
Combinatorial Online Optimization in Practice 

Abstract This paper gives a short introduction to combinatorial online 
optimization. It explains a few evaluation concepts for online algorithms 
such as competitiveness, and discusses limitations in their application to 
real-world problems. The main focus however, is a survey of combinatorial 
online problems in practice, in particular in large scale material flow and 
flexible manufacturing systems 
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1. Introduction 
In classical optimization, called Offline optimization here, it is assumed that all input 
data of an instance are available before solution algorithms are applied. In many appli­
cations this is not realistic. Decisions have to be made before all data are known. Such 
situations are often termed online They arise in particular in processes that are con­
tinuously running for a longer period of time. For instance, in material flow systems of 
companies, transportation tasks arise throughout the day and decisions have to be 
made before all jobs have been generated. 

Online optimization is the task of finding "good," or "cheap," or "economic" deci­
sions in online situations. An online algorithm provides such decisions. In practical ap­
plications online algorithms are typically subject to additional constraints. For example, 
they have to answer in real time, or must process a job (or request) within a given time 
frame, sometimes they have access to limited computing resources only. 
Competitiveness. A common concept to evaluate online algorithms is competitive­
ness Here, an online algorithm has to act as follows: it always has to serve a request of a 
sequence before the next request (or the next k different requests in a model with look-
ahead) becomes visible. The idea behind the variants of this notion is the following: 
compare the solution of the online algorithm under consideration with the solution 
that some adversary would produce on the same set of data. 

The easiest case is the offline adversary, i.e., to him the complete sequence of re­
quests is known in advance. For an algorithm X let CXs denote the cost X produces on 
input sequence s. We assume for notational convenience that CXs is positive for all s 



and that we want to minimize. A deterministic 
online algorithm A is c-competitive if for any se­
quence s of requests and any offline algorithm S 

CAs < c * Css + a 
holds for real numbers c,a, both not depending 
on~s. 

The goal is to find online algorithms that are 
competitive in an optimal way, i.e., no other 
online algorithm can have a better performance 
ratio with the adversary. This concept is appli­
cable both to deterministic and randomized al­
gorithms, and it allows for provable statements 
about the performance of an online algorithm. 
A further advantage of this concept is that no 
information about the distribution of the input 
data is needed in order to make exact state­
ments. Competitive analysis has been the sub­
ject of many investigations concerning (mainly 
elementary) online problems. (See, among oth­
ers, Albers 1996; Albers 1997; Goemans 1994; 
Irani and Karlin 1997; Motwani, Raghavan 
1995; and Ottmann et al. 1994 for more infor­
mation.) 

The competitiveness ratio is usually a pessi­
mistic measure since the adversary is supposed 
to be a bad person trying to fool the algorithm 
by designing a particularly difficult sequence of 
requests. Moreover, competitive analysis is based 
on some hard restrictions to the model: one as­
sumes that the next request does not become 
available before attending to the current request. 
In practice, however, there is often a dynami­
cally growing and shrinking pool of requests of 
unknown size visible to the algorithm. 

Sometimes competitive analysis provides ab­
solutely no insight into the quality of an online 
algorithm. For instance, for a version of the 
greeting card commissioning problem to be dis­
cussed later, one can prove that all (reasonable) 
online algorithms have the same competitiveness 
factor K (the common capacity of the vehicles of 
the system) (see Kamin 1998). 

Furthermore, the competitive analysis is not 
applicable if the decisions of the online algo­
rithm have direct impact on the sequence of 
future requests. 
Stochastic Optimization. Stochastic optimi­
zation uses a model that seems to be close to 
what we might call "reasonable acting under in­
complete information." The decisions in the 
online algorithm are made based on the optimal 
solution of a stochastic program that has to be 
solved beforehand. Usually, this is a linear pro­
gram where the objective function is the expec­
tation of the cost function in the decision and 
request variables. 

Receiving Area 
Figure 1 . Sketch of the Factory Layout 

This can only be done under the assumption 
that the request data has a certain distribution. 
Making decisions beforehand relying on statisti­
cal data can be viewed as an offline model of an 
online problem since the distribution allows for 
computing the expectations before the actual re­
quests occur. There are also models that perform 
a certain number of alternating observation and 
optimization steps in order to adjust the infor­
mation about the distribution. These models 
are, however, hard to evaluate in practice. Sto­
chastic analysis is - as the name might suggest 
anyway-focusing on the average behavior of the 
algorithm. (See Prékopa 1995, and Kall and 
Wallace 1994 for more background and applica­
tions in this area.) 

Since stochastic analysis requires an idea 
about what the distribution of the incoming re­
quests may look like, it is not applicable if one 
cannot find any structure in the input data. 
Moreover, if the probability is not concentrated 
at the expectation, then the decisions that corre­
spond to solutions from optimizing the expecta­
tion of the cost function may bear too large a 
risk of failure. Usually, there is no guarantee 
that the algorithm works well for any sequence 
of requests that might occur. 
Simulation. This is the approach used in prac­
tice. A coarse mathematical model of the online 
problem is developed and implemented in the 
form of a simulation model. Several online algo­
rithms are coded and experiments with real-
world data are run on a computer to gain in­
sight into the practical performance. In particu­
lar, experiments are made to analyze high load 

and failure situations. Usually those online algo-
rithms that exhibit good average performance 
and can somehow cope with "catastrophes" are 
selected for use in practice. 
A-posteriori Analysis . This approach uses 
history. The actual sequences that came up in 
the past are recorded and competitive analysis is 
made based on the gathered data only. This 
evaluation is often used to tune the online algo­
rithms so that they perform better on these 
known input sequences. One hopes that the old 
input sequences are good representations of the 
typical data and that hence the modified algo­
rithms will show improved performance also on 
future input sequences. 

2. Application to Real-World 
Problems 
Besides the theoretical attractiveness of online optimi­
zation problems, there is a broad variety of real-world  
problems that can be modeled as an online problem. 
In the sequel we outline problems we encountered in 
joint projects with industry that were aimed at opti­
mizing the internal material flow within a flexible 
manufacturing system (FMS) and a distribution cen-
ter. We just like to mention that, among others, there 
exist further applications in computer science, vehicle 
routing, scheduling, and telecommunication that will 
not be discussed in this paper. 



2.1 Online Optimization of a 
Flexible Manufacturing System 
(FMS) 
Siemens Nixdorf Informationssysteme AG 
(SNI) maintains a production plant where all 
their personal computers (PCs) and related 
products are assembled. (See Figure 1 for a 
sketch of the material flow within this FMS.) 
Parts that are used to produce PCs (PCB, floppy 
disk, cables, etc.) enter the FMS at the receiving 
area in normed containers. They are brought by 
automatic guided vehicles (AGV) into one of six 
automatic storage systems (AUSS). The AUSS 
serve as material buffer between the receiving 
area and the assembly lines located at each side 
of the AUSS. After assembly the PCs enter a test 
area where for up to 24 hours test programs are 
run in order to check the full functionality of 
the PCs. After a manual test the PCs are packed 
and delivered. 

Optimization Problems. A profound analy­
sis of the system showed that it offers a variety 
of optimization problems, some of them of an 
online character. These mainly are: scheduling 
of transportation tasks within the AUSS; assign­
ment of containers to storage locations; routing 
and scheduling of the AGV; assignment of loca­
tions in the test area; retrievals of PCs from the 
test area. Here, the first question will be dis­
cussed in more detail. Discussions of the other 
topics can be found in Abdel-Aziz 1994, Ascheuer 
1995, and Krippner Matejka 1993. 

2.1.1 Stacker Crane Routing in the 
Automatic Storage Systems 
The AUSS are single-aisled with storage loca­
tions on both sides of the aisle. In the lower part 
there are buffer places where containers are pro­
vided to the assembly line. A single stacker crane 
has to fulfill all transportation tasks (jobs). So 
far, a certain priority was assigned to each task 
(storage, retrieval, buffer-refill, etc.). This prior­
ity was only dependent on the type of the task. 
Within one priority class, jobs were sequenced 
due to a FIFO-rule. Although easy to imple­
ment, this strategy resulted in a high percentage 
of unloaded travel time. 
Since every algorithm has to process all the jobs, 
we can only control the unloaded moves of the 
stacker crane. We suggested sequencing the tasks 
in such a way that the total time needed for the 
unloaded moves between the jobs is minimized. 
This can be modeled as an asymmetric traveling 
salesman problem (ATSP) where each job that is 
not performed, together with the job that is 
currently processed by the stacker crane, is 

represented by a node in a complete digraph 
D=(V,A). W.l.o.g. we assume that the current job 
corresponds to node 1. Each arc (i,j) , A,j „ 1, 
represents the unloaded move between jobs i and 

j . This arc is given a weight corresponding to the 
time needed for the unloaded move from the 
endpoint of job i to the starting point of job j . 
To all arcs (i,l), i V \ 1, we associate weight 0. 
Now, an optimal tour through the nodes of 
D=(VA) corresponds to a sequence of the 
transportation tasks with minimal total unloaded 
travel time. 

This is an online problem since not all trans­
portation tasks (resp. nodes for the ATSP) are 
known in advance. They are generated during 
the production period and neither generation 
time nor start- and end-coordinates are known 
in advance, i.e., we have to solve an online-
ATSP. A detailed discussion of this topic can be 
found in Ascheuer 1995. (See, e.g., Ausiello et 
al. 1994a, and Ausiello et al. 1995a for competi­
tiveness results on the online ATSP.) 
Solution Approach. We decided to simply 
ignore tasks that might be generated in the fu­
ture and to solve a "static ATSP" as soon as a 
new job is generated. In order to avoid the 
stacker crane having to wait until we have fin­
ished our calculations, we have implemented a 
3-phase process. Whenever a new job is gener­
ated we run the following optimization process: 

• Phase 1. Simple insertion heuristic. Try to 
insert the new node as cheaply as possible 
into the current sequence; 

• Phase 2. Run a more sophisticated heuris­
tic. We have chosen a random insertion 
heuristic; 

• Phase 3: Solve the ATSP to optimality. 
This is done using a branch & bound-
implementation of Fischetti and Toth 
(Fischetti and Toth 1992). 

Phase 1 runs in 0(n) time and is always com­
pleted. For the typical problem sizes that occur 
in our application (n £ 60), the computations 
are done in fractions of a second. Even phase 3 
was always completed within a few seconds. 

After the completion of each phase, a se­
quence is available that can be improved by one 
of the subsequent phases. If, during the execu­
tion of phase 2 or 3, a new job is generated, 
then the whole process is stopped and restarted. 
If the stacker crane has finished a task and asks 
for a new one, the process is interrupted as well 
and the best sequence so far is passed to the con­
trol system of the stacker crane. 

We tested several heuristics to be used in 
phase 2 (See Abdel-Hamid, Ascheuer and 
Grötschel 1998). It is easy to construct ex­

amples where it does not always lead to the best 
solution if each ATSP is solved to optimality. 
The use of this strategy might construct se­
quences that are "not good" with respect to the 
nodes generated in the future. Nevertheless, 
phase 3 empirically gives the best results on the 
average. 
Computational Results. SNI provided data 
for one week of production. During this period, 
each generated task and each move of the 
stacker crane was recorded at one AUSS. This 
data was used to validate the simulation model. 
Based on the SNI data we compared several 
strategies for sequencing the jobs within the 
simulation environment. 

Extensive computational tests showed that it 
was possible to reduce the times needed for un­
loaded moves by approximately 30% in heavy 
load periods. As a result, this optimization pack­
age was put in use at five AUSS and the results 
were confirmed in everyday production. It 
showed that even in the production environ­
ment the optimization process could always fin­
ish with phase 3. 
Quality of the Online Solutions. A scien­
tific question that arises is: how good are the so­
lutions in comparison to an optimal offline so­
lution? To evaluate the quality we performed an 
a-posteriori analysis i.e., we determined how we 
would have sequenced the tasks had we known 
which tasks were generated. 

To this end we "collected" all jobs over a cer­
tain time period and sequenced them optimally. 
First note that the jobs cannot be sequenced ear­
lier than they are generated. Moreover, the 
completion of the jobs cannot wait too long as, 
e. g., the production might be delayed. Thus, to 
each job a time window is associated and we 
only allow to visit a node within its time win­
dow (ATSP-TW) (See ,among others , 
Desrochers et al. 1988 and Desrosiers et al. 
1995 ) . The ATSP-TW is a difficult combinato­
rial optimization problem where it is even 
strongly NP-complete to find a feasible solution 
(Garey and Johnson 1977, Savelsbergh 1985) . 
We have developed a branch & cut-approach 
for the ATSP-TW (Ascheuer, Fischetti and 
Grötschel 1997; Ascheuer, Fischetti and 
Grötschel 1998) and a relaxation, namely the 
ATSP with precedence constraints (Ascheuer, 
Juenger and Reinelt 1997). The optimal solu­
tions to these problems yield a lower bound to 
an optimal online strategy if the same sequence 
of nodes is generated. Computational tests based 
on the production data from SNI showed that 
there is still an online optimality gap of between 
3-70% ,with approximately 30% on average . 



Figure 2: Commissioning Area for Greeting Cards (Screenshot from the simulation program) 

We like to point out one important restric­
tion of this a-posteriori analysis. This analysis is 
based on the fact that the same sequence of 
nodes is generated, independent of the way the 
jobs are performed. This is not necessarily the 
case for this application as the completion of a 
certain job may have an influence on other gen­
erated tasks. For example, consider the case that 
a container delivered to the assembly line (task 
A) contains parts that are not usable (e.g., they 
are broken). As a result, the workers generate a 
retrieval task B and order new parts (task C). 
The sooner task A is performed, the earlier tasks 
B and C are generated, and the earlier the time 
window for B and C will become active. Thus, 
there is no well defined optimal offline solution 
to which we can compare the online solution. 
As a consequence, competitive analysis cannot 
be applied. 

2.2 Online-Optimization of a 
Distribution Center 
The Herlitz PBS AG (WWW Herlitz) is the 
main manufacturing firm for office supplies in 
Germany. They maintain their Europe-wide dis­
tribution center in Falkensee, close to Berlin. A 
joint project is aimed at efficiently managing 
their complete internal material flow. In a first 
phase we have optimized one commissioning 
area. We are currently working on the optimiza­
tion of the whole pallet transportation system 
consisting of a system of roller conveyors, ten el­
evator systems and 18 AUSS. 

Online optimization questions arise in the 
following areas: routing of pallets; efficient con­
trol of elevator systems; routing within the 
AUSS; routing of commissioning vehicles. 

2.2.1 Commissioning of Greeting 
Cards 
In this section we discuss one question in fur­
ther detail, namely the efficient commissioning 
of greeting cards. 
Description of the System. The cards are 
stored in four parallel shelving systems (see Fig­
ure 2). In accordance with the customers' or­
ders, the different greeting cards have to be col­
lected in boxes to be shipped to the customers. 
Order pickers on eight AGV collect the orders 
from the storage systems while following a cir­
cular course. The vehicles are unable to pass 
each other. Moreover, due to security reasons, 
only two vehicles are allowed to be in the 
middle aisles at the same time, whereas three are 
allowed in the first and last aisle. 

At the loading zone each vehicle is "loaded" 
with up to 19 orders. Afterwards, a dispatcher 
decides when to send the vehicle onto the 
course. After leaving this area the vehicles auto­
matically stop at a position where cards have to 
be picked from the shelf. Signal lights indicate 
the position from where and to which box the 
cards are picked. 

The management was unhappy with the sys­
tem since frequently vehicles ran into conges­
tions and orders were completed late. For ex­
ample, suppose that there is a vehicle that re­
quires a lot of stops and the subsequent one only 
has a few stops. In case the dispatcher sends 
them onto the course, the fast vehicle will catch 
up with the slow one immediately, resulting in a 
congestion. As a consequence, the order pickers 
of fast vehicles often left the AGV to smoke a 
cigarette, etc., which resulted in further conges­
tions. 

Modeling. We suggested assigning the orders 
to the vehicles in such a way that whenever a ve­
hicle stops the order picker can collect as many 
cards as possible; alternatively, for a given set of 
orders minimize the total number of stops to 
fulfill these orders. In this way it is possible to 
avoid some time-consuming deceleration, fine 
adjustment, and acceleration phases for the ve­
hicles. Besides minimizing the total number of 
stops, we aim at reducing the time vehicles 
spend in congestion. This can be modeled as a 
mixed integer program. First computational test 
showed that for some data sets provided by 
Herlitz it took several hours of CPU-time just to 
solve the linear relaxations of the MIP. Thus, an 
exact solution approach was unsuitable for a de-
ployment in the distribution center. 

It could be shown that already the problem of 
minimizing the total number of stops is NP-
hard (Kamin 1998). Therefore, we implemented 
several heuristics that reduce the total number of 

http://www.herlitz.de/


Figure 3 : A Snapshot of the Animated Simulation of an Elevator System 

stops required for the vehicles and evenly dis­
tribute these stops among them. We used vari­
ants of greedy- and best-fit-algorithms with an 
additional 2-exchange improvement heuristic. 
In addition, we used a coarse simulation to de­
termine the best starting time for each vehicle. 
By this optimization-simulation approach, pre­
dictable congestions are shifted to the loading 
zone, where the order pickers can either have a 
break or can be assigned other tasks. 
Results We implemented a very detailed simula­
tion model for the whole commissioning area in 
which we compared our approach to the one 
used so far. Herlitz provided production data 
from a period of about six weeks, which were 
the basis for the comparison. The main results 
are the following: a significant improvement 
with respect to the completion times of the or­
ders can be achieved; the number of vehicles can 
be reduced from eight to six without any nega­
tive impact on the system performance; conges­
tions can more or less be avoided completely. 
Vehicles run into congestions only for a few sec­
onds. 

More details can be found in Ascheuer, 
Grötschel, and Kamin 1998; and Kamin 1998. 
A prototype of the simulation approach is cur­
rently tested by the support team of Herlitz for 
its use as a decision support tool for the dis­
patcher. 

2.3 Challenges 
Conveyor Modules in Large Scale Trans­
portation Systems. In connection with an­
other cooperation with Herlitz AG, Berlin, we 
are analyzing the following problem: the auto­
mated pallet transportation system in a large dis­
patch building of Herlitz in Falkensee has to 
take care of a congestion-free flow of pallets 
from/to ware-input, commissioning depart­
ments, shelf system, and ware-output. Among 
the building blocks for pallet transportation, the 
following seem to be the most complex ones: 
the automated shelf systems; the automated el-
evator systems. Modules of these types are found 
in many automated transportation systems. 

One would like to describe how different 
modules of such a system must be controlled in 
order to work well together. The common prac­
tice is to run very simple heuristics with empha­
sis on avoiding congestion. 

Prior to the investigation of the interplay be­
tween the modules it is necessary to understand 
the modules themselves. While for the auto­
mated shelf systems we can use our experience 
from the above mentioned project with SNI, the 

elevator control problem is not well understood 
so far. This is even the case in very elementary 
settings, let alone real-world layouts with addi­
tional restrictions to the flow from/to the eleva­
tors. 

A generic simulation environment for elevator 
systems based on the event based simulation li­
brary (AMSEL 1997) was designed in order to 
test heuristic approaches to the problem (see 
Figure 3). 
Conceptual Problems. Competitive analysis 
is a mathematical performance measure of 
online algorithms. It has the advantage of not 
being dependent on the knowledge of the prob­
ability distribution of the requests. However, 
the online model that it is based on is too re­
strictive for many real-world problems. For an 

elevator system, e.g., there are usually many re­
quests available at the same time, and the eleva­
tor has the opportunity to make an offline 
schedule based on the known information. 
Moreover, not yet processed requests may be re-
scheduled b y t h e algorithm. This dynamic look 
ahead should be integrated into a generalization 
of competitive analysis. 

A very hard problem occurs if there is no cor­
responding offline problem at hand. In these 
cases even the definition of what should be an 
optimal solution to the online control problem 
is problematic. In control theory one computes 
an optimal control at each point in time. Usu­
ally one cannot ensure that these local optima 
combine to a globally "optimal" solution if the 
problem is discrete because the objectives are 
not continuously dependent on the decisions. 



3 Conclusion and Outlook 
Online problems show up almost everywhere in 
industrial production, logistics, etc. We have il­
lustrated this by means of a few relevant ex­
amples from practice. Online optimization 
problems have, however, not received too much 
attention from the mathematical programming 
community yet. 

The field lacks "good" mathematical concepts 
for decision support. From a practical point of 
view, competitive analysis as well as similar ap­
proaches rarely yield results that can guide deci­
sion makers in the selection of which online 
algorithm to use. Simulation experiments are 
still the state of the art. 

Nevertheless, by using the tools that have 
been developed in combinatorial optimization 
over the years, such as combining and modify­
ing various heuristic and exact approaches for 
associated offline problems, it is still possible to 
improve considerably on what is currently done 
in practice, as our examples show. 
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