizes that
arise in our application (not more than 50±60 nodes are present at a time)
exact algorithms, however, are known that solve the problem to optimality in
a reasonable amount of computing time (see [11, 12, 17, 18], among others).
In the sequencing problem an ATSP has to be solved as soon as the order
pool changes. Note again, that an algorithm that solves each subproblem
to optimality is just a heuristic algorithm for the online ATSP (of the whole
day).

Computational experiments were performed in order to compare the
online behaviour of di¨erent heuristics. To this end, we developed and im-
plemented a simulation model and algorithms to solve the online ATSP. Real-
world data were provided by SNI. They helped to gain insight into the prac-
tical performance of the algorithms and to choose the ones for use in practice.

Order picking in an automatic warehouse 507

A simulation model

As it is too risky and too expensive to perform experiments with a modi®ed
control system in the FMS itself, we developed a simulation program for the
automatic storage system. The main aim of this program is to compare the
online behaviour of the di¨erent heuristics and to convince the engineers of
our industry partner that the proposed optimization approach will improve
the performance of the system. Therefore, not only a fast, but also an exact
simulation program was needed. To achieve this aim we implemented the
simulation program using the simulation library AMSEL [2]. See Figure 3.3
for a screenshot of the simulation program.

Furthermore, it was inevitable to perform a (time-consuming) validation of
the simulation model. For that reason, for 5 days every generated task and
each move of the stacker crane were recorded. This production data served as
a basis for our studies. The generation times and the coordinates of the gen-
erated tasks were used as input to the simulation program. The moves of the
stacker crane in the simulation were then compared to the real moves. The
results of the validation process are summarized in Table 3.4.

A transportation task consists of the (unloaded) positioning move, the pick
up of a container, the (loaded) move with the container, and the delivery of

Fig. 3.3. Screenshot of simulation system for automatic storage systems

Table 3.4. Validation results for the simulation-model

Tasks ésni ésim édev max dev % DEV Time

1 416 76.27 76.83 2.42 20 0.73 11.47
2 423 75.45 76.34 1.96 11 1.17 11.60
3 403 78.81 78.95 2.01 9 0.18 11.17
4 399 76.19 76.58 2.09 9 0.51 11.08
5 450 77.11 76.73 2.06 20 0.49 12.30

508 N. Ascheuer et al.

the container. The average time that was needed for a task on day 1 was 76.27
seconds (see column ésni in Table 3.4). This time was obtained by measuring
all operations of the day and averaging them out. In total 416 transportation
tasks were recorded during day 1. The simulation model produced an average
task length of 76.83 seconds (column ésim) for this day resulting in 0.73%
deviation (column% dev). Deviations are bound to occur since always some
interruptions and manual interactions occur that are not taken into account
by the simulation model; see also column ùdev for the average deviation and
column max dev for the maximum deviation in seconds that occurred
throughout a day. The CPU-time needed for running a simulation of two
working shifts is approx. 12 seconds on a SIEMENS PC MX300; see column
Time. More details can be found in [3]. Our industry partner considered these
validation results to be very satisfactory and decided to accept proposals that
are based on the use of this simulation model.

Heuristics

As already mentioned, we compared di¨erent strategies for sequencing the
tasks to the old priority based rule. To be more precise, we embedded several
well known TSP-heuristics and an exact branch&bound algorithm into the
simulation program. Whenever a new transportation task is generated one of
these routines is called and the tasks are performed according to the generated
sequence. As soon as the simulation system generates a new task this routine is
called again, etc. We used the real life data that was provided by SNI. As the
simulation program is considered to model the manufacturing system and the
dynamic behaviour of the system exactly enough we are able to compare these
approaches and to take qualitative conclusions. We compared the following
strategies:

priority: SNI-priority rule.
random: Generation of random sequences.
optimal: Each subproblem is solved to optimality using the

branch&bound code by Fischetti and Toth [11].
greedy: Greedy heuristic.
greedy� 2opt: Greedy heuristic with additional improvement heuristic

(2-opt heuristic).
greedy� 3opt: Greedy heuristic with additional improvement heuristic

(3-opt heuristic).
®t-in: The newly generated task is inserted in the best possible

way into the existing sequence.
farins: Farthest insertion heuristic.
listins: List insertion heuristic: The nodes to be inserted in the

best possible way are taken in the order 1; 2; . . . ; n.
randins: Random insertion heuristic: The nodes to be inserted in

the best possible way are chosen randomly.
bestins: Best insertion heuristic: Choose always the best possible

insertion.
shu¿e: Shu¿e heuristic: Start with sequences of length 1, ``shuf-

¯e'' them together to sequences of length 2, ``shu¿e''
these together to sequences of length 4, etc.

Order picking in an automatic warehouse 509

Note that the main di¨erence between the ®t-in heuristic and all other opti-
mization algorithms is that it uses the already existing sequence, whereas the
others start the recalculation from scratch.

Normal load conditions

First, we used the original data that was supplied by SNI to compare our op-
timization strategy (using optimal) with the priority rule used so far. The re-
sults are summarized in Table 3.5.

The achieved improvements varying between 6 and 8% (see column Imp.%)
were rather disappointing. But by analyzing the input data, it turned out that
the ATSPs that had to be solved were rather small (see columns max. tasks
and étasks). On the average there were only 2±3 tasks present at a time, i.e.,
on the average there was nothing to optimize. This resulted from the fact that
during this week there was a low production volume and the system was
working without major breakdowns. Although the overall improvement was
not too big the peaks in the order-size were cut o¨. E.g., on day 5 the maxi-
mum number of tasks to be present at the same time reduced from 14 to 9,
and the average number reduced from 2.79 to 2.00. This indicates that under
heavy load conditions large improvements could be achieved.

Heavy load conditions

As the process of gathering all the necessary data within the manufacturing
system is a technically di½cult and time consuming process, we and our in-
dustry partners decided to use the data already available and to arti®cially
create heavy load conditions. Within the manufacturing system these typically
occur after a breakdown of the stacker crane when tasks start to pile up. Thus,
we arti®cially created some breakdowns by modifying the input data for the
simulation program.

Key to Tables 3.5±3.7:

Tasks: Total number of transportation tasks (orders) generated.
Time: Average unloaded travel time of the stacker crane (in sec-

onds) using either the priority rule (priority) or solving each
subproblem to optimality (optimal).

max. tasks: Maximal number of orders in the pool using either priority
or optimal.

étasks: Average number of orders in the pool using either priority or
optimal.

Imp. %: Reduction of time for the unloaded moves in % calculated
by prioÿopt

prio � 100, where prio (resp. opt) stands for the average
unloaded time using priority (resp. optimal).

510 N. Ascheuer et al.

Experiment 1: Static system

First, we inserted a breakdown of one hour and collected all the tasks that
were generated during that time period. We only took these tasks into con-
sideration for our optimization process. All other tasks were ignored, namely
those generated before the breakdown and those during the execution of the
tasks. The results are reported in Table 3.6.

Due to the settings of this experiment the entries of max. tasks and étasks
are the same for both strategies. Therefore, they are omitted from Table 3.6.

Again we compared the priority rule used at SNI to optimal, i.e., we solve
each subproblem to optimality. The achieved improvements of 30±45% are
very impressive, but one should note that this is a static experiment. As we do
not take previously generated tasks or tasks that are generated during the
performance of these tasks into account, this experiment does not re¯ect the
dynamic nature of the system. But, nevertheless, it shows that there is an im-
mense potential for optimization approaches.

Experiment 2: Dynamic system

Next, we performed a more realistic experiment to construct heavy load con-
ditions in a dynamically changing environment. In contrast to experiment 1,
we consider as well the tasks that are generated before the arti®cial break-
down takes place. During the breakdown the tasks start to pile up (see column

Table 3.6. Minimizing the unloaded travel
times (heavy load conditions ± arti®cial
breakdown)

priority optimal

Task Time Time Imp. %

1 19 19.21 11.79 38.63
2 10 19.40 13.40 30.93
3 17 17.59 9.76 44.51
4 27 19.59 10.59 35.94
5 20 19.40 11.55 40.47

38.10

Table 3.5. Minimizing the unloaded travel times (normal load conditions)

priority optimal

Tasks Time max. tasks étasks Time max. tasks étasks Imp. %

1 416 20.72 11 3.05 19.00 8 2.08 8.30
2 423 20.42 12 2.76 19.08 8 1.82 6.56
3 403 20.37 11 2.93 18.87 7 2.19 7.36
4 399 20.09 11 2.44 18.49 9 1.91 7.96
5 450 20.91 14 2.79 19.26 9 2.00 7.89

Order picking in an automatic warehouse 511

max. tasks in Table 3.7). After the breakdown we start processing these tasks.
Whenever a new task is generated we update the sequence according to the
strategy used. After normal load conditions are reached the simulation run is
stopped. The results are shown in Table 3.7.

The achieved improvements of 25±45% are not as good as in experiment 1,
but in view of the dynamic changes this was expected to happen. Still immense
improvements are possible. We like to mention that the branch&bound-code
could solve each ATSP in at most 3±5 seconds, very often it was even faster.
This code is fast enough to be used in the control system at SNI.

Experiment 3: Comparison of heuristics under heavy load conditions

Finally, we used the data of experiment 2 to compare the online behaviour of
the di¨erent heuristics. Table 3.8 summarizes the results.

The numbers in rows 2±13 give the average unloaded travel time in sec-
onds between the tasks if every subproblem is solved with the heuristic given
in the ®rst column. Using the priority rule for the ®rst set of data, results in an
average unloaded travel time of 17.31 seconds whereas the use of the greedy

Table 3.7. Minimizing the unloaded travel times (heavy load conditions ± arti®cial breakdown)

priority optimal

Tasks Time Max. tasks étasks Time Max. tasks étasks Imp. %

1 51 17.31 36 16.90 11.04 30 13.38 36.2
2 49 19.18 27 10.22 14.54 21 7.33 24.2
3 51 19.35 33 15.34 11.10 27 11.03 42.6
4 49 17.72 39 20.74 9.29 32 15.97 47.6
5 50 19.96 36 20.27 13.09 26 13.72 34.4

37.0

Table 3.8. Average unloaded travel-time (in sec)

heuristic 1 2 3 4 5
P

priority 17.31 19.18 19.35 17.72 19.96 93.52
random 19.50 18.36 17.83 17.10 19.84 92.63

optimal 11.04 14.54 11.10 9.29 13.09 59.06
bestins 11.16 14.66 11.86 12.53 12.58 62.79
shu¿e 11.82 15.38 11.28 10.76 13.80 63.04
greedy 11.82 15.42 12.04 11.63 12.20 63.11
greedy� 3opt 11.51 15.32 12.02 11.51 12.76 63.12
listins 12.73 15.14 11.88 10.98 12.80 63.53
greedy� 2opt 11.33 15.34 12.10 12.25 12.62 63.64
randins 10.84 15.44 11.71 11.77 14.11 63.87
farins 12.45 15.10 13.52 10.53 14.00 65.60
®t-in 14.81 17.72 17.62 13.19 17.27 80.61

improvement 37.4% 24.2% 42.6% 47.6% 38.9% 36.8%

512 N. Ascheuer et al.

heuristic results in an average unloaded travel time of 11.82 seconds. The row
improvement gives the improvement of the heuristic giving the best results
over the priority rule used at SNI (randins for data set 1, optimal for data set 2,
etc.). As in the previous tables, the improvement value is calculated by the

formula �100 � prio-best
prio � where prio stands for the value achieved by the priority

rule and best for the value achieved by the heuristic producing the best result.
In the last column the results for the ®ve data sets are summed up.

Some interesting observations can be derived from Table 3.8:

. First, there is almost no di¨erence between the priority rule and the gener-
ation of random sequences. Compared to all other strategies these provide
really bad results.. Once any of the other heuristics is applied under heavy load conditions, a
signi®cant improvement can be achieved. The best possible improvements
vary from 25% to 45%.. optimal seems to work best, but it does not always give the best result. This
is due to the online phenomenon that was explained in Example 2.1.. farins and ®t-in are slightly worse than the other heuristics, all other heu-
ristics perform rather similar (see column

P
).. It does not pay to apply additional improvement heuristics to the greedy

solution. In fact, the results may even get worse.. Although ®t-in is by far the fastest of the heuristics, it can be seen that it
gives the worst results. This indicates that it is worth recalculating the whole
sequence.

4 Conclusions

Based on the studies presented in this paper we designed and implemented an
optimization package which aims at minimizing the travel time of a stacker
crane. As the stacker crane should never wait until the optimization program
®nishes its calculation we decided to implement a 3-phase process:

Phase 1: Perform cheapest insertion of the new order (®t-in).
Phase 2: Run an iterative cheapest insertion on a random ordering of the

current order pool. Then choose the best sequence of Phase 1
and 2 (randins).

Phase 3: Solve the ATSP with the current transportation tasks to
optimality and replace the old sequence by the optimal one
(optimal).

First, we apply the ®t-in heuristic to obtain (with almost no time delay) a
starting solution that will be improved in the following phases. In phase 2
we apply a more sophisticated heuristic (randins) to obtain a better solution,
and if there is still computing time left we solve the subproblem to optimality
(phase 3). If a new task is generated while phase 2 or 3 are active the process is
stopped and the best sequence calculated so far is being performed. This
package is now in use on six automatic storage systems of SNI. The results
obtained within the simulation model were con®rmed during heavy load pe-
riods in everyday production. The experience with the optimization package
in the manufacturing system showed that in most cases there is enough time to

Order picking in an automatic warehouse 513

complete the calculation, i.e., the process terminates phase 3 rather than in-
terrupting in between.

Although in our practical application signi®cant improvements could be
achieved, there is still a need to study the online ATSP more deeply. First of
all, it is necessary to develop online heuristics that incorporate the dynamic
system better than the heuristics do that were designed for the o¿ine ATSP.
Secondly, lower bounds for the best possible online solution have to be com-
pared. This involves another di½cult modeling problem. First steps in this
direction have been made in [3].

Acknowledgment: Michael JuÈnger and Gerd Reinelt implemented most of the heuristics, the
branch&bound code was implemented by Matteo Fischetti and Paolo Toth [11]. We would like to
thank them for making their implementations available to the authors. Furthermore, we would
like to thank the engineers of Siemens Nixdorf, especially Christof GerstenaÈcker and Herbert
Schorer, for their support during the project.

References

[1] Abdel-Aziz Abdel-Hamid A (1994) Combinatorial optimization problems arising in the de-
sign and management of an automatic storage system. PhD thesis, Technical University
Berlin

[2] AMSEL (1997) A modelling and simulation environment library. Developed at the Konrad-
Zuse-Zentrum fuÈr Informationstechnik Berlin (ZIB)
See http://www.zib.de/ascheuer/AMSEL

[3] Ascheuer N (1995) Hamiltonian path problems in the on-line optimization of ¯exible manu-
facturing systems. PhD thesis1, Technical Univiversity Berlin

[4] Ascheuer N, GroÈtschel M, Kamin N, Rambau J (1998) Combinatorial online optimization in
practice. Preprint 98±071, Konrad-Zuse-Zentrum Berlin

[5] Ascheuer N, GroÈtschel M, Krumke SO, Rambau J (1998) Combinatorial online opti-
mization. Preprint 98±241, Konrad-Zuse-Zentrum Berlin

[6] Ausiello G, Feuerstein E, Leonardi S, Stougie L, Talamo M (1994) Serving requests with on-
line routing. In: Proceedings of the 4th Scandinavian Workshop on Algorithm Theory

[7] Ausiello G, Feuerstein E, Leonardi S, Stougie L, Talamo M (1995) Competitive algorithms
for the on-line traveling salesman. In: Workshop on Algorithms and Data Structures

[8] Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge
University Press

[9] Burkard RE, Fruhwirth B, Rote G (1995) Vehicle routing in an automated warehouse:
Analysis and optimization. Annals of Operations Research 57

[10] Fiat A, Woeginger GJ (1998) Online algorithms ± The state of the art. Number 1442 in
Lecture Note in Computer Science Springer

[11] Fischetti M, Toth P (1992) An additive bounding procedure for the asymmetric TSP. Math-
ematical Programming 53:173±197

[12] Fischetti M, Toth P (1997) A polyhedral approach to the Asymmetric Traveling Salesman
Problem. Management Science 43:1520±1536

[13] Goetschalckx M, Ratli¨ HD (1988) Sequencing picking operations in a man±aboard order
picking system. MFL 4:255±263

[14] Graves SC, Rinnooy Kan AHG, Zipkin PH (1989) (eds.) (1989) Logistics of production and
inventory. volume 4 of Handbooks in Operations Research and Management Science Elsev-
ier Science B.V., Amsterdam

[15] GroÈtschel M (1992) Discrete mathematics in manufacturing. In: O'Malley RE (ed.)
ICIAM91: Proceedings of the Second International Conference on Industrial and Applied
Mathematics, SIAM, pp. 119±145

1Avail. at URL http://www.zib.de/ZIBbib/Publications/

514 N. Ascheuer et al.

[16] Han MH, McGinnis LF, Shieh JS, White JA (1987) On sequencing retrievals in an auto-
mated storage/retrieval system. IIE Transactions: 56±66

[17] JuÈnger M Reinelt G, Rinaldi G (1995) The traveling salesman problem. In: Ball MO, Mag-
nanti TL, Monma CL, Nemhauser GL (eds.) Network Models, volume 7 of Handbooks in
Operations Research and Management Science, North Holland, pp. 225±330

[18] Lawler EL, Karel Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds.) (1985) The Traveling
Salesman Problem. John Wiley & Sons Ltd, Chichester

[19] Meller RD, Mungwattana A (1995) Multi-shuttle automated storage/retrieval systems.
Technical Report 95±06, Auburn University, AL, USA, Dept. of Industrial Engineering

[20] Ratli¨ HD, Rosenthal AS (1983) Orderpicking in a rectangular warehouse: A solvable case
of the traveling salesman problem. OR 31:507±521

[21] Van Dal R (1992) Special cases of the traveling salesman problem. PhD thesis, University of
Groningen, The Netherlands

[22] Van den Berg J (1996) Planning and control of warehousing systems. PhD thesis, University
of Twente, The Netherlands

Order picking in an automatic warehouse 515

