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Abstract

We study the travelling salesman problem for the class K of graphs not contractible
to K5 — e. A decomposition theorem of Wagner is used to characterize the travelling
salesman polytope for every graph in K and to give a linear time algorithm for the
travelling salesman problem for the graphs in K.
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. 1. Introduction

The symmetric travelling salesman problem (TSP) is the task to find a shortest hamil-
tonian cycle in the complete graph with edge weigths. This problem is well-known to
be NP-hard. It is an interesting problem to determine classes § of graphs such that
the TSP becomes easy when restricted to §. The TSP restricted to the graphs in § is
often called the TSP for §. More exactly, if § is a class of graphs then an instance of
the TSP for § is the following. Given an element G = (V, E) of § with edge weights
ce for all e € E, decide whether G contains a hamiltonian cycle, and if this is so, find
a hamiltonian cycle T with ¢(T) := ) .5 ce as small as possible.

If G is for instance the class of planar, or cubic or 3-connected graphs then the
problem of deciding whether a graph G € § has a hamiltonian cycle is NP-complete
(see GAREY & JOHNSON (1979)). So the TSP for these classes of graphs is NP-
hard. On the other hand there are some classes § of graphs known for which the
TSP can be solved in polynomial time. Among them are wheels, Halin graphs and
some generalizations of these, see CORNUEJOLS, NADDEF & PULLEYBLANK (1983,
1985). Moreover, in some of the above cases it was possible to give an explicit complete

~ characterization of the convex hull of the incidence vectors of hamiltonian cycles for
al G e §.

In this paper we will determine a further class of graphs for which the TSP is easy
and for which the associated travelling salesman polytopes can be described explicitly.
The graphs we investigate include the graphs not contractible to K5 — e (i. e. the
complete graph on 5 nodes with one edge removed). Note that the class of graphs
not contractible to Kp contains the planar graphs, and so for these graphs the TSP is
NP-hard. This shows that the class we study is on the “boundary” between the hard
and easy problems. It turns out that for the description of the travelling salesman
polytope for a graph G = (V, E) not contractible to K5 — e only trivial inequalities
0 < z. < 1, equations z; = 0 for some f € E and equations z(§(W)) = 2 for some
cuts (W), W C V, are needed. .

;2. 1-Sums and 2-Sums

All graphs throughout this paper have no loops and no multiple edges. For a graph
/3 = (V, E) and an edge e € E, G — e denotes the graph obtained from G by deleting
-(or removing) the edge e. G — W denotes the graph obtained by deleting the node set
W C V. G-e denotes contraction of ¢, i. e. G- ¢ is obtained from G by identifying the

-$wo endnodes of e, deleting e and, if parallel edges appear by this node identification,
removing one edge of each pair of parallel edges. A graph G is said to be contractible
#0agraph H, if a graph isomorphic to H can be obtained from G by repeated (in any
' gwdem) -deletion and contraction of edges of G. Let us denote the class of all connected
iaphs which are not contractible to K5 — e (this graph is shown in Figure 1) by K.
1+ - - WAGNER (1960) gave a constructive characterization of the graphs in K which
1bss-been the stimulus for the results to be presented later. The graphs shown in Figure
M@hei’rs subgraphs are not contractible to Kz — e.




P (= Prisma) | Wa

Fig. 2

The graph Wy, (called n-wheel) consists of a cycle of length n and an additional
node (the center) linked to all nodes of the cycle. Note that the 3-wheel is isomorphic
to the complete graph K.

If G, and G; are node-disjoint graphs with at least two nodes, v, is a node of
Gy, v2 a node of G3, then the 1-sum G of G, and G, (with respect to v; and vg)
is obtained by identifying the nodes v, and v,. This new node, say v, obtained by
identifying v, and v; is an articulation node of G, i. e. G — v has more components
than G. ' }

If ¢; is an edge of G, and e; an edge of G, then the 2-sum @ of G, and G, (with
respect to e, and e;) is obtained by identifying e, and e; (and of course, the endnodes
of e; and ep). This implies that the two identified nodes form an articulation set of G
(provided G, and G; have at least three nodes).

WAGNER (1960) proved that each maximal graph G in K (i. e. by adding a further
“edge to G the new graph will be contractible to Kg — e) can be obtained by starting
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with the graphs of Figure 2 and taking repeated 1-sums or 2-sums. Equivalently, if we
have a graph G € K we can decompose it into the graphs of Figure 2. Decomposition
is done in two possible ways.

(2.1) If G has an articulation node, say v, then let V;,V,, ... » Vi be the node sets of
the connected components of G — v. The v-components G; of G are the subgraphs
of G induced by V; U{v} fori =1,...,k. (So G is the 1-sum of the G; with respect to
v.)

(2.2) If G has an articulation set {u,v} of size two, let V1, Va,...,Vi be the node
sets of the connected components of G — {u,v}. Then the {u,v}-components G; of
G are the subgraphs induced by V; U {u,v} plus the edge uv. (So G is the 2-sum of
the G; with respect to edge uv, where after taking the 2-sum the edge uv may have to
be deleted.)

If we apply the procedures (2.1) and (2.2) recursively to a graph G we will end
up with a list of graphs which cannot be decomposed any further. Let us call these
graphs the bricks of G. Note that i. g. the bricks are not uniquely determined by G.
The list of bricks depends on the order of choosing articulation sets {u,v}. Wagner’s
theorem states that, in whatever order (2.1) and (2.2) are performed, the bricks of the
graphs in K are isomorphic to the graphs shown in Figure 2.

To give an example, the graph shown in Figure 3, is the 2-sum of two prisms, a
Ks, a K, and a 4-wheel.

FPig. 3

8. A Recursive Algorithm for the TSP

The 2-sum composition immediately suggests a recursive procedure for finding a short-
est hamiltonian cycle in a graph G = (V, E) with edge weights ¢, for alle € E. If G
is disconnected, G has no hamiltonian cycle. If G is the 1-sum of two graphs (with at
least 2 nodes) then G is not 2-connected, 80 G does not contain a hamiltonian cycle.
Hence we can solve the TSP for such graphs trivially.
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If G is the 2-sum of two connected graphs G; and Gy with respect to an edge '
f = uv, then each hamiltonian cycle of G (if one exists) is composed of a hamiltonian
path from u to v in Gy and a hamiltonian path from u to v in G2. No hamiltonian cycle
of G will use the edge uv. Therefore, the problem of determining a shortest hamiltonian
cycle can be decomposed into the problems of finding shortest hamiltonian (u, v)-paths
in G, and Gsy. ‘

These two problems can be solved as follows. First pick graph G, all edges e of
G, keep the weight ¢, except for the edge f = uv. The weight ¢; of f is zero. Each
hamiltonian path P from u to v in Gy corresponds to a hamiltonian cycle C of G,
containing f, and C and P have the same length ¢(C) = c(P). Let ¢’ be the length
of a shortest hamiltonian cycle C; in Gy. Now consider Ga. Each edge e(# f) of G2
gets the weight c., and we set ¢y := ¢/. Again, each hamiltonian (4, v)-path P in G
corresponds to a unique hamiltonian cycle C in G; containing f with ¢(P) = ¢(C)-c'.
By construction, if C; is a shortest hamiltonian cycle of G containing f then ¢(C3)
is the length of the shortest hamiltonian cycle In ‘G.. Moreover, (Cy U Ca2) \ {f} is
the shortest hamiltonian cycle of G. Clearly if G'l or G"g have no hamlltoman cycle
containing f then G has no hamiltonian cycle ‘

" In this way we have reduced the TSP for G to two TSP’s for the smaller graphs
G,, G, and we can construct a solution for G fromathe solutions for G, and G3. Our
algorithm thus works as follows.

Let G = (V, E) be a graph with edge weights ¢, for all e € E. Decompose G
into its bricks using procedures (2.1) and (2.2) and solve the TSP for the bricks. If at
any stage (2.1) is successful, which implies that G is not 2-connected we can stop and
declare G nonhamiltonian. Moreover, if at any stage procedure (2.2) finds more than
two {u,v}-components of G, we can stop and declare G nonhamiltonian. Therefore,
the decomposition is only carried out in case procedure (2.2) finds an articulation set
{u, v} such that there are only tow {u, v}-compenents.

Observe that if a graph G with p nodes is decomposed in two {u, v}-components
G}, G2 with gy resp. g2 nodes then ¢ +g2 = p+2and3<q; <p-1,3<g <p-1L
So if the initial graph has n nodes and if we assume that this decomposition is applied
n—1 times we have produced n— 1 graphs Gy, ...,Gp~1 With a total number of 3n—3
nodes where each graph G; has at least 3 nodes. This is impossible, which shows that
this decomposition can be carried out at most n — 2 times.

In fact, it is not necessary to carry out procedures (2.1) and (2.2) in sequence
for each decomposed graph. By using depth-first- search one can check whether G is
connected and find all articulation nodes in O(|V| + |E|) time. If G is connected and
has no articulation node then one can use the depth-first-search based procedure of
HOPCROFT & TARJAN (1973) to determine a list of bricks of G in time O(|E]). So
in at most O(|V| + | E|) steps a brick decomposition of a graph G can be obtained.

We still have to discuss how we solve the TSP for the bricks. For bricks of fixed
(small) size, we solve the TSP by brute force enumeration. This is (in practice) prob-
ably the fastest method for Ky with, say, k < 7 and all subgraphs of Kk and requires
only constant time. But a brick may have a large number of nodes (compared with
n), and in such cases we need to know that such a brick belongs to a class of graphs
for which the TSP is solvable in polynomial time. If this is so for all bricks our recur-
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give algorithm runs in polynomial time. So — in principle — we could use all known
polynomial time algorithms for the TSP for certain classes of graphs (as subroutines)
and apply them to our bricks. If for each brick one such algorithm finds a shortest

. hamiltonian cycle our procedure is successful and has polynomial running time. As

mentioned before there are a number of such classes of graphs known. Let us just
mention how to treat wheels W,.

Clearly each hamiltonian cycle H of W, has to pass through the center, and it is
obvious that the two other endnodes of the two edges of H containing the center must
be adjacent on the outer cycle of W,. This observation shows that a wheel contains
exactly n hamiltonian cycles (the outer cycle minus an edge plus the two edges linking
this path to the center) and that a shortest hamiltonian cycle in W, can be found in
O(n) time. Since the bricks of the graphs in class K are those of Figure 2 we can
conclude.

(8.1) Corollary. The TSP for the class of graphs not contractible to K5 — e can be
solved in polynomial time.

, | ) 0
Observe that the number of edges in a graph G € K is linear in the number of
nodes, and with a more careful analysis of the algorithm described above one can show
that the TSP for the graphs in K can be solved in time linear in |V|.

4. Travelling Salesman Polyhedra and 2-Sums

Let G = (V, E) be a graph and F C E, then xF € RF denotes the inc.idé_n’ce vector of
F,i.e x; =1life € F, xI =0 otherwise. The travelling salesman polytope Qr(G) is
the convex hull of the incidence vectors of the hamiltonian cycles (= tours) of G, i, e.

Qr(G) =conv{xT € RE | T C E tour}.

This polytope has been intensively studied for the complete graph K,,, see GROTSCHEL

‘& PADBERG (1985) for a survey, but complete descriptions of Qr(K,) by means of

linear inequalities are only known for n < 7. CORNUEJOLS, NADDEF & PULLEY-
BLANK (1983, 1985) were able to describe Qr (G) for several classes of graphs including
wheels and Halin graphs. We will present a linear characterization of Qr(G) for all
graphs G € XK.

First we give a description of Qr(G) for the basic graphs of Figure 2. For W C V
let (W) := {uv € E | u € W,v € V\W} denote the cut of W (we write 6(v) instead of
6({v})). The following proposition immediately follows from the known linear systems
describing Qr(K,), n < 6, resp. the fact that the travelling salesman polytope for all
these graphs (except for the prisma P) is equal to the perfect 2-matching polytope.
For any graph G = (V, E) consider the inequalities resp. equations:

(4.1) 0<z. <1 forallec E,
(4.2) z(6(v)) =2 forallveV.

Clearly every incidence vector of a tour satisfies (4.1) and (4.2).
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(4.3) Proposition.

(3) Qr(K.) and Qr(K;) are empty..

(b) Qr(Ks),Qr(Ksz3) and Qr(W,) for n >3 are completely determined by (4. 1) and
(4.2).

(¢c) Qr(P) is given by (4.1), (4.2) and the equatxon

(449) | =(6(W)) =2

where §(W) is the 3-edge cut (= perfect matcbfng) of P linking the two triangles
of P, i. e. W is the node set of one of the triangles.

' - 0
Since the matrix making up the left-hand side of the equation system (4.2) is the
node-edge incidence matrix of G, and since this matrix is of full rank if and only if G
is nonbipartite (otherwise the rank is |V| — 1) we obtain:

_(4.8) Corollary.

o |E| - V| ifG=K;s orG=W,,
~ dim(Qr(G)) =1 |E| = |V|+1 ifG = Kz,
5L |E|=|V|-1 ifG=P.

. ‘ 0

Using the information of (4.5) one can give a more concise description of the poly-

topes Qr(G) characterized in (4.4) by removmg redundamt equatxons and inequalities.
It is not difficult to see that

Qr(Ks)={z€Rf |z satisfies (4. 2)},
Qr(P) = {z € RF | z satisfies (4,2), (4.4). and
'z < 1forall e §(W) ch (4.4))},
Qr(Ks3) = {z € R® | z satisfies any 5 of the six equations (4.2),
" z,<1forall e€ E},
Qr(W,) = {z € R? | z satisfies (4.2),

z. < 1 for all edges e of fhe outer cycle},n >3

are nonredundant characterizations of these tra.velhng ga.lggman polytopes.

Clearly, the travelling salesman polytope for any subgraph of the special graphs
discussed above can be obtained by setting z. = 0 for all edges e not contained in the
subgraph. If we know Qr(G) and we want to determine the polytope of the incidence
vectors of tours containing a fixed edge e, we just add the equation z, = 1.

From this observation one can easily derive the following. Suppose Qr(G) =
{reRE | Az < a}, f = uv € E, and b is the column of A corresponding to f. Let A
be the matrix derived from A by setting the column corresponding to f to zero, then

Qp(G):={z€RE | Az < a—b)

is the convex hull of the incidence vectors of the hamiltonian paths from u to v in G.

If G is the 2-sum of G; and G; with respect to an edge f = uv then each hamilto-
nian cycle in G is the composition of a hamiltonian [u, v]-path in G, and a hamiltonian
[u, v]-path in G3. This implies that Qr(Q) is the cartesian product of Qp(G,) and
Qp(G2). So we can state the following result.
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{4.8) Theorem. Let G, = (Vy,E,), G3 = (V2, E;) be two graphs which have the
sedge f in common and let G = (V, E) be the 2-sum of Gy and G, with respect to f.
Suppose Qr(G;) = {z € RF | A;z < a;}, 1 = 1,2, and suppose the last column of A,
and the first column of A, correspond to the edge f. Set

—— .A‘ l 0 . al)
A= 0 | A, a.—(az

and let b be the column of A corresponding to f. Let A be obtained by setting all
entries of the column of A corresponding to f to zero, then

Qr(G)={zeR? |Az < a-1b}.

O

The theorem above applies to any graph. So whenever we decompose a graph
G into its bricks by applying procedures (2.1) and (2.2) recursively and if we have
a complete linear characterization of the travelling salesman polytope for each brick
we can determine a complete linear inequality system for Q1 (G). (Obviously, if G is
disconnected or the 1-sum of two graphs, Qr(G) is empty.)

Let us apply this observation to the graphs not contractible to K5 — e. The
travelling salesman polytopes of the bricks of any graph G € K are given in Proposition
(4.3). Note that the linear systems consist of trivial inequalities (4.1) 0 < z, < 1 and
equations only. All these equations are equations for certain cuts. Moreover, each
polytope is defined by at most 2| E| inequalities and at most |V |+1 equations. Theorem
(4.5) therefore implies that for each graph G not contractible to K5 — e the travelling
salesman polytope Qr(G) is defined by at most 2|E| (trivial) inequalities and at most
| E| equations where all equations have 0/1-coefficients which can be determined in
polynomial time recursively from the equations for the polytopes of the bricks. An
easy induction shows that the equations that are obtained this way can be written
either as zy = 0 for some edges f € E or as cut equations with right-hand side 2,
i.e. z(6(W)) = 2 for some W C V. More exactly, we have:

(4.7) Theorem. Let Gy = (Vy, E;) and G, = (V3, E;) be two members of K which
have an edge f = uv in common, and let G = (V, E) be the 2-sum of G, and G with

respect to f. Suppose there are sets F; C E; and W; C 2% such that for i = 1,2 the
following holds

z, =0 forallee F;
z(6(W)) =2 for all W € W;},

Qr(Gi)={z€R® |0< z, <1 forallec E;\ F

then ‘
Qr(G)={zeRP|0<z, <1forallec E\ (F, UFU{f})
ze=0foralleeF1 UFgU{f}
Z(5(W)) =2 forall W e W1 U WQ U {VlyVI U {U}}}
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_ Since for each G = (V, E) ek the lmear equatxon and inequality system describing
Q1(G) can be set up in polynomial time, the TSP for all graphs G € K can be solved
in polynomial time by any good linear programming algorithm.

To give an example consider the polytope Qr(G) for the graph G = (V, E) shown
in Figure 4. G is the 2-sum of two pnsms The edge e = 89 on which the 2-sum has
been performed is deleted. .

o)

Pig. 4

By Theorem (4.6) and Proposition (4.3) Qr(G) is given by

0_<_ze$1“foralle€E
z(6(1)) =2 fori=0,1,...,7
x03+1:23'=-‘—‘1)" '
Zgg + Tz =1
Zi9 + T39 =1
Tsg + ZTre =1
Tor+Tas =1

‘ z45+zo7—~1;,;«’ .
By Theorem (4.7) the system descrﬁbmg QT(G’) 8 )

0<z., <1 foralle € E
z(6(1)) =2 forallecV ,
z(6(W)) =2 forall W € {{0,2,8}, {4 6, 8} {o,1, 2 ,3},{0,1,2,3,83)

It is somewhat surprising that the results descnbed above are not implied by the

more complicated constructions of CORNUEJOLS, NADDEF & PULLEYBLANK (1983,
1985). For example, the graph G of Figure 4 does not belong to any of their classes, and
so the linear description of Q7 (GY) given above cannot be derived from their results.
Moreover, the well-studied system (4. 1), (4 2), plus subtour ehmmatlon constra.mts,
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m*"plus 2-matching constraints (see GROTSCHEL & PADBERG (1985)) does not provide

~ a complete linear system for the polytopes Qr(G), G € K. For instance, the vector
z € RE — graphically displayed in Figure 5 — does not belong to Qr(G) (G is the
graph of Figure 4),but we can show that it is a vertex of the system (4.1), (4.2), plus
subtour elimination constraints, plus 2-matching constraints. However, z violates some
comb constraints (see GROTSCHEL & PADBERG (1985)). We do not know whether
the system (4.1), (4.2), plus subtour elimination constraints, plus comb constraints

(and possibly plus clique tree constraints) provides a complete description of Qr(G),
Gek.

Nje=
B
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