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In this paper we survey several topics of polyhedral theory which are of particular
interest for mathematical programming. In Section 1 we introduce our notation and some
concepts of lincar algebra which are needed in the sequel. In Section 2 we show that
an algorithm, namely the Fourier~Motzkin elimination algorithm, can be used as the
mainstay of a large portion of the results of polyhedral theory. We review in Section 3
the ellipsoid method due to Shor and discuss Khachian’s proof that this algorithm can
be used to solve linear programming problems in polynomial time. In Section 4 we study
faces of polyhedra, in particular we give characterizations of valid inequalities, facets
and vertices. We use these results in Section 5 to characterize minimal representations
of polyhedra and demonsfrate that redundancy can be checked in polynomial time. In
Sections 6 and 7 we introduce the concepts of homogenization and polarization and in-
dicate their usefulness for streamlining and unifying proofs in polyhedral theory. Finally
Section 8 sumumarizes results on lattices asscciated with polyhedra.

0. Introduction

The theory of convex polyhedra dates back to the ancient Greeks.
Euclid for example studied polyhedra in 2- and 3-dimensional spaces and
found some volume formulas. The first essential post-greek contribution
to polyhedral theory is probably due to Euler who established the famous
relationship between the number of vertices, edges and faces of polytopes
in 3-space, cf. Griinbaum (1967). Euler’s results, however, seem to have
been partially known to Descartes a hundred years before. His manuscript
was unfortunately lost, but a partial copy made by Leibnitz was discovered
in 1860, cf, Steinitz-Radermacher (1976). Detailed remarks on the beginning
of polyhedral theory can be found in Coxeter (1963), Griinbaum (1967),
Minkowski (1911), and Schlafli (1901).

A first state-of-the-art survey of the theory of polyhedra was presented
by Steinitz and Rademacher in 1934 (new edition 1976). Today, Griinbaum
(1967) is one of the best references with respect to the combinatorial investi-
gation of polyhedra. An interesting new axiomatic approach to the theory
of convex sets was recently presented by Prenowitz—Jantosciak (1979).

Arvound 1950 the theory of polyhedra received a new impetus from out-
side. Economists formulated optimization models whose feasible solutions
are given by means of linear inequalities and whose objective functions are
linear. To solve such problems the Simplex algorithm and many variants
as well as several relaxation methods were designed. The development of
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the so-called theory of linear programming, its algorithmic implementation
and economic interpretation is (among others) mainly due to A. Charnes,
G. B. Dantzig, D. Gale, A. J. Hofflman, L. Kantorovich, T. C. Koopmans,
H. W. Kuhn, T. Motzkin, A. W. Tucker and J. von Neumann, cf. the biblio-
graphy in Kuhn-Tucker (1956) pp. 305-322.

Beginning with these activities polyhedral theory was newly developed
from a mathematical programming point of view, cf. Kuhn-Tucker (1956).
Emphasis was layed on characterizing properties of polyhedra by means of
a given description of a polyhedron and on developing fast algorithms for
the solution of linear programming problems. The Simplex algorithm due
to G. B. Dantzig turned out to be an extremely fast and reliable procedure
to solve real-world problems, although Klee-Minty (1972) and others proved
that this method may have a bad worst-case behaviour.

Whether linear programming problems can be solved in polynomial
time was an ouistanding open ‘problem until recently Khachian (1979)
showed that the ellipsoid method due to Shor (1977) can be used to check
the nonemptiness of polyhedra and to solve linear programming problems
in polynomial time.

In the sequel we shall survey the theory of polyhedra from the mathemati-
cal programming point of view. We emphasize unifying concepts which
can be used to give short and elegant proofs of the key theorems of poly-
hedral theory, and we point out important computational aspects of poly-
hedral theory, e.g. indicate how the ellipsoid method can be used to solve
various problems of polyhedral theory in polynomial time.

1. Notation

By R we denote the real numbers, and B" is the usual vector space of
n-tuples x = (xy, X2, ..., x,)F. Vectors will always be considered as column
vectors and ‘T’ denotes transposition. For convenience everything takes
place in R”, although the whole theory could also be developed in finite
dimensional vector spaces over (archimedian) ordered fields.

A matrix A= (@;)i=1,, =10 (Where ;€R) with m rows and 7
columns is called an (m, n)-matrix. For simplicity we usually assume that
M ={1,2,...,m}is the set of row indices and N = {1,2,...,n}is the set
of column indices. We shall extensively use the following notations to
denote submatrices of 4. Let T = (i1, fay ., iy} (I = (15 /25 .o Jy) bea
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vector of pairwise different row (column) indices, e {0 M,
{1y eoeafd © N, then Ap; or just A4, denotes the following submatrix
of A:

By gy iy

Ay =

Bpjyo +eos Yipisd
In case J=(1,2,...,m) (I=1(1,2,...,m)) we write A, or A; (4, or
Ap I I=() and J=(1,2,..., n) (J=(j) and I= (1,2, ..., m)) we
write A4, or A, (4 or 4. ), ie. 4, is the i-th row of matrix A (in the sequel
A, will always be consjdered as a row vector) and 4, is the j-th column of
A. Often the order of the components of 7 or J is completely unimportant.
Therefore, if 7C M and JC N we shail also write 4;; Lo denole a sub-
matrix of 4. But such a matrix is only defined up to row and column per-
mutations.

A vector xcR”is called a linear combination of the vectors x*', x*, .., xFeR?
if for some 1€R*

i
x= 3 At
i=1
If additionally
=0 }
[comc l
Aol =1 we call x a-affine combination
s 1=l 220 convex[

of the vectors x!, x2, ..., x*. These combinations are called proper if neither
A =0 nori = ¢; for some je{l,2,...,k}. (Here 1 denotes a vector of
appropriate dimension all whose components are one, and ¢; denotes a
vector of appropriate dimension all whose components are zero except Lhe
Jj-th which is one.) For a nonempty subset S CIR" we denote by

lin(:S) linear
cone(S) | o JeONIC | il of elements of §
aff(s) I[ affine MEms oF 2

conv(s) J convex
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i.e. the set of all vectors which are linear (conic, affine, convex) combina-
tions of finitely many vectors of S. For the empty sct we define lin(f) :=
cone(@) = {0}, aff(®) := conv(f) = @. If A is an (m, n)-matrix then lin(A4)
{cone(4), afl(4), conv(A4)) is the linear (conic, affine, convex) hull of the
column vectors 4., j=1,...,n.

a linear space ’ S = lin(S)

. a cone .~ |§ = cone(S)
A subset S CIR” is called an affine space if S = aff(S)
a convex set S = conv(S)

A nonempty finite subset S CIR" is called lincarly (resp. affinely) indepen-
dent if none of its members is a proper linear (affine) combination of elements
of S. Otherwise S is called linearly (resp. affinely) dependent. The empty set
is affinely but not linearly independent. It is well known that a linearly
(resp. affinely) independent subset of R" contains at most n (resp. n + 1)
elements. For any set S CIR”, the rank of S (affine rank of S) denoted by
rank(S) (arank(S)), is the cardinality of the largest linearly (affinely)
independent subset of S. For any subset S CR" the dimension of S,
denoted by dim(S), is the cardinality of a largest affinely 11'1dependent subset
of § minus one, 1.e. dim(S) = arank(S) — 1.

For any set S CR”

rec(S) :={ycR" | x + lye S forall xS and all A > 0}

denotes the recession cone of S. Intuitively, every vector of the recession
cone represents a ‘direction to infinity’ in S. By

lineal(S) := {y e R" | —y € rec(S)}

we denote the /ineality space of S. The lineality space is the largest linear
subspace L of R” such that x 4+ L € S for all x€ S.

A subset P of R" is called a polphedron if there exists an (i, n)-matrix
A and a vector b € R such that P = {x ¢ R" | Ax < b}. Thus a polyhedron
is the set of real solutions of a finite number of linear inequalities, or equi-
valently the intersection of finitely many closed half-spaces {x€ R"| 4.x
< b} (i=1,..., m). The inequality system Ax < b is called a linear de-
fining system, an inequality representation or just a representation of P.
Clearly, such a representation is not unique. The polyhedron defined by
the linear inequality system Ax < b is denoted by P(4, b).
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If a mixed system of equations and linear inequalities is given and if in
addition some variables are sign-restricted such as the system

Bx 4 Cr = ¢,
Dx + Ey < d, (+)
xeR™, yeR™ x>0,

then, using the following matrix 4 and vector b,

B C c

—B —C —c
A= p E b= d |’

- 0 0

the mixed system (+) has the same set of solutions as Ax < b, hence also
defines a polyhedron. A special kind of polyhedra will be used frequently
and is therefore denoted by a particular symbol, namely

PT(A4,b) :=[x€R" | Ax = b, x = 0}.

A polyvhedral cone is a cone which is also a polyhedron. A bounded
polyhedron is called a polytope.
The recession cone and the lineality space of polyhedra can be easily
described, namely if P = P(A4, b) CR*, then
rec(P) = {x€R"| 4x < 0},
lineal(P) = {x€R" | Ax = 0}.
Therefore, the recession cone and lineality space of a polyhedron are
polyhedral cones.
In case V, E CR" are finite sets and P = conv(¥) -+ cone(F) (we shall

see later that such a set is a polyhedron and that every polyhedron can be
described in this way), then

rec{ P) = cone(E),
lineal{ P} = cone({e € E | —e€ cone(E)}).

The problem of maximizing a linear objective function f:R"—+R (i.e.

f(x) = ¢"x for some ¢ ER") subject to the solution set of a linear inequality -

system Ax < b is called a linear program. To shorten notation the linear
program: find xX€ P(4, b) such that ¢'¥ = max{c"x | x€ P(4, b)} is de-
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noted by

max c¢'x,

or max{c'x|x€ P(4, b)}. (1.1
Ax < b,

For a linear program such as (1.1) the following three outcomes are
possible:

(1) P(A4, b) =@, i.e. there is no feasible solution and hence no optimal
one. In this case the linear program is called infeasible.

(2) P(A, b) = 0 and for all x € P(A, b) there is an x € P(A4, b) such that
¢"™x = ¢"x - 1. Such a linear program is called unbounded.

(3) P(A, b) # @ and there is eq € R such that ¢¥x < ¢, for all x € P(4, b).
Such a linear program is called bounded and we shall show later that in this
case there is a feasible solution X € P(A4, b) such that ¢"x > ¢'x for all
x € P(A4, b). Such a vector x is called oprimal solution of the linear program

(1.1).

Note that the objective function can also be added to the constraints,

and then a linear program can be stated in the following form
max z,

S T

In other words, a linear program can be interpreted as the problem of
increasing the first component of the right hand side of a linear inequality
system as much as possible without obtaining a nonempty solution sef,
or equivalently, if we define for every z€R the polyhedron

=

then we want to find the largest z € R such that the polyhedron P, is non-
empty.

A

2. Characterization of nonemptiness of polyhedra:
The Fourier—Motzkin elimination and its consequences

Formulation (1.3) of a linear programming problem shows that the
optimal value z* of the linear program has the property that the polyhedra
P, are nonempty for all z < 3* while all polyhedra P, are empty for z > z*.

— e
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Thus, finding the optimal value of a linear program can be viewed as the
problem of characterizing the nonemptiness (so called primal problem) and
emptiness (dual problem) of polyhedra, or stated formally:

(FxeR" Ax < b)? primal problem, (2.1)
(VxeR" Ax £ b)? dual problem. (2.2)

Logically, the primal and the dual problem are equivalent in the sense
that a characterization of emptiness of polyhedra yields by negation a
characterization of nonemptiness of polyhedra and vice versa. However,
from an algorithmic point of view the primal problem (2.1) and the dual
problem (2.2) are fundamentally different. Suppose for example that we
wish to solve the primal and the dual problem on a computer (as a computer
has only finitely many symbols at its disposal we shall restrict ourselves
to rational numbers @ here). Let S(x) be a subroutine that checks for any
given x € Q" whether Ax < b holds or not. Now choose any enumeration
of the rationals x!, x2, x3, ... and run the subroutine S(x"),7= 1,2, 3, ... .
If there is a rational vector x such that 4x < b holds, then after a finite
number of calls of S(x') we will have a proof of the consistency of the
inequality system. If however there is no rational vector ¥ with Ax < b,
the inconsistency of the system cannot be verified in a finite number of
steps. The problem here obviously lies in the generalization quantifier ‘v’
of the dual statement.

The goal of a duality theory (not only for the special case of linear
programming) is to find a logically equivalent reformulation of the dual
problem (2.2) in which the quantifier ‘¥’ is replaced by an existence quantifier
‘2, ie. which yields an ‘easily checkable’ statement E(x) so that

(Vx€R" Ax £ b) & (I xcR" satisfying E(x)).

holds. Such a characterization for polyhedra was first given by Farkas
(1902) although the way was prepared by Fourier (1826) much earlier.

The main idea for finding a positive criterion for the dual problem (2.2)
consists in the construction of a special linear inequality system Dx < d
such that P(D, d) = @ if and only if P(«, b) = 0 and such that P(D, d) = 0
is easy to verify.

Suppose we are able to find a construction such that this matrix D is a
zero-matrix, then clearly P(D, d) = @ if and only if there is an index 7 with
dy < 0. If furthermore the construction of the zero-matrix D and the vector



CHAPTER 2 New aspects of polyhedral theory 39

d can be carried out in such a way that every row of D (every component
of d)is a conic combination of rows of 4 (components of b), then P(D, d) = ¢
is equivalent to the existence of a vector u € R™ with u > 0, uTd = 0,
u'h << 0. Such a construction would yield the desired result, namely

PA D) =0 & FucR": u>0,uTd=0,u"h < 0.

This construction can in fact be carried out, the method which accom-
plishes this is known as the Fourier—-Motzkin algorithm, and the characteri-
zation of emptiness of P(A4, b) given above is the celebrated Farkas Lemma.
The following algorithm is an analogue of the well-known GauB-Jordan
algorithm for equality systems and was introduced as a main tool in the
theory of inequalities by Dines {(1919) and Motzkin (1936). The algorithm
has the following form:

Algorithm 2.1, Fourier-Motzkin elimination (of one variable).

Input. An (m, n)-matrix A, an m-vector b, and a column index j€
{1,2,...,n} of 4.

Qutput. An (r, n)-matrix D (r will be determined by the algorithm) and
an r-vector d, such that the j-th column of D is a zero-vector.

Method
Step 1. Partition the set of row indices M ={l,2, ..., m} of 4 into

Z={ic M|a;= 0},
P={ie M|a;> 0.

(The set Z\J (Nx P) will be the row index set of the matrix D and the

vector d.) .

Step 2. Let r=|ZU(NxP)|, R={1,2,...,r} and let p: R—+ZV
(Nx P) be a bijection, i.e. a canonical indexing of Z\V (N x P).

Step3. FOR i=1[TOr DO

(a) 1F p(i)€ Z THEN D, 1= A, d; 1= b,y
(b) IF p(i) = (s, 1)E NX P THEN
D, 1= A A, — Ag4,.
dy := Ab, — Agyb,

s
END
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Theorem 2.2. Let A be an (m, n)-matrix, b be an m-vector and choose some
column index jE€{1, ..., n}. Let D resp. d be the (r, n)-matrix resp. r-vector
obiained by the Fourier-Motzkin elimination algorithm for this specified j.
Then P(A, b) is nonempty if and only if P(D, d) is nonempty.

Proof. Every row D;. of D is a conic combination of rows of 4, 1.e. D, = u*A

for some u€ R}, Hence for any vector x € R" which satisfies Ax << b we

have D, x = uTAx < ub = d; and thus x is also a solution of Dx < 4.

To show the converse we prove that given a vector x with Dx << d we
can find a nonempty interval [L, U] of real numbers such that for any
Ac [L, U] the vector x* 1= x -+ e, satisfies Ax* < b and Dx* < d.

Since by construction D, = 0 holds, the vector x* = x + ¢, satisfies
Dx* < d for any A€R. We may therefore assume that the initial vector
x with Dx < d satisfies x; = 0. Furthermore, by construction, for every
ic Z there is a k€ R with p(k) = 7and 4, = Dy, b; = d,, hence 4,x" < b,
also holds for all 1€ R and all i€ Z.

To determine the desired interval we calculate the ‘scaled’ slacks of the
remaining inequalities, {.e. for all ;e P\ N we set

yii= A7 (bi - 2 Aﬂcxk) = A7 '(b; — A4;x)
Parsy

and define U:= +oco if P =0, otherwise U:=min{y, |i€ P} and
L = —oo if N=1{, otherwise L := max{y, | i€ N}.

We first show that L < U. This is obvious if P = @ or N = §J. So suppose
that s€ N, t€ P and i€ R are chosen such that y, =1L, y, = U and that

() = (s, 1), then
Ayd x — AgAd,x = Dix < d = A;b, — Agb,
which implies 4(b, — 4,x) < A, (b, — 4.x) and further
ye=AgNb, — A.x) > A5N b, — 4,.%) =y,

i.e. from the choice of s and 7 we get U/ > L.
It remains to prove that 4,x" << b, holds for all i¢ PV N and all
A€{L,U)]. Let i€ P then U < -- co and

At = Ax + A < Ax + A,U
< Ai.x "I" Al'jyf — bi'

The same follows for i€ N similarly, and we are done.
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The Fourier-Motzkin elimination as stated above is an algorithm which
can be applied to an (m, n)-Matrix 4 and an m-vector b. No use is made
of the relation holding between A and b. So, instead of considering an m-
equality system Ax < b as in Theorem 2.2 we could also analyze the result
of the elimination procedure applied to a strict inequality system Ax < b,
By carefully checking the steps of the proof of Theorem 2.2, one can easily
see how a statement equivalent to “{x € R” | 4x < b} is nonempty”’ should
look. In the following corollary we formulate this equivalence for the case
of a mixed system of weak and strict inequalities.

Corollary 2.3. Let A be an (m, n)-matrix and b an m-vector, and let j€
{1,...,n} be any column index. Let D be the (r, n)-matrix and d be the r-
vector obtained by the Fourier—Moizkin elimination algorithm for this parti-
cular j. Furthermore, let I, J C M with IN J =0, I\V J = M be a partition
of the row index set M of A, and let E\J F = R be a partition of the row.
index set R of D defined as follows:

E:=p[(ZNDVI[NxPYNIxD], F:=R\E.
Then the system

Apx < by,

Apx < by
has a solution x €R" if and only if the system

Dpx < dp,

Dpx < dg

has a solution x € R".

Remark 2.4. After successive elimination of all variables x; (j =1, ..., n)
the final zero-matrix D may have a tremendously large number of rows.
In the worst case 4 has no zero element in the first column to be eliminated
and |P| = |N| = m/2 holds, so using Algorithm 2.2 we obtain a matrix
D with m?/4 rows. Assuming that this worst case holds in any further
elimination process, we finally obtain a matrix D (a vector d) with

i1
m? 22T T2



62 A. Bachem, M. Griischel PART I

rows (components). Unfortunately, an exponential growth like this quite
often occurs making the Fourier-Motzkin elimination of questionable prac-
tical value.

A direct consequence of Theorem 2.2 obviously is

Corollary 2.5 (Farkas lemma). The polyhedron P(A, b)is empty if and only
if there exists an u€R" with u"A = 0 and ub < 0.

We may also formulate Corollary 2.5 as a theorem of the alternative.

Corollary 2.6. Either Ax << b has a solution x € R" or there exists anu € RY
with utA = 0 and ub < 0 but. not both.

Note that in the formulation of the Farkas Lemma in Corollary 2.5
the set whose nonemptiness is equivalent to the emptiness of P(4, b) is not
a polyhedron, however, it is easy to see that

Juz0 u'd=0and ub<<0
is equivalent to

Auz0 u'4d=0and ub= —1,
i.e. the Farkas Lemma can also be stated in the following form:
Corollary 2.7. Let A be an (m, n)-matrix and b an m-vector, then the following
holds:

XeR" | Ax < b} #0

or
WER™ |u=0,"A=0; ub = —1} %0

but nor both.

Therefore, the Farkas Lemma can be viewed as a theorem relating the
emptiness resp. nonemptiness of the polyhedra

P(4,8) and P- ((Z:) (_(1)))

to each other.
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2.1. Theorems of the alternative

One of the most important aspects of the Farkas Lemma is its form of an
alternative: one statement holds or another but never both. This version
has found many generalizations to various kinds of polyhedral and non-
polyhedral sets. Most of these theorems of the alternative can however be
shown to be quite easy consequences of the Farkas Lemma (resp. Corollary
2.3 for mixed systems) and vice versa. These theorems are very useful as
technical tools e.g. for characterizing valid inequalities for polyhedra, proving
strong complementary slackness theorems and the like. For a survey of such
results see Mangasarian (1969). We only state four of these theorems which
are of particular interest resp. are used later.

Theorem 2.8. Exactly one of the two following statements holds:
(2.8.1) Fx with Ax < a, Bx < b,
(2.8.2) (a) W ,vT) =0 with v5£0, ”"A +v"B=0, u'a +v"5<0;
(6) Tu=0 with u'A =0 and u"a < 0.

Corollary 2.9. Let P(A, a) be a nonempty polyhedron, then exactly one of
the two following statements holds:

(2.9.1) I x with Ax < a, Bx < b;

(2.9.2) @S oY) =0 withv+#0, ”"d + "B =0, u'a+ v"h <0,

A version of the Farkas Lemma relating orthogonal subspaces of R"
to each other, which has particular applications in network flow theory
(cf. Ford—Fulkerson (1962)) is the following.

Theorem 2.10. Let L be a linear subspace of R" and let I :==X{_, I, be the
cartesian product of n nonempty intervals I, of R. Then L NI 0 if and only
if for each y€ LY (orthogonal complement of L) there exists an x € I with
xTy = 0.

This theorem yields as an immediate consequence:

Corollary 2.11. Let A be an (m, n)-matrix and I == X, I; be the cartesian
product of n nonempty intervals I, of R. Then exactly one of the following
two alternatives holds:

(2.11.1) I xcR” with AxeI;

(2.112) FueR™ with u*4 =0, u"z < 0 for all z€ 1.
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2.2. Transformation of polyhedra

Let P = P(4,b) be a polyhedron in R". For &, ré N with n =k + r
and 4 a matrix obtained from A4 by permuting some columns, the set

o :={x€l&k |3 ye ]R"(;‘;)eP(,i, b)}

is called a projection of P (onto some of its coordinates). It is often useful
to know that any projection of a polyhedron is again a polyhedron. This
observation follows from:

Theorem 2.12. Let P = P(A4, b) CR” be a polyhedron, D be a (k, n)-matrix,
d€RF and f:R"—~R* be the affine mapping defined by f(x) = Dx -+ d.
Then the image f(P) of P under [ is a polyhedron.

Corollary 2.13. Any projection of a polyhedron P(4, b) onto some of its
coordinates is a polyhedron, ie. for any I C{l,...,n}

Pl:={x;e R | x € P(4, b)}

is a polyhedron.

This corollary implies a result which is of particular interest.

Corollary 2.14. The linear (affine, conic, convex) hull of finitely many vectors
is a polyhedron, ie. for any (m, n)-matrix A

lin(4)
aff(4)
cone(4)
conv(4)

is a pblylzedran.

The fact that every finitely generated cone is a polyhedron was first
observed and proved by Weyl (1935). This result is therefore often called
“Weyl’s Theorem’ in the literature. Appropriately applied, it has far reaching
consequences, Corollary 2.13 also easily yields

Corollary 2.15. The sum P = P, - P, of two polyhedra P,, P, CR" is
also a polyhedron. In particular, if A is an (m,n)-matrix and B an (m, n')-
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matrix, then
conv(A) -+ cone(B)
is a polyhedron.

2.3. The polar cone
For any subset S CR the set $° CR” defined by
SO :={yeR"|)"x <0 VxeS}

is called the polar cone of S, ie. S° is the set of all y€R" which form
an obtuse angle with all x€ S. Tt is very simple to see that S° is indeed a
cone. For polyhedral cones the polar cone can be easily described:

Theorem 2.16. Let P(A,0) be a polyhedral cone. Then
P(4, 0)° = cone(47).

Proof. Note that P(4, 0) is never empty. Now, &€ P(4, 0)° if and only if
Ax < 0 implies bx < 0, or equivalently the system Ax <0, —bx <0 I8
inconsistent. By Corollary 2.9 the alternative statement (2.9.2) holds, ie.
there exist u > 0, v > 0 such that 44 — vb™ = 0, or equivalently v="4u
= b. Hence b€ P(4, 0)° is equivalent to b € cone(4”).

Note that for a polyhedral cone P(4, 0), the equality P(4, 0) = cone(4")
holds by definition. This observation and Theorem 2.16 imply

Corollary 2.17. Let A be an (m, n)-matrix, then
P(4, 0)°° = P(4,0), cone(A)?° = cone(4).

The truth of the converse statement of the Theorem of Weyl was ob-
served by Minkowski (and proved by Weyl):

Theorem 2.18 (Minkowski’s Theorem). Every polyhedral cone is finitely “
generated, i.e. for every {m,n)-matrix A there exists an (n, k)-matrix B
With

P(A4, 0) = cone(B).
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Proof. Using the Theorem of Weyl 2.14 and Theorem 2.16 we obtain
P(A, 0) = cone(A")" = P(BT, 0)° = cone(B).

We have seen in Corollary 2.15 that for finite sets V, E, the set conv(F) --
cone(E) is a polyhedron. Using homogenization techniques which we shall
introduce in Section 6 one can easily derive from Minkowski’s Theorem

Theorem 2.19. Every polyhedron is finitely generated, i.e. for every polyhedron
P there exist finite sets V, E such that

P = conv(V) + cone(E).

2.4. Lincar programming duality

We shall now derive the ‘duality theorem of linear programming’ from
the Farkas Lemma and prove our claim of Section I that every bounded
linear program has an optimal (feasible) solution. Consider the linear pro-
gram

max c'x,
(2.3)
Ax < b

where the set of feasible solutions is the polyhedron P(d, b). As mentioned
in (1.3) this program can be formulated in the form

supiz€R | P, == 0} 2.4)
where P, is the polyhedron

dRNES

Since we have called the nonemptiness-question of polyhedra (2.1) the primal
problem, we call the linear program (2.3) resp. (2.4) the primal program,
and similarly we call the problem

inf{zeR | P, = 0} (2.5)
the dual program of (2.4). Clearly.
sup{z | P, 5 @} = inf{z | P, = 0}, (2.6)
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i.e. the primal and the dual program have the same optimal value. More-
over, if the polyhedron P(4, b) is empty (i.e. P, = @ for all z 6 R), then the
dual program is clearly unbounded.

The dual program (2.5) is stated in a very uncommon fashion, but ‘the
Farkas Lemma can now be used to reformulate ‘P, = @ in such a way
that the dual program is seen to be a linear program. Namely, by Corol-
lary 2.5 we have

=0 < (Au>0,0>0such thatu* 4 = ac’ and u'h < &2).

Thus, if P(A, b) is nonempty (and hence no v = 0 with ¥4 = 0 and
u'h < 0 exists), we may assume that o > 0 or equivalently (by scaling) that
o = 1 holds for the right hand side of the above equivalence. Hence under
the assumption P(A4, b) # 0

P,=0 & (Fuz0such that u'A = ¢’ and v"'b < z).

And therefore the dual program (2.5) can be written as

inf{uTh | u"d = %, u = 0} 2.7
Thus if P(A4, b) 5~ ) the equality (2.6) reads
sup{c"x | Ax < b} = inf{u"b |u"4 = ¥, u = 0}. (2.8)

If both polyhedra P(4, b) and P=(A", c) are nonempty, then by (2.8) the
linear and hence continuous functions c'x resp. #'b are bounded on
P(A, b) resp. P=(4,b) and (because of the completeness property of real
numbers) therefore both attain their maximum resp. minimum. Moreover,
(2.8) also yields that the primal and dual program have the same optimal
value. Altogether we have shown

Theorem 2,20 (Duality Theorem). Consider the primal linear program (P)
and its dual linear program (D), where

J max c'x, [min u"b,
(P) = |4x < b and (D) = [¢"A = ¢ u=0.

(a) The following three statements are equivalent:

(1) (P) and (D) have optimal solutions x €R" resp. ue€R™ with
¢™x = u'h.

(2) One of the programs (P) or (D) has an optimal solution.
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(3) Both the primal program (P) and the dual program (D) have a
feasible solution.
(b) If the primal program is unbounded, then the dual program is infeasible.
(c) Ifthe dual program is unbounded, then the primal program Is infeasible.
(d) If the primal program is infeasible, then the dual program is either
infeasible or unbounded.
(&) If the dual program is infeasible, then the primal program is either
infeasible or unboundec.

Note that the proof of the duality theorem we have just presented uses
the completeness of the real numbers. The duality theorem itself however
holds in a much more general setting.

3. Characterization of nonemptiness of polyhedra:
The ellipsoid method

The Fourier-Motzkin elimination procedure discussed in Section 2 is
an elegant algorithm to prove the emptiness resp. nonemptiness of poly-
hedra. It yields as a simple corollary the Farkas Lemma and has therefore
far reaching theoretical consequences. Although finite, this method is not
efficient in the sense of complexity theory, since it typically has exponential
behaviour.,

Recently, Khachian (1979) has shown that emptiness resp. nonemptiness.
of polyhedra can be checked in time which is bounded by a polynomial
in the length of the data encoding. His proof is based on the ellipsoid
method of Shor (1977), for detailed proofs cf. Gdcs—Lovdsz (1981), Kénig-
Pallaschke (1981), Padberg-Rao (1979 and 1980) and the bibliography
Wolfe (1980). '

We shall first state this algorithm and then discuss its behaviour, its
underlying geometrical idea, and some of its consequences.

Algorithm 3.1. Ellipsoid Method.

Input. An integer (m, n)-matrix A, b€ Z". Let L be the length of a
binary encoding of 4 and 5.

Qutput. The algorithm either finds a vector x€ Q" with Ax << b or
terminates after V steps, where N := (1012 + 5n) L + 512, In the second
case, the set {x CR" | Ax < b} is empty.
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Initialization: Set

X0 := 0€R, BO = 2]
where 7, is the (n, n)-identity matrix.
FOR k = 0 TO N DO
(1) 1IF Ax* < b THEN sTOP (a solution is found).

(2) Choose any i€ {1,2, ..., m} such that
A xF = b,

where A, is the /-th row vector of A.
(3) Calculate d := VA, B*AT and set

-

drd

where ~~ means that the left hand side is obtained by rounding the binary
expansion of the right hand side after 157L places behind the point.

(4)

1
20 P _Bk T
x ST dn D e
B+ - oy n* B* 2 (B AT) (B*ATYT
ot —1 d*n+1) F B

END

Stated in the way above it is not at all clear what the ellipsoid method
has to do with ellipsoids; the role or the number L needs to be discussed;
and we have to explain why one can stop after the execution of N macro
steps. The termination question is answered in

Theorem 3.2. If the algorithn does not find a solution and terminates afier N
steps, then the set {x €R" | Ax < b} is empty.

The proof of Theorem 3.2 is based on several nontrivial observations
.which we shall outline in the sequel, First of all, the number L comes in
through a number-theoretic argument and an estimation via Cramer’s
rule, namely from the integrality of the data A and b one can conclude
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Lemma 3.3. [f P = {x€R" | Ax < b} is nonempty, then P contains a simplex
B of volume at least 2Dl sohich itself is contained in the ball of radius
2F around the origin.

This lemma is fundamental for the proof of Theorem 3.2. To demon-
strate this we now present the geometrical idea behind the ellipsoid method.

A sequence of ellipsoids E,, k = 0, 1,2, ..., is constructed which has the
following properties:

(@) If P={x€R"| Ax < b} is nonempty, then the initial ellipsoid Eq
contains a simplex B C P whose volume is at least 27Dk,

(b) If the center x* of ellipsoid E,, k =0, 1,2,..., is not in P, then E
is cut by a hyperplane through x* into two pieces one of which contains the
simplex B.

(c) A new ellipsoid E, _, is constructed from E, such that E, contains
that piece of E, which contains B.

(d) The sequence v(E,) of volumes of the ellipsoids shrinks geometrically,
i.e. the ratio of volumes satisfies

E
v(Ep 41) <D < forallk=0,1,2, ...
v(E;)

where ¢ > I and p( ) is a polynomial in the input length.

Clearly, if a method satisfies (a), ..., (d), then there is an integer N
which is polynomial in L (cf. the discussion after Lemma 3.4) such that
the ellipsoid Ej has a volume which is at most 27 DL,

Now, if P is nonempty, then by Lemma 3.3, P contains a set B of
volume at least 27" "YL which by construction is also contained in E£.
Since the volume of B is not smaller than that of Ey, B must equal Ey
and hence, the center x of E, must be feasible. Therefore, if xV is not in
P, we conclude that P is empty.

We still need to explain what the geometrical idea of shrinking ellipsoids
has to do with the purely algebraic method described in Algorithm 3.1, ie.
we have to show in which of the formulas of Algorithm 3.1 the ellipsoids are
hidden.

Ellipsoids with the desired properties can be obtained from the inverses
of the matrices B* defined in the ellipsoid method. The initial matrix
B® = 2*] is symmetric and positive definite; because of the update for-
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mula (4) all matrices B* are easily seen to be symmetric, and one can also
show that every such matrix is also positive definite. Therefore, the inverse
matrices (B¥)~! are also positive definite, and hence the sets

Ek - {XER'" | ()C Ic)T (B]‘J -1 (\, |l (3})

are ellipsoids with centers x*. The initial ellipsoid £, is by definition a
ball of radius 2" around the origin, thus by Lemma 3.3, E, contains a set
B of feasible solutions with volume at least 2~“ D% in case P is nonempty.
l.e. condition (a) of our requirements for the method is satisfied.

In step (1) of the ellipsoid method 3.1 we test whether the center 3% of E,
is feasible. If not, we choose in step (2) a violated inequality 4,.x > b,.
Then the hyperplane

Hy 1= {xeR"| dix = A2}

is used to cut £, into two.pieces. The set B of feasible solutions is clearly
contained in

By i= E,N{xeR" | A.x < 4,55},

The update formulas in (3) and (4) are designed in such a way that the
matrix B**! yields an ellipsoid E,, with center x**! such that £, < L, "
holds. The demonstration of this fact requires some nontrivial calculations.
Having shown this we know that our method satisfies (b) and (c).

If we remove the rounding provisions in (3) and (4) of Algorithm 3.1
and work with perfect arithmetic, then the new ellipsoid E,,, constructed
from E, via formulas (3) and (4) has an important property. Namely,
among all ellipsoids which contain the (unique) point z€ E, with

X€ E}

Apz = min{A4,x
and the subellipsoid F, of £, defined by
F, = {xeR"| d;x = A;x"}
Nx | (x — X1 (B v — xb) = 1},

the ellipsoid £, has minimal volume. This observation is useful to prove
the crucial step for the convergence of the ellipsoid method which shows
that Algorithm 3.1 satisfies requirement (d).
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Lemma 3.4. If v(E,) denotes the volume of the ellipsoid Ey defined in (3.1),

then

I.?(E]ﬁ‘ﬁ(: e—l[Su < 1

v(Ey)
holds for k = 0,1, ..., N.

The maximal number ¥ of iterations of the ellipsoid method follows
from the following estimations. The volume of the initial ball Ej is given
by

(Eo) = (="' (5n + 1)) 2'*

where I'(-) denotes the gamma function. To show that we can stop after
N = (10n* 4- 5n) L + 5n* steps of the ellipsoid method we have to
show that the volume of the ellipsoid Ej is at most 2~ +DE Because of
Lemma 3.4 we get -

v(Ey) << 1(Ep) e,

By taking logarithms (basis 2) we obtain

N
log(v(Ex)) << log(v(Eo)) — = log(e)

N
< -;-n log(w) — log (F(-%—n + 1)) L — =

<n+nL—(2n+ DL+ n
— —(+ DL

which gives the desired resulit.

Since every update of the matrices B* and the vectors x* can be done
in polynomial time and since N, the maximum number of iterations, is also
a polynomial in the length of the input, the ellipsoid method stops after a
number of steps which is a polynomial in the length of the data encoding.
To determine the maximal number N of steps and an estimate for the
required precision we have used the number L denoting the length of a
binary encoding of 4 and 6. It has been shown that the ellipsoid method is
polynomial in smaller numbers than L, e.g. Gdcs—Lovdsz (1981) base their
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analysis on

Ly=[X (Iog(]b,-l + 1) + 3 log(lay| + 1)) + log(nm) + 17,
i=1 j=t

while Padberg-Rao (1979) work with

L, := largest absolute value of the determinant of a nonsingular
submatrix of (A, b).

Of course, depending on the number L’ used as a lower bound for the
input length and depending on the sharpness of the inequalities in the
estimation formulas, the number N’ of steps necessary to determine in-
consistency and the required precision slightly vary. What can be shown in
principle is the following:

There is a number L' which is not larger than the length of a binary en-
coding of A and b such that the following holds: If all calculations are pei-
SJormed in O(nL") precision (i.e. in the binary expansion of any number we
round after O(nL") places behind the point), then at most O(n*L’) iterations
of the ellipsoid method siuffice to determine whether Ax << b is consistent
oF not.

We want to point out that the ellipsoid method (with slightly different
parameters) also works if 4 and » have rational entries, cf. Grétschel—
Lovdsz—Schrijver (1981). Since irrational numbers cannot be represented
in a binary expansion of finite length, it makes no sense to speak of the
input length of an irrational number. Therefore, the rounding and stopping
rules given above cannot be applied to inequality systems with irrational
entries. If we discard the rounding procedure, i.e. work with perfect preci-
sion, and run the ellipsoid method without upper bound & on the number
of iterations, we obtain an iterative method to find a solution of Ax <C b.
Clearly, such a method is a theoretical algorithm only and cannot be imple-
mented (exactly) on a computing device.

After Kachian’s paper appeared (in particular the improved version of
Gdcs—Lovdsz (1981)) a number of variants of the ellipsoid method have been
suggested. Not surprisingly, various anthors discovered the same modifica-
tions independently at the same time, and also not surprisingly, many of
these improvements were already published in the Russian literature, e.g.
Shor (1977), Shor—Gershovich (1979). These variations are mainly concerned
with new update formulas which are numerically more stable or with the
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choice of different parameters which yield faster convergence in practice.
However, the worst-case running time of O(#?L) could not be improved
yet, and the numerical stability as well as the performance of the ellipsoid
method in practical computations is presently not at all satisfactory. For
further informations on modifications of the ellipscid method see Gold-
farb-Todd (1979), K&nig—Pallaschke (1981), Grdtschel-Lovdsz-Schrijver
(1981), Schrader {1982).

The ellipsoid method as described in Algorithm 3.1 is defined for strict
inequality systems Ax < b only, i.e. does not apply to polyhedra £(A4, b).
But there is a simple trick that yields the desired polynomial time characteri-
zation of emptiness resp. nonemptiness of polyhedra.

Theorem 3.5, Let A be an integer (m, n)-matrix, b¢ Z" and let L be the
length of a binary encoding of A and b. Then P(A, b) is nonempty if and only if

{xeR"| Ax < b - 2711}

iy nonempty.

Note that the data of the set 9 = {x | Ax << b + 271} can be encoded
in such a way that the length of this encoding is at most (m + 1) L, i.e. the
length of this encoding is polynomial in L. Therefore, by running the
ellipsoid method for the set O we can decide in time polynomial in Z,
whether or not ¢ is empty and thus whether or not P(A, b) is empty.

There are various ways to apply the foregoing results to solve linear
programs in polynomial time. Gdes and Lovidsz (1981) suggest to use duality
theory for solving the linear programming problem

max ¢ x,
Ax < b, xz=0
by taking the dual linear program
min 57w,
A% > ¢, u>=0

and checking whether the primal and dual system together with the reversed
weak duality inequality have a solution, i.e. whether or not the following
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system is consistent
c’x —b'u >0,
Ax < b,
ATy = c,
x,u=0.

If this system is consistent, then for every solution (x, u) the vector X is
an optimal solution for the primal program and u is an optimal solution of
the dual.

Grotschel-Lovdsz—Schrijver (1981) suggest the use of a separation
algorithm to generalize the ellipsoid method to general convex programming
problems. If K CIR” is a convex set, then a separation algorithm for K is
an algorithm which for every y € R” concludes with one of the following:
(i) asserting that y € K or (ii) finding a vector d€R" such that for every
x€ K, dTx < d%p. Grétschel-Lovdsz-Schrijver (1981) show that if for a
convex set X there is a polynomial separation algorithm, then the ellipsoid
method can be modified in such a way that the optimization problem
max{c’x | x€ K} can be solved in polynomial time. Since the separation
problem can easily be solved for polyhedra P(A4, b), linear programs can be
solved in polynomial time with this method.

Although these variations of the ellipsoid method result in a polynomial
time algorithm for the solution of linear programming problems, it should
be noted that computational experiences show that the simplex algorithm
(which is not polynomial in theory but in most practical applications) is
still by far superior with respect to numerical stability and actual computing
times.

A very important consequence of the ellipsoid method is the fact that
every problem or property which can be formulated as a linear program
or which can be characterized by means of a nonemptiness question of a
polyhedron can now also be solved in polynomial time. More precisely, if
we restrict our attention to polyhedra, then the following statement holds.

Theorem 3.6, Let 7t be a property defined for polyhedra and let P(A, a)
be a polyhedron. Suppose there exist matrices B, D and vectors b, d which
can be constructed from A and a in polynomial time and suppose property x
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can be characterized with respect to P(A, a) as jollows:
P(A, a) has property n < 8§ = {x €R" | Bx < b, Dx <. d} 5~ 0,

Then there is a polynomial time algorithm to decide whether P(A, a) has prop-
erty m or not.

In the next paragraph we shall define several properties of polyhedra
(e.g. validity of an inequality, dimension of a face, redundancy of a given in-
equality system) which in fact can be characterized as required in Theo-
rem 3.6. We shall sometimes point out that a given characterization yields
a polynomial time algorithm via Theorem 3.6, but the reader is also invited
to check whether the various theorems presented here (or in other books
about polyhedra) can be used in the way described above to obtain good
algorithms to determine a given property.

4. Faces of polyhedra

Let P CR” be a polyhedron. An inequality ¢x < ¢, is called valid
with respect to Pif ¢"x < ¢, holds for all x€ P. A subset £ C P is called a
face of P if there exists a valid inequality ¢'x < ¢, with

F=PN{xeR"|c"x = ¢}

Since P = {x€ P | 0"x = 0}, the polyhedron P is a face of itself, and since
f = {x¢ P|0"x = 1}, the empty set is a face of P, called the empry face.
Obviously, a face of a polyhedron is itself a polyhedron. It is also clear
from the definition that the intersection of any number of faces is itself a
face, and evidently, P is the largest face of P while the empty face is the
smallest face of P,

A face F of P is called proper if F 3 P, and a proper face which is
nonempty is called nontrivial. A face G is called a cover of a face Fif F C G,
F=£ G and if there is no proper face H of G which properly contains F.
Two faces F, G of P are called noncomparable if neither FC G nor G C F
holds.

There are several kinds of faces which are of special interest and therefore
carry particular names. A nontrivial face of P which is not contained in
any other proper face of P is called a facet of P. A maximal proper face
of a facet of P is called a subfacet of P, Thus,if F C G C P, Fis a subfacet
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and G a facet of P, then P covers G and G covers F. Note that a facet is
by definition never empty but a subfacet may be empty. A face of dimension
zero is called a vertex, and a face of dimension one an edge. For ease of
notation we shall denote a vertex {x} of P just by x. A polyhedron which
has a vertex is called pointed. The edges of a pointed polyhedral cone are
also called extreme rays. Every nonzero vector of an extreme ray is called
extreme vector,

Faces are of particular importance in linear programming, namely, if
a linear program max ¢'x, 4x < b has an optimal solution, then the set of
optimal solutions is a nonempty face of P(4, b). This can be seen as follows.
Let ¢, be the optimal value of the linear program, then cTx < ¢q is satisfied
by all feasible solutions x, hence ¢Tx < ¢, is valid with respect to P(A4, b).
In addition, the set

F={x¢€P(4,b) | c"x = ¢}

is the nonempty set of optimal solutions, therefore by definition, F is a face
of P(A, b).

It is of course important to know whether a given inequality is valid
with respect to some polyhedron. The following theorem characterizes
‘validity’ in case the polyhedron is given by some description.

Theorem 4.1. Let P = P(A, b) = conv(V) + cone(E) be a nonempty poly-
hedron and ¢*x < cq an inequality. Then the following conditions are equi-
valent:

(1) ¢*x < cq is valid with respect to P.

(2) There exists an u>> 0 with u™A = ¥, u'b < ¢,.

(3) v < ¢ for all ve V and ¢e < 0 for all e€ E.

Our next goal is to characterize faces, facets and vertices in case a poly-
hedron is given by one of the standard descriptions. To shorten notation
and obtain elegant formulations of the results, the use of the following
mappings and other concepts proved to be helpful.

If P = P(4,b) CR" is a polyhedron and M = {1,2, ..., m} is the row
index set of A then we introduce the mapping

eq: 2F —2M (25 denotes the power set of S), )
4.1
PODF{icM|4x=>bforall xc F}C M,
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thus eq(F) is the set of all row indices of 4 such that the corresponding
inequalities are binding for F, eq(F) is called the equality set of F. The map-
ping
fa:2M - 2f
(4.2)
M 21—~ {xcP|d.x=bhforallic I}

associates with every set / of row indices of A the subset F of P such that
all points in F satisfy the inequalities given by I with equality. Clearly, fa(/)
is a face of P, called the fuce defined by 1.

If the polyhedron P is given as P = conv( V) + cone(£) CIR" we can de-
fine similar mappings as foliows: Given a vector x¢ conv(V) -+ cone(E),
then we say that u € ¥ convexly supports x with respect to (V, E) if xhasa
representation

x=Alv+ Sue
el e€l

such that 4, > 0, and we say that f'¢ F conically supports x if x has a repre-
sentation. x = 3¢, 20 + 3 .. ue such that tr>> 0. We define for F C P

exy,(F) := {v€ V| v supports some vector x & F
convexly with respect to (¥, E)},

4.3)
exg(F) := {e € E| e supports some vector x € F
conically with respect to (¥, E)},
and combining these notions we define the mapping
ex: 2P = 2V 2F,
(4.4)

P 2 F i ex(F) := (exy(F), exz(F)} C (V, E).

The set ex(F) is called the extreme set of F. One can show that, if Fis a
face, F = conv(ex,(F)) + cone(ex(F)) holds. Note that for the empty
face of P we have ex,(0) = 6, ex (0) = @, and that F € P is empty if and
only if ex,(F) = 0,
To define a mapping converse to ex we first set
gen: 2V x 2F 5 27

?

(4.5)
(¥, E) 2 (S, T)conv(S) - cone(T) C P.
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Note that gen(S, T') is in general not a face of P, but using the mappings
ex and gen we can obtain the desired mapping as follows:

sp: 2V % 2F 5 2F

(4.6)
(¥, E) 2 (S, T)~ gen(ex(gen(S, 77)).

One can show that for any set (S, T), sp(S, 7) is a face of P called the
span of (S, T') and sp(S, T) is the smallest face F of P such that S C ex, (F)
and T C exz(F)holds. Note that gen(S, T)is empty if and only if Sis empty.
Furthermore, ex(sp(S, 7)) = ex(gen(S, 7)) holds.

To illustrate the concepts defined above we give an example.

Example 4.2, Consider the polyhedron P = P(4, b) = conv(V) + cone(E)
given by

4 [ -2 4
Ay, ~1 2 6

A=] Ay j={ -3 41, b=| 12 ], V={v,,05 05,0}
A, 1 0 0 '
As, 0 —1 o/ E={e}

with

o o e el )

This polyhedron is shown in Fig. 4.1.




80 A. Bachem, M. Grétschel PART I

Note that both descriptions of Pare redundant, namely the third inequality
Ay x < by, ie. —3x; + 4x, < 12, can be removed without changing the
polyhedron, and similarly the point v, is superfluous, i.e. for ¥’ = V'\ {4}
we still have P = conv(}V") + cone(E).

Examples of equality sets are:
eq(P) =9, eq(Fy)={1}, eq(Fy)=1{2}, eq(Fy)= {5}
eq(Fy) = {4}, eCI({”z}) = {1, 4}, eq({va)) = {2, 3, 5},
eq(fv.)) = 0, eq® ={1,2,3,4,5}.

Examples of faces defined by rows of the matrix A:
1) =F,  fadl,2) =0,
fa(2, 3, 5P = fa(25)) = fa((3) = vs).

Extreme sets of subsets of P are:
ex(Fy) = ({va}, {e}), ex(F3) = ({vg, v3}, 9).

Faces spanned by some vectors:
sp({vy, o2}, 0) = Fy, sp({v;}, {e}) = P,
sp({vs}, {e}) = Fa, sp({va}, 0) = P.

Let § = {x¢ P|3x, + 4x, = 12}, then the following holds:
eq(S) =0, ex(S)=(V,E), S =gen({vs,vs},).

The mappings eq, fa, ex, gen, sp can be used to characterize faces in
various ways.

Theorem 4.3, Let P = P(4, b) = conv(FV) - cone(E) be a polyhedron and
F a nonempty subset of P. Then the following conditions are equivalent:
(1) F is a face of P.
(2) There is a subset T C{1,2,..., m} such that

F=fa(l) ={x€ P| Apx = bj}.

(3) F = faleq(F)).

(4) There is a subset (S,T)C (V, E), S5~ 0 with F = sp(S, T).
(5) F = gen(ex(F)).

(6) F = sp(ex(F)).
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Corollary 4.4. Let ¢"x < ¢y be a valid inequality of the polyhedron P =
conv(¥) + cone(E), and F= {x¢ P | e*x = ¢q). Define the sets

= {ve V| =cy}, T:={ec Elc’e = 0}.

Then for the face F the following holds:
F = gen(S, T) = conv(S) - cone(T);
if F5= 0 then ex(F) = (5, T);
if F=10 then ex(F) = (8, 0).

Note that condition (2) of Theorem 4.3 states that we do not need some
unknown inequalities ¢'x < ¢, to get a face of a polyhedron P. All faces
of P can be obtained by setting some of the inequalities A, x < b, i€
{1, ..., m} to equality. This in particular implies that every polyhedron
has a finite number of faces only. This observation also follows from
condition (4), since there are only finitely many different sets (S, T) € (¥, E)
and all faces are spanned by subsets of (V, E).

To streamline technical arguments in proofs the concept of interior points
is very useful. Given a polyhedron P, then x € P is called an interior point
of P if y is not contained in any proper face of P. (Note that occasionally
(e.g. in topology) an interior point of P is called a relative interior point.)

Proposition 4.5. Let F be a face of a polyhedron P = P(4, b) = conv(V) +
cone(E) and X € P. Then the following conditions are equivalent:

(1) X is an interior point of F.

(2) eq({x}) = eq(F). -

(3) ex({x}) = ex(F).

(4) Let (S, T) := ex(F), then there are strictly positive A€ RS, y e B!
with 3 e Ay = 1, such that

x= 3 As+ X ml.

s€8 e

(5) Let I = eq(F) ath= {1,2,...,m}\ I, then A;X = byand Agx < by.

Thus, Proposition 4.5 states that the equality set and extreme set of a
face F are completely determined by any interior point of F£.

The equality sets and extreme sets of faces can also be utilized to compute
the dimension of faces.
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Theorem 4.6, Let F be a nonempty face of a polyhedron P = P(A4, b) =
conv( V) 4 cone(E), then the following holds:

(a) If [ = eq(F), then dim(F) = n — rank(4,.).

(b) If (S, T) = ex(F), then dim(F) = arank(SV (S -+ ) — 1.

The next theorem characterizes the facets of a polyhedron.

Theorem 4.7. Let P = P(A4, b) be a polyhedron and F a nonempty face of
P. Then the following conditions are equivalent:
(1) Fis a facet of P.
(2) Fis a maximal proper face of P.
(3) P covers F.
(4) dim{(F) = dim(P) — I.
(5) F contains exactly dim(P) affinely independent vectors.
(6} There exists a valid inequality ¢'x < ¢y with respect to P with the
Jollowing properties: -
(8) F={x€P|cx = co}.
(b) There exists X € P with ¢™x < ¢,.
(c) If any other valid inequality d'x < d, satisfies F ={x€P|
d"x = dy}, then there are a vector u = 0 and a scalar & > 0 with

dT == (XCT + UTAEq(P)., d(;r == (ch + HTAeq(P).

Further interesting properties of facets are given in

Theorem 4.8. Let P = P(A, b) be a nonempty polyhedron and denote by
FA(P) the set of all facets of P. Then
(a) For all F, F,€ FA(P), F, + F, we have

eq(Fy) N eq(F,) = eq(P), ex(£, V Fp) = ex(P).
(b) [FA(P)| < m — |eq(P) |, i.e. the number of facets of P is not greater

than the number of inequalities of Ax < b.
() If FA(P) + O then there exists a row index set I with the properties
{(c) 7€{1,2,...,m}\ eq(P),
(c2) |1] = |FA(P)|,
(c3) F is a facet of P if and only if F = fa({ih) for some ic I.

S R e e 1 ST T
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A row index set [ C M which satisfies all conditions (c), {c,), (c3) of
Theorem 4.8 is called a facet index set.

One of the most important properties of facets is that any other face of
P can be obtained as the intersection of facets of P, more precisely

Théorem 4.9, Let P be a nonempty polyhedron.

(a) Every nonempty face of P is the intersection of facets of P.

(b) The empty face is the intersection of facets of P if and only if it is
the intersection of nontrivial faces of P.

(c) If a subfacet of P is the intersection of facets of P, then it is the inter-
section of exactly two facets of P.

Note that an emply subfacet is not necessarily the intersection of facets,
consider e.g. a nonempty polyhedron P = {x e R" I a*x < b}, then the only
nontrivial face of P is the facet {x | a'x == a,}. Thus the empty face is a
subfacet of P but it is not the intersection of facets. In case #n > 2, P is not
pointed, i.e. polyhedra do not necessarily have vertices. But if a polyhedron
is pointed, the next theorem shows how its vertices can be characterized.

Theorem 4,10, [ P = P(A, b) = conv(¥) + cone(E) is a polyhedron and
X € P then the following conditions are equivalent:

(1) x is a vertex of P.

(2) rank(A, ) = M

(3) x is not a pmpel convex combination of points of P.

(4) ex({x}) = ({x}, 0).

Suppose a polyhedron has the particular representation P7(A,b) =
{x€RZ | Ax = b}. If P7(4,b) ¥, then one can show thal P~(4, ) is
pointed and the vertices can be characterized as follows:

Theorem 4.11. Let x be a point of a polyhedron P = P~(A, b} aiid
Jo={je{l,2,...,n}|x 7 0},

Then x is a vertex of P if and only if rank(4.;) == |J|. In other words, x
is a vertex of P if and only if the column vectors A, j€ J, are linearly in-
dependent.

The simplex algorithm for solving linear programs (cf. Dantzig (1962))
is based on Theorem 4.11.
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Assume that A is an (m, #)-matrix with full row rank and call an (m, m)-
submatrix A; of 4 a basis of A if 4.;is nonsingular. If 4., is a basis and
N;i1=A5'b =0, then the vector x€R" with x, =X, j€ J, and x; =0
otherwise, is a vertex of P=(4, b), since the columns of A corresponding
to nonzero components of x are linearly independent. On the other hand,
if x is a vertex, then due to a result of linear algebra one can add to the
columns of A, corresponding to positive components of x, further columns
of 4 such that the resulting (m, m)-matrix 4., is nonsingular and x; = 4;'b
holds. This correspondence between vertices of P~(A, b) and bases of A4 is
utilized in the Simplex algorithm to move from one vertex of P~(4, b)
to another by computing a new basis of A4 from a given one.

We shortly summarize the computational aspects of some of the theorems
of this section by applying Theorem 3.6. Theorem 4.1 implies that the
validity of an inequality cx < ¢, with respect to P(A4, b) can be checked in
polynomial time. Clearly, if P is given by P = conv(V) + cone(E) then the
validity of an inequality can also be checked in polynomial time in any
encoding of ¥ and E. We want to point out that the equality set and the
extreme set of a face can be determined in polynomial time by giving an
appropriate characterization as required in Theorem 3.6, cf. Bachem-—
Grotschel (1981). Since dim(F) = n — rank(4,, ) holds for a face F
and since rank calculation is polynomially solvable, the dimension of a face
can be computed in polynomial time by Theorem 4.3. Thus by Theo-
rem 4.7 we can decide in polynomial time whether a given inequality de-
fines a facet, By Theorem 4.5 we can check in polynomial time whether
a point is an interior point of a given face and by Theorem 4.10 whether
a given point is a vertéx of a polyhedron.

5. Minimal representations of polyhedra

If P = P(A4, b) is a polyhedron and ¢*x < ¢, is a valid inequality for P,
then {x | Ax < b, c"x < ¢;} is also a representation of P. Thus, a poly-
hedron has many representations in terms of the intersection of halfspaces.
Similarty, a polyhedron P also has many representations of the form
P = conv(V) 4 cone(E). In the first part of this paragraph we shall study
how a given representation Ax << b can be reduced to a minimal one, in
the second we shall show how a representation of the form P = conv(¥) -
cone(E) can be made minimal.

P
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Let M:={1,2,...,m} and JC M. The partial inequality system
Apx < by is called inessential for Ax < b if

P (A4, 5) = P(Ay s bagyy)-

If the system Ax < b has inessential inequalities it is called redundant,
otherwise irredundant, see Example 4.2. An inequality A,.x < b, is called
essential if

P(4, b) = P{Ap s bagyin)»
thus a system Ax < b is irredundant if and only if every inequality A, x < b;
is essential.
With the help of the Farkas Lemma inessential inequalities can be easily
characterized.

Proposition 5.1, Let P(A, b) be anonempty polyhedron andleti€ {1,2, ..., m}.
Then the inequality A, x < b, is inessential for P(A, b) if and only if there exists
u =0 with

A, =utd, u'h<b,

i i

and u; = 0.

Note that ‘essential’ is defined relative to a system Ax < b and that
the removal of all inessential inequalities at the same time may resuit
in a polyhedron larger than P(4, b). To obtain an irredundant system for
P = P(A, b) we have to proceed as follows:

If there is noinessential inequality with respect to the present system, then
STOP, Otherwise determine an inessential inequality, remove it from the present
system and continue,

Note that by Proposition 5.1 an inequality 4,x < b; is inessential if
and only il the polyhedron '

weR" |uz=0,u,=0,u"d = A4, u'b < b}

is nonempty. With the ellipsoid method we can check the nonemptiness
of this polyhedron in polynomial time, thus with the algorithm sketched
above we can construct an irredundant system for P in polynomial time,
since the ellipsoid method has to be applied at most m times.

The following theorems give necessary and sufficient conditions for a
linear inequality system Ax < b to be irredundant.



86 A. Bachem, M. Grotschel PART I

Theorem 5.2, Let P = P(A, b) be a nonempty polyhedron and M =
L2, ...om}. Let JC M witheq(P)C Jand P' 1= P(A,., b)). Then P+ P’
if and only if there exists a proper face F of P with eqp(F) € J.

Theorem 5.3. Let P = P(A, b) be a nonempty polyhedron, and [ C
(1,2, ..., m}\ eq(P), J Ceq(P) such that

P = {.\‘EH{H l A[,\' <_ b[, Aj,.,\‘ = b_,'}'

Then this representation of P is irvedundant if and only if
(a) [ is a facet index set of P, and
(b) A;. has full row rank.

Theorem 2.19 states that every polyhedron can be generated as the con-
vex and the conical hull of finitely many vectors. If P = conv(¥) + cone(£),
then (¥, £) is called a generating system of P. A generating system (V, F)
of P is called minimal, if P 5= conv(¥") + cone(£’) for all proper subsets
(V’, E"Y C(V, E), and a minimal generating system (¥, E) is called a basis
of P if it is of minimum cardinality, i.e. if | V| + | E{ is as small as possible.
Every polyhedron clearly has a basis. Note that if (V, E) is a generating
system of a polyhedron P, then there exists a subset of (V, E) which is a
minimal generating system of P, however (¥, E) does not necessarily con-
tain a basis of P. Consider e.g, the polyhedron P = IR? with the generating

Tl )

This system (¥, E) is minimal but not a basis of P, since (V, F) is a basis of
P where :

F={lo (00

This misbehaviour does not occur if P is a pointed polyhedron.

Theorem 5.4, Let P = conv(V) -+ cone(E) be a pointed polyhedron and
(S, T) C(V, E). Then (S, T) is a basis of P if and only if the following holds:
(a) S is the set of vertices of P.
(b) The set of extreme rays of rec(P) is R = {cone({e}) |e€ T} and R
has cardinality | T)|.
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In case P is a nonempty polytope and ¥ is the set of vertices then P =
conv(V) holds. Since the recession cone of a polytope is {0}, Theorem 5.4
implies that (¥, ) is the unique basis of P. If P is a pointed polyhedral
cone then P may have different bases but these bases are unique up to
multiplication with a constant, namely, if (V, £) and (W, F) are two bases
of a pointed polyhedral cone then V == W = {0}, |E| = |F| and for every
ec E there exists a unique f¢€ F such that e = Af for some A > 0. As the
recession cone of a pointed polyhedron is also pointed, every pointed poly-
hedron has a unique basis (¥, E) where E is unique up to multiplication by
scalars.

We want to point out that Theorem 5.4 can be generalized to nonpointed
polyhedra by introducing the concepts of pseudo vertices and pseudo rays.
A pseudo vertex is a face which is a translate of the lineality space of P,
and a pseudo ray of a polyhedral cone P is a face which is of the form
cone({z}) -+ lineal(P) for some z # 0.

Note that if (V, E) is a rational generating system of a polyhedron P,
then one can design an algorithim which repeatedly calls the ellipsoid me-
thod, runs in time polynomial in an encoding of ¥ and E, and finds a minimal
generating system (S, T') of P with (S, T) C (V, E). In case P is pointed, the
minimal generating system (S, T') will be a basis of P, cf. Bachem-Grétschel
(1981).

6. Homogenization

Since in this survey we are not forced to prove all theorems we state,
we have often grouped results in a way which would be different in case we
would have given proofs of all statements and would have tried to stream-
line the proofs in an economic way. Many of the theorems stated in the
preceding paragraphs for general polyhedra are quite hard to prove direct-
ly, while the corresponding results for polyhedral cones are often surprisingly
simple to show. It would therefore be nice to have an apparatus which
reduces the theory of polyhedra to the theory of polyhedral cones, i.e. a
general technique which allows to deduce a statement on polyhedra from a
result about polyhedral cones in a very simple way.

For this reason we introduce a proof technique which we call z-homo-
genization (resp. z-dehomogenization) and which adjoins to each poly-
hedron P CIR” a polyhedral cone called z-hog(P) CR*! such that P
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is exactly the intersection of r-hog(P) with a hyperplane ‘parallel to R™
at level 7. We shall see that almost all informations about 2 are still contained
in z-hog(P) and that we can deduce results about P from results about
-7-hog(P) by dehomogenization.

As an application we shall characterize various polarity relations by
means of homogenization and dehomogenization. This proves, cf. Section 7,
that polarity theory is essentially a duality theory. In Section 8 we shall
introduce various lattices associated with polyhedra and we shall show
that the face lattice of a polyhedron and the face lattice of the corresponding
7-homogenization are very close relatives.

Before we state a formal definition of homogenization let us discuss
what we are looking for. Let 7 € {—1, 1}, then we want the t-homogenization
of a polyhedron P CR" to be a cone C CIR**! with the property that P,
more correctly

P —_nf(;:)emﬂ“ vep

is exactly the intersection of C with the hyperplane {({)cR"t!|z = T}
cf. Fig. 6.1.

- e
e
e
ST -hogua)
/ ' /’/
. e "
/ :‘l__ "
-
e / P -
e
. , S
P~ R
Fig. 6.1.

Intuitively, t-hog(P) should be the intersection of all halfspaces
{x]cTx < 0} defined by inequalities ¢Tx << ¢, which are valid for the polyhedron
P, ={(*) | x € P}. By the definition of cone polarity, cf. Section 2, ¢'x < 0
is a valid inequality for P, if and only if ¢ € (P,)°. Thus z-hog(P) should be
the set

C:= N {ler<o}.

cE(P)°
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One easily verifies that C = (P,)°° holds. Therefore, we now formally define
the notions:

Definition 6.1. Let S CR", TCR"! and 7€ {—1,0, 1}, then we call the
set '

I x 00
r-hog(S) := I(T)EIR”“ | x ¢ S}
the T-homogenization of S. The set

7-dhog(T) := {XERH J(i)é T}

is called the z-dehomogenization of T.

The idea of homogenization is very natural and has been implicitly
considered in many papers. It was known to Minkowski and for instance
employed by Goldman (1956), but we could not find out the first explicit
use of it. To our knowledge Stoer-Witzgall (1970) were the first who
developed homogenization techniques in a broader sense. We found some
extensions of their notions very useful.

For sets S,8;, S, CR", T, T\, T, CR"™ and 7€ {~1,0,1}, 6e{—1, 1}
the following calculation rules are obvious:

(a) If S; € S,, then v-hog(S,) C 7-hog(S,).

(b) 7-dhog(T; N T,) = v-dhog(T,) N t-dhog(T),).

(¢} 6(v-hog(S)) = (67)-hog(ss).

(d) &(r-dhog(T)) = (7)-dhog(dT).

Note that 7-hog and z-dhog could have been defined for any 7€ R, but a
moment’s reflection shows that the cases v€{—1,0, 1} are the essential
ones and all other 7-homogenizations (z-dehomogenizations) can be ob-
tained from the above given ones by simple scaling.

A frequently used object in polyhedral theory is the so-called y¥-polar
of a polyhedron. For general sets § CIR" the y-polar is defined as follows:

S":{(i )E]R.""‘I lex <oy Y€ S} .
0

Thus, one can consider S* as the set of all valid inequalities with respect
to .S, more correctly, the set of all vectors () such that cx < ¢ is valid
for S. The next observation shows that the y-polar can be obtained by
means of homogenization using cone polarity.
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Theorem 6.2. Let S C IR be any set, then
= {{—1)-hog(S5))°

Corollary 6.3. Let P = P(A4, b) = cone(V') + cone(E) be a nonempty poly-
hedron, then

; 'A%, 0 VL1 {0
pr=eone{( ) =2 (o) (o)

Corollary 6.3 is extremely important, namely, it can be used as a vehicle
to transform description-dependent results [or polyhedra from one de-
scription into the other. E.g. consider Theorem 5.3 which gives a characteri-
zation of a minimal representation of a polyhedron as the intersection of
halfspaces. Using the y-polar, Theorem 5.4 which characterizes minimal
generating systems can be easily derived from Theorem 5.3 via Corollary 6.3.
Thus, in order to obtain description-dependent results for polyhedra one
usually has to prove one such theorem only (e g. for the description P =
P(A,b)) The other description-dependent result (e g. for P = cone(¥V) +
cone(k£)) is then an easy consequence by employing P? and Corollary 6.3.

The Farkas Lemma can be used to show that the z-homogenization of
a polyhedron is a polyhedral cone, moreover, given a description of a
polyhedron one can also give a description of its z-homogenization, namely:

Theorem 6.4. Let P = P(A, b) = conv(V) + cone(E) be a nonempty poly-
hedron and let v€ {—1, 1} Then

7-hog(P) = {(;)6 R Ax — bz < 0,72 > 0}
= P(B,0), where B, := (
v e
= come({(r) |ve V} (0) |ee E})
= cone(D,), where D, = ( I OT) .

The next result shows how information about P can be derived from
information about t-hog(P).
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Theorem 6.5. Let P be a nonempty polyhedron and v€{—1, 1}, then
P = r-dhog(r-hog(P)) and rec(P) = 0-dhog(r-hog(P)).

‘Theorem 6.5 shows that r-hog(P) in a sense contains both P and its
recession cone rec(P). It is also possible to describe the faces of 7-hog(P)
which correspond to faces of P, namely these are exactly those faces which
have a nonempty intersection with {() € R"*' | z = 7}, A complete analysis
of this correspondence will be given in Section 8,

7. Polarization

Recall that the polar cone §° of a set S CTR" is the sel
SO ={ycR"|yx <0 Vxcs},

while the j-polar S¥ of S is
S”:{(E )ER”“ | cTx < ey Y xeS;.
0

In a sense the polar cone S° represents all valid inequalities for S with right
hand side zero while S? represents all valid inequalities, Theorem 2.16
shows that the concept of a polar cone is extremely useful for polyhedral
cones, but for general polyhedra the restriction to a right hand side of
zero limits its applicability. The y-polar has the nice feature of making a
transformation {rom one description of a polyhedron to another possible,
but has the disadvantage that S? is in a space of higher dimension than S.
We shall therefore study in this section polarity relations which overcome
some of these disadvantages and provide further insights into the structure
of polyhedra.

Definition 7.1. Let S CR", o€ {—1,0, 1}, f€{—1, 1}, then
S = {yeR"|By"x = af, Vx €5}
is called' the («, f)-polar of S.
We could of course have defined (x, f3)-polars for all x € R (f only takes

care of the direction of the inequality), but if o 5% 0 then S = [a| S
for § :=af|e|€{—1, 1}, thus up to scaling our definition captures all
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essential cases. Note also that S%~! is nothing but the polar cone S° and
that §%! equals —S°.

Polarity also is an old tool of mathematics, Minkowski was probably
the first to use cone polarity in polyhedral theory. Later Fenchel (1951)
recognized that polarity is a very helpful tool in duality theory. What we
call (1, —1)-polar is the ‘polar’ usually considered in the literature and which
is denoted by S¥, i.e.

S* =Sl ={yeR"|yTx < 1 VxeS).
Some basic results concerning the polar P* of a polyhedron P can be found
in Grilnbaum (1967) and Stoer-Witzgall (1970). More general polarity
relations were studied by Araoz (1973), Balas (1974) and Griffin (1977).

The next theorem shows that the («, f)-polar, o 5= 0, can be computed
with the help of the polar cone, homogenization and dehomogenization.

Theorem 7.2. Let S CR”, , B, 7€ {—1, 1}, Then
S = (—at)-dhog((z-hog(s5))*).

There are various other formulas with which $*f can be expressed. In
essence they are all captured in Diagram 7.1 which tells us how we can com-

Diagram 7.1.
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pute S be means of cone polarity, homogenization, dehomogenization
and negation.

E.g. Diagram 7.1 says that S"~! can be obtained from S by first going
to 1-hog(S), then taking the usual polar cone of I-hog(S) and then de-
homogenizing at the — I-level; or S"~' can be obtained by first going to
—1-hog(S), taking the (0, I)-polar, i.e. the negative of the polar cone of
—1-hog(), by dehomogenizing {(—1)-hog(S)}** at the —I-level and then
multiplying every vector of this set with —I. We can now use Theorem 7.2
(resp. the results captured in Figure 7.1) in conjunction with Theorem 6.4
~and Theorem 2.16 to characterize the {a, g)-polars of polyhedra.

For technical reasons we assume throughout this paragraph that the
right hand sides of inequality systems are normalized. In particular, unless
otherwise specified we assume that a€{—1,0,1}, f&{—1,1} and that
inequality systems are given in the form

fAdx = fb

where b is a vector whose components are 0, — 1 or 1. Clearly, any inequality
system can be written in such a way, and we shall say that such an inequality
system is in normal form.

Moreover, we assume that 4 has m rows and n columns and that M =
{1, 2,...,m}- To shorten notation we use the following abbrevations:

]

—i={cM|b=~1} and A :=(4,-),
I°:={ie M|b;=0F and A°:= (4.),
—{ieM|b=1  and A*:=(4,.),

Q :={xC¢R"|x=A"'y+ A~z with y >0,z > 0 and

20 < 2T

With some (nontrivial) effort one can characterize the (v, #)-polars of
polyhedra as follows:

Theorem 7.3, Let P be a nonempty polyhedron defined by the linear inequality
system BAx = pb in normal form. Then the (x, ﬁ)—po!af P of P has the
representation shown in Table 7.1.
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Table 7.1
;‘“}'::—1 ) t’,\ﬁ:() aff =1
I+ =1 -
I~ =0 cone(AT) cone(Al) ]
It = ‘ T
- cone(4T) ~. cone(AT) conv{A4™) + conefAT)
-
It=0
- ; 0 conv(A4t, Q) 4+ cone(A4°) cone(A4") 0]
It <=0

conv(A4t, 0) 4- cone(4?) -+ @ cone(A4%) + @ conv(4~) - cone(4°, A7) -+ Q

E.g takea=1and f = —1, [* %0 and [~ = {), then P has the form
xeR"| Bx < I, Cx < 0},

and by Theorem 7.3, the (1, -—1)-polar of P is the polyhedron which is the
sum of the convex hull of the rows of B and the zero vector plus the conical
hull of the rows of C. Note also that the case I't = @ and I~ = 0 causes some
problems, because in the representation of every (w, )-polar the polyhedron
Q comes up. In all other cases, Theorem 7.3 shows that the (x, §)-polars
of polyhedra can be characterized in a nice way.

The counterpart to Theorem 7.3 with respect to the description P ==
conv(V) 4 cone(E) is

Theorem 7.4, Let P = conv(V) -+ cone(E) be a nonempty polyhedron and
let x€{—1,0,1}, fe{~1, 1}. Tlen

P = (xcR"| BV Tx = o, BETx = O}

ﬂ{xenn[ﬁ(ZZ)x;ﬁ(g)}.

For notational convenience in the above theorem, the sets ¥, E are also
considered as matrices whose columns are the elements of ¥ and E. It is
rather surprising that P*f can be described in a much easier and more
compact form if a polyhedron P is given by conv(¥V) + cone(E) than if P
is given by P(A, b).
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Note that (x, f)-polarity is not necessarily idempotent, e.g.

B = {0} ifxfc{0, —1}, and RN =@ ifaf=1,
while

@“f =R" for all «,f,
and

O =R" ifafc{0,1}, and O} =0 if sf= —1.

Therefore, we call a polyhedron P (x, f)-closed if P = (P*")™# ¢.g. R”
is (x, #)-closed for all o, #; @ is not (x, f)-closed for af € {0, —1}; {0} is not
(e, f)-closed for aff = 1. The following theorem gives a complete characteri-
zation of («, fi)-closedness.

Theorem 7.5, Let P CR" be a nonempty polyhedron.
(a) In case off = —1, P is (o, f)-closed if and only if 0€ P,
(b) In case off = 1, P is (x, f)-closed if and only if 0 ¢ P and rec(P) C P.
(€) In case xfi = 0, Pis{(x, f)-closed if and only if P is a polyhedral cone.

Finally («, f)-polarity can be used to characterize nonredundancy,
cf. Section 5,

Theorem 7.6. Let x € {—1,0, 1}, fe{—1, 1} and let
P={x€R"|fdx > fib} #R"

be a nonempty fully dimensional polyhedron given in normal form, where
b€ {0, o} and b 5= 0 in case xff 5= 0. Let P be (w, B)-closed and assume firther
in case «fi =1 that fA = b is not trivially redundant, i.e. A, 7= AA,. for
all 2= 0 and i 7= j. Then fAx = fb is an irredundant description of P if
and only if

(2) in case off = 0: ({0}, AY) is a basis of PP,

(b) in case aff = —1: either (4%, A°) or ((A*, 0), A°) is a basis of P,

(c) in case aff = 1: (A=, A°) is a basis of P™F,

Example 7.7. Consider the polyhedron P of Example 4.2. We want to
determine the (1, —1)-polar of P. The inequality system fAx > b describing
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P in normal form (f = —1) is

(1) 025x; — 0.5x, < I,
(2) —0.16x, + 0.3x, < 1,
(3) —0.25x, + 0.3x, < I,
(4) —X, < 0,
(5) —x; < 0.

Therefore I+ = {1, 2, 3}, I® = {4, 5}, I- = 0. By Theorem 7.3, we have
PYl = conv({4], 45, A}, 0}) -+ cone({4}., 43.)),

ot econ (52 (3): (730
eone (b ()}

i.e.

W 74?
’,)%5 _
TR P *
%
P ],'I
-6
o 2
Fig. 7.1.

See Fig. 7.1. Since O¢ P, Theorem 7.5 implies that P is (1, —1)-closed,
ie. P = (P""1)71 holds. We can therefore apply Theorem 7.6 to check
nonredundancy of P, i.e. we have to find out whether (4+, 4°) or (41, 0), AO)
is a basis of P11 First of all we see that

0y 2/ 3\, 3/-2\ 2 . 3 .
o) =a o) 5 =53
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therefore 0 € conv(4*) and we have to check whether (A*, 4°) is a basis
or not. But since

1 /=3 1 /-2 I {—1 1
AT = - — _ 4T o 4T
¥ 12( 4) 12( 4)+12( 0) Az 17 As
we obtain that (4+, 4°) is not a basis of P!, which implies that our in-
equality system is redundant.

A second description of P is given in Example 4.2, namely P = conv(V).
-+ cone(E), where

V = {v,, 03, 03, 04} = {(g) (g) ’ ((3)) (i)}

and E = {¢} = {(3)}. This characterization of P gives a description of P"~"
by means of linear inequalities via Theorem 7.4 as follows:

Ox; + Ox, < 1,

.4x1 <-In
<

x4+ xa< |,
2x; + x, <0,

Here the first and the fourth inequality can be removed to obtain a nonre-
dundant description of PV,

8. Lattices associated with polyhedra

A lattice is a pair L = (S, <) consisting of a set § (for our purposes §
is always finite) and a partial order ‘<’ on S which satisfies the following
condition:

(L) For every T C S there exist a least upper bound and a
greatest lower bound for T.

The greatest lower bound of two elements x, y€ .S is called the meer
of x and y and is denoted by x A y, while the smallest upper bound of
x, y€ S is called the join of x and y and is denoted by x v y.
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The ground sets S of lattices L = (§, <) we consider will be of a parti-
cular form, namely S will always be a finite subset of the power set 2M for
some set M, and the partial order ‘<’ in S will always be the usual set
inclusion ‘C’, i.e. if X, Y€ S then X and Y are subsets of M and ‘X' < 17
means nothing but ‘X’ € V. For notational convenience we shall therefore
speak of a lattice S instead of (S, <), keeping in mind that S'is a lattice with
respect to set inclusion *C’.

There is a ‘natural lattice’ one can associate with a polyhedron P, the

so called face lattice F(P). The object we would like to deal with is
F'(P):= {F C P| Fis a nonempty face of P}. (8.1)
and the join and meet operation should clearly be
FrnG:=FNG,

FuG:=N{HEFP)|FUGCH,

for any two faces F, G& F'(P). In case P is a polyhedral cone F'(P) has a
minimal (nonempty) element, however, if P is not a polyhedral cone then
F~ G may be empty. Therefore we define

Fy =N {F [ Fe F'(P)},
and set
F(P) :=F(P)V {Fo}. (8.2)

Then F(P) is by construction a lattice called the face lattice of P. Note
that this definition implies that the empty face is an element of the face
lattice if and only if P has no minimal nonempty face. E.g. the empty face
is not in the face lattice of a polyhedral cone, but is‘an element of the face
lattice of a nonempty polytope.

: (P)
% OO
bR b W %)
O
@ (b)

Fig. 8.1.
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Consider for example the polyhedron P CIR? shown in Fig. 8.1(a).
Its face lattice F(P) has seven elements, namely the empty face, two vertices
v, and v,, three facets F,, F, and F3, and P itself. The usual way to depict
F(P) is by means of a diagram where faces of equal dimension are repre-
sented on one level and a line between faces on different levels means that
the face on the higher level is a cover of the other, The lattice F(P) of the
polyhedron P in Fig. 8.1(a) is shown in Fig. 8.1(b).

For another example consider a nonempty halfspace P = {x ¢R"|
a'x < ay}. Here F(P) has only two elements, namely P and its unique facet
{x]a"™x = a,}. Note that in this case the empty face is a subfacet of P but
it Is not an element of the face lattice ¥(P).

We now introduce several further lattices which can be associated with
a polyhedron P, and we shall study the relation between these lattices.

If P is given in the form P = P(A, b) where A is an (m, n)-matrix and
M = {1, ..., m}, then for every subset .S of P we have introduced in Section 4
the equality set

eq(S) :={ie M | Ax = b, V x€S}.
The equality set lattice of P(A,b) is then defined as follows:
BQ(A,b) = {IC M| 35CP with I = eq(S)}. (8.3)

Here and in the sequel it is easy to see (and Jeft to the reader) that the
object for which we claim that it is a lattice really is a lattice.

If a polyhedron P is given by means of P = conv(V) -+ cone(E) for some
finite sets ¥, E CIR", then for every S C P we have introduced in Section 4
the so called extreme set ex(S) = (ex,,(S), exE(S)) which loosely speaking
is the set of vertices and extreme vectors which support some vectors x € S.
The extreme set lattice of P = conv(¥V) + cone(E) is defined as follows:

EX(V, E) = {(W, F)C(V, E)| 38 C P with (W, F) = ex(S)}.
(8.4)

Note that the lattice F(P) is description-independent while EQ(A4, b)
and EX(V, E) clearly depend on the given representation of P. We shall
however see later, that the differences between the lattices associated with
various desriptions are only superficial.

In Section 6 we have introduced the y-polar S* of a set § and we have
shown in Corollary 6.3 that the y-polar P? of a polyhedrén P has a particu-
larly simple representation, namely if P = P(4, b) = conv(V) + cone(E),
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ool 9)-r( )

in other words, if

B:(;; _é) and D ={(4,,b)"|i¢ M}u{(?)},

then

then
P? = conv({0}) - cone(D) = P(B, 0).

Thus, P? is a polyhedral cone and therefore we can consider the various
lattices associated with P defined above. For notational convenience, how-
ever, we shall describe the equalily set lattice and the extreme set lattice
of P in terms of the original representation of P and thus change our nota-
tion slightly. To introduce these new symbols we define the following two
mappings:

Let R =11, 2,...,r} be the row index set of the matrix B defined above
and set

28— 2V 2F,
(8.5)
R2I (S, T
where S :={ve V| 3ic I with 07, —1) = B.},T:={e€ E| 3 ic I with
(eTa 0) == Bi-};

1D > M =MUn+ 1} ={1,2,...,m+ 1},
(4, b)F F> i€ M, (8.6)
O, DT = m+ 1,

In order to distinguish between the mappings eq, fa, etc. (cf. Section 4)
with respect to P and P we use a superscript ‘y’, i.e. eq”, fa? etc., if we use
these mappings with respect to P¥. Now we define

yeq: 277 2V x 2F, y-eq 1= p o eq’, (8.7)
y-fa: 2V x 2F 277 yfa ;= fa¥o u-!, (8.8)
peex: 2P 5 2M' v-eX 1=y o ex’, (8.9)
y-gen: oM . 277 y-gen = gen’ o »~1, - (8.10)

y-spi 2M — 2F7 y-5p 1= sp¥ o p~1, , (8.11)
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These mappings v-eq, ... etc. look rather awkward but they are essentially
the same as the mappings eq, ... etc., we have only replaced the domains
resp. image spaces by more convenient isomorphic ones.

With respect to the y-polar P? of P we introduce the following lattices:

yv-EQ(V, E) :={(W,F)C(V, E)| 35 C P"with (W, F) = y-eq(S)},
1-BEQ(A,b) :={I C M’ |3 S C P with I = p-ex(5)}.

To give a comprehensive overview we have summarized all the mappings
of interest in Table 8.1.

Table 8.1

mapping P given by domain  range name

eq P(A4, b) 2P M equality set
fa P(A, b) M 2P face

eX conv(¥V) 4 cone(E) 2P 2V 2E  extreme set
gen conv(¥) +4- cone(E) 2Fx2E  2F generating set
sp conv(¥) + cone(E) 2¥Vx2E  2F span

p-eq conv(¥) + cone(E) 27" 2Vx2E  yeequality set
p-fa conv(V) + cone(E) 2Vx2E 2P p-face

p-gen P(A, b) M’ 287 y-generating set
p-sp P(A, b) M’ il p-span

p-ex P(A, b) 2p? oM’ y-extreme set

We further want to consider the mappings eq, fa, ... etc. with respect
to the recession cone rec(P) of P and with respect to a 7-homogenization
7-hog(P) of P. When these mappings are used with respect to

rec(P) = P(4, 0) = cone(E),
we use a superscript ‘0’, when used with respect to
7-hog(P) = P(B,, 0) = cone(D,),

¢f. Theorem 6.4, we add a superscript ‘z’, i.e. let mp stand for one of the
mappings eq, fa, ex, gen, sp, then mp* is used with respect to P if ‘x> does
not appear, with respect to P¥ if % ==y, with respect to rec(?) il * =0,
with respect to t-hog(P) if * = 7.
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Finally, we introduce the most important lattice ol all, the so called
extended face lartice of P, This lattice is obtlained by adding the face lattice
of the recession cone to the face lattice of P in the following way.

Let P be a nonempty polyhedron. A face of P and a face of rec(P) may
set-theoretically be identical, therefore, in order to distinguish them . we
label all faces of P and rec{P), in particular let z€R and F CR” then

(F,7) = {C)E R** I xeF, z= T}

and for e [—1, 1} set

F(P):={(F,1) | Fe ¥(P), F++ 0}
and
Fo(P) := {(F,0) | F€ F(rec(P))}.

Thus all nonempty faces of F(P) carry a label 7% 0 and all faces of
rec(P) a label ‘0. Set

X.(P) 1= F(P)\V Fo(P).

Then X (P) is called the t-extended face lattice of P, where the partial order
in F(P) and Fy(P) is defined as usual by set-inclusion, i.e.

(Fi, 7)< (Fy,7) ifand only if F, C F,,
(F;,00 < (F,,0) ifandonlyif F, CF,,
while for (F, 7)€ F(P) and (G, 0) € Fo(P) we set

(G,0) < (F,7) ifandonlyif G C rec(F),
and
(F,7) < (G, 0)

never holds.

The maximal element of X, (P) is clearly (P, 7), and the minimal element
of X.(P) is (M, 0) where M is the minimal (nonempty) face of rec(P).

There are—of course—various relations between the lattices associated
with a polyhedron P as defined above. To state and show these relations we
need a rather long sequence of technical lemmas. Instead of giving the list
of theorems we summarize our results in Diagrams 8.1 and 8.2 and just
explain how these diagrams can be read in order to obtain valid theorems.
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We assume that a nonempty polyhedron P is given as P = P(A, b) where
Aisan (m, my-matrixand M = {1, 2, ..., m}, M' = M\ {m + 1}. Forv 5 0

we set
P, = {(:)emm | x€ P}
and
Py = {(3) cR" | xe rec(P)} )
Then
A BT
rec(P) = P(A4, 0), PY == cone o 1)
r-hog(P) == P ((A _Tb) , o), re{—1, 11,
0 —7
2‘?- .m}\f fa, p(p) N
F-span T-hod
z-olhog
?(Ec EQ(A b)
EQ
2{4,. i) fo 10" Frhag(P) e F(p F( gEX(AQ sy (P
A P S
F(R)
(r
o O-dhog
u{m+4} 3
v . ] 1
£, S )
Diagram 8.1.

The arrows shown in Diagram 8.1 have the following meaning:

— inclusion-preserving (homomor phism)
- inclusion-reversing (antihomomorphism)
¢ injective 3

- surjective
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To give some examples, Diagram 8.1 states:

(a) F{z-hog(P)) and F(F7) are anti-isomorphic, since there is an injective
and surjective antihomomorphism.

(b) F(P") and y-EX(A, b) are isomorphic.

(c) 7-EX(A4, b) and X (P} are anti-isomorphic.

(d) F(r-hog(P)) and X (P) are isomorphic.

(¢) There is an inclusion-preserving injective mapping from F(rec(P))
to F(r-hog(P)), and an inclusion-reversing in jective mapping from F(rec(P))
to »-EX(A, b).

For the next diagram we assume that the nonempty polyhedron P is
given by

P = conv(V) + cone(E)

where ¥, E CIR" are finite, sets; then

. ey Y v, £ '
rec(P) = conv(;0}) -+ cone(£). Pr="P{ o) 0

v, E\\.
7-hog(P) = cone ((TIIT, 0)) Te{—1,1}.

(2 g2 F(P)

i-f

EX(V.E}

~

2% 25 2P SF(rhoglpll————3

T(R)
(g'u) Q-dhog

o-hog

R i_cq o "
F(l:') é--}f-——%r-ea(v,e) <2 $X.(p)

{#]x EX'(E)
)

| &
% F(rec(P)]

spcn°

i 2*

Diagram 8.2,

The arrows have to be interpreted as in Diagram 8.1. We also give some
examples of how Diagram 8.2 can be read:
(a) y-EQ(V, E) and X(P,) are isomorphic.
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(b) F(P) and EX(V, E) are isomorphic.
(c) F(P") and ¢-EQ(¥, E) are antiisomorphic.
(d) There is an inclusion-preserving injective mapping from F(P) to

PEQU, B).
The proofs for the results stated in Diagrams 8.1 and 8.2 will appear else-
where.
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